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Abstract
The commissioning of the entire control system using a

digital shadow of the machine offers extensive

advantages in industrial control engineering for machine

manufacturers and machine integrators. The growing

use of a Hardware-in-the-Loop Simulation (HiLS) in the

engineering process is accompanied by the steady

increase in demands regarding model depth and model

scope of the virtual machine. Especially in the area of

material flow simulation, currently used simulation

setups of HiL-Simulators reach their limits because of

the limitation on a single simulation solver. This paper

presents an approach on how a virtual machine could be

realized based on several interlinked simulation solvers

connected by a multi-rate approach to increase the

model depth and model scope.

Keywords: hardware-in-the-loop simulation, co-simu-
lation, multi-rate simulation, virtual commissioning, 

material flow simulation

1 Introduction

In the context of Industry 4.0, the use of digital methods

and tools over the complete life cycle of a production

system plays a vital role because of the increasing

degree of complexity of modern production systems. In

this context, one speaks of the ‘virtual production’: The

seamless digital modelling of product installations and

processes for experimentation purposes. In the area of

industrial control engineering the virtual commissioning

of machine tools presents great potential. Simulative

methods are used more and more by machine

manufacturers and machine integrators in the

engineering process: In the course of virtual

commissioning, the control system can be put into

operation at an early development stage and before the

real machine is available using a ‘virtual machine’. With

the aid of a virtual machine, the control system is tested

regarding quality and performance. Furthermore,

unforeseen errors are eliminated. In summary, virtual

commissioning saves time and money and simplifies the

engineering process. There is a need for further research

in order to reach the vision of an encompassing virtual

production.

Regarding the simulation setup of a virtual 

commissioning, several test configurations, such as 

Model-in-the-Loop (MiL), Software-in-the-Loop (SiL) 

and Hardware-in-the-Loop (HiL), can be distinguished. 

Especially in the context of CNC machines (CNC - 

Computerized Numerical Control), Hardware-in-the-

Loop Simulation (HiLS) offers many advantages 

because the entire control system can be tested without 

any technical modifications or adaptations. In the 

context of CNC machines, the HiLS describes a test 

configuration, where the real control system is 

connected with a virtual machine based on a single 

simulation solver via the real communication periphery 

(Pritschow and Röck, 2004). However, in order to meet 

the requirements on a time-synchronous and lossless 

data processing in relation to the deterministic cycle 

time of the real control system, the machine simulation 

has to process the control outputs to control inputs in 

between the deterministic control cycle time (today 1ms 

for CNC machine tools). These high demands on time-

deterministic algorithms cause restrictions on the model 

depth and model scope of a virtual machine. There are 

reduction schemes and numerical integration techniques 

available, which enable an efficient computation of the 

simulation models in some cases. However, 

computation-intensive and non-deterministic 

algorithms in the field of structural mechanics (e.g. real-

time capable finite element models, flexible multibody 

systems), process simulation (e.g. chip formation), 3D-

kinematic simulation with collision detection and 

simulation of the dynamics of material flow systems can 

only be used if simplified and adapted simulation 

models can be found. In summary, the current 

simulation setup based on a single simulation solver 

reaches its limits considering the simulation of an 

encompassing virtual production.  

This paper presents the objective of a simulator based 

on several interlinked simulation solvers with different 

real-time requirements and cycle times connected by a 

multi-rate approach to increase the model depth and 

model scope of a HiLS of machines. The feasibility is 

demonstrated by the example of a material flow. 

This paper is organized as follows: In section II 
preliminary work is presented that is considered relevant 

to this research. Section III describes the current 
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simulation setup of a HiLS in industrial control 

engineering and its limitations. On this basis, an 

expansion of the current simulation setup based on a 

multi-rate approach is motivated in section IV. The case 

study on a physics-based material flow simulation is 

demonstrated in section V. The paper closes with a 

summary and an outlook in section VI considering 

future work respective this research. 

2 Related Work 

Pritschow and Röck introduce in (Pritschow and Röck, 

2004) a simulation setup of a HiLS for machine tools 

using a real CNC. The integration of the real CNC-

System in the simulation loop requires a time-

deterministic simulation of the machine that runs under 

a real-time operating system. An example where this 

simulation setup reaches its limitations regarding 

computation-intensive and non-deterministic simulation 

models is a material flow simulation using a physics-

based simulation approach: 

Physics-based material flow models are predestined 

for the simulation of the material flow dynamics of a 

virtual production. Zäh, Lacour and Spitzweg propose 

in (Zäh et al, 2008) a five step modelling process based 

on the CAD model that yields in a physical and 

kinematical model of a material flow system.  

Few approaches address the integration of a physics-

based material flow model into a time-deterministic 

virtual machine (Hoher et al, 2011; Hoher and Verl, 

2012; Neher and Lechler, 2015). However, Hoher and 

Verl demonstrate in (Hoher and Verl, 2012) that a 

physics-based simulation approach is only possible with 

a small number of moving objects (70 dynamic objects 

with a simplified modeling already require up to 1,5 ms) 

within the described simulation setup of a HiLS. 

In order to avoid these limitations, this paper presents 

the objective of an expansion of the simulation setup 

introduced in (Pritschow and Röck, 2004) by a multi-

rate approach to increase the model depth and model 

scope.  In the field of multi-rate simulation, extensive 

mathematical research is available (Gear and Wells, 

1984) (Muttay-Smith, 1984). However, there is no 

solution present, which shows such a simulation setup 

in the field of machines and industrial control 

engineering. A solution needs to be found, which focus 

the specific scientific questions regarding the 

integration of a real control system in the simulation 

loop (HiLS), where the simulator consists of several 

interlinked simulation solvers. 

3 HILS of Machine Tools and its 

Limitations 

3.1 Real-Time Requirements 

In a real-time simulation, the simulation time 

synchronizes with the real time. In the field of industrial 

control engineering, two different types of real-time 

requirements need to be distinguished with regard to 

used algorithms: 

1. Soft real-time requirements: The simulation usually 

calculates simulation results in a timely manner. 

Significant deviations are rare but possible. 

Windows-based real-time simulation cores usually 

obey soft real-time requirements. 

2. Hard real-time requirements: The simulation 

always calculates simulation results in a timely 

manner. To achieve  equidistant time intervals a 

real-time operating system is required. 

3.2 Simulation Setup for a HiLS of Machine 

Tools 

               

Figure 1. Simulation setup for a HiLS of machine tools 

using real CNC. 

The decisive advantage of a HiLS of machine tools, as 

depicted in Figure 1, is the commissioning of an 

unmodified and entire control system. From the point of 

view of the real control system, there shell be no 

difference between the real and the simulated machine. 

To meet the requirements on a time-synchronous and 

lossless data processing in relation to the cycle time of 

the control, the simulation solver runs as real-time task 

on the real-time operating system (Pritschow and Röck, 

2004). This ensures that time sensitive (fast changing 

I/Os) and time synchronous events (drive amplifier) can 

be handled by the simulator. Hence, the requirements on 

the time-deterministic simulation models are (Pritschow 

and Röck, 2004): 

 A time-deterministic kernel of the underlying 

operating system to run the simulation solver 

 The algorithms of the simulation models for the 

machine simulation must be time-deterministic 

 Simulation cycle time ~ 1 ms (same as control 

system cycle time) 

The simulated machine consists of multiple behavior 

models. Starting with the I/O signals on the fieldbus, 
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behavior models are required to simulate the single bus  

devices, such as a drive amplifier. Regarding the 

behavior model of a drive amplifier, it is important to 

react to every bit change inside the control word with 

correct status word. Downstream of the simulated bus 

devices, additional models such as kinematic, logic or 

dynamic models of the machine are needed to generate 

a realistic observation. 

3.3 Limitations of the Simulation Setup 

Following limitations can be determined: 

1. Single simulation solver: The described simulation 

setup of a HiLS uses a single simulation solver 

running as real-time  task on a real-time operating 

system.  The setup applies an uniform cycle time 

(derived from the control system cycle time) and 

hard real-time requirements (simulation results 

must be guaranteed before the next control step 

starts) to all parts of the model. These two 

properties limit the model depth and model scope 

of the virtual machine, because of desired time-

deterministic and performant algorithms and weak 

exploitation of available processing power. 

2. Parallelization: Multi-core processors with an 

increasing number of cores as well as developments 

in the field of GPGPU (GPGPU - general-purpose 

computing on graphics processing units) are 

emerging since the beginning of this century 

offering a continuously increasing performance for 

simulation applications on standard PCs. A 

distribution of real-time tasks across different cores 

(Multi-core) requires a division of the simulation 

solver into functional units. An increase in 

computing performance by harnessing the power of 

the GPU (GPU – graphics processing unit) requires 

a coupling of a soft real-time simulation solver 

under Windows because GPGPU is currently not 

possible under real-time operating systems. 

3. Available simulations cores: Simulation 

approaches of various simulation disciplines need 

to be combined to simulate the overall behavior of 

a machine or production.  In the meantime, highly 

specialized real-time simulation cores for various 

simulation disciplines were developed. These 

simulation cores are mostly Windows-based and 

therefore impossible to run under a real-time 

operating system. This is a further argument for 

coupling Windows-based simulation cores. 

The following amendments to the simulation setup 

are required to achieve an increasing model depth as 

well as an increasing model scope (see Figure 2): 

 Splitting up of the single simulation solver into 

functional units: several interlinked simulation 

solvers with various cycle times 

 Different real-time requirements to the simulation 

solvers: Enhancement of the simulation setup by 

soft real-time simulation solvers 

 Usage of multi-rate and multi-step methods 

 Integration of available highly specialized 

simulation cores 

 Parallelization of simulation tasks: Multi-core and 

GPGPU support  

               

Figure 2. Multiple simulation cores. 

4 Multi-Rate Simulation Approach 

for Machines 

4.1 Multi-Rate Simulation Techniques 

By splitting up of a single simulation solver into 

functional units with different cycle times and different 

real-time requirements, a synchronisation strategy is 

required. In the context of differential-equation models, 

few approaches address ‘multi-rate’ techniques, e.g. 

(Gear and Wells, 1984; Muttay-Smith, 1984).  

               

Figure 3. Multi-rate simulation. 

Multi-rate methods for converting slow data sequence 

outputs from a slow functional unit into fast data 

sequence inputs for a fast functional unit can be divided 

into three groups, see Figure 3: 

 Zero-order hold: Holding the last output 𝑦 from the 

slow functional unit as input 𝑢 from the fast 

functional unit until the output 𝑦 is updated (0 ≤
𝑎 ≤ 1): 
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𝑢𝑛+𝑎 = 𝑦𝑛 (1) 

 Interpolation algorithms: Calculation of new inputs 

𝑢 within the range of a discrete set of known outputs 

𝑦 e.g. first-order interpolation (0 ≤ 𝑎 ≤ 1): 

𝑢𝑛+𝑎 = 𝑦𝑛 + 𝑎(𝑦𝑛+1 − 𝑦𝑛) (2) 

 Extrapolation algorithms: Estimating the value 𝑢 

from the values 𝑦 computed beforehand e.g. first-

order extrapolation (0 ≤ 𝑎 ≤ 1): 

𝑢𝑛+𝑎 = 𝑦𝑛 + 𝑎(𝑦𝑛 − 𝑦𝑛−1) (3) 

4.2 Multi-Rate Simulation Techniques for 

Virtual Machines 

To transfer these techniques to a HiLS of machines, an 

application specific consideration is required: 

1. Coupling of Soft-Real-Time-Cores: The coupling of 

simulation cores in soft real-time is of great 

interest. Soft real-time algorithms can’t guarantee 

the calculation of simulation results if the cycle 

time is choosen too low. An appropriate choice of 

the cycle time is necessary. Therefore, the worst 

case need to be calculated in advance. Furthermore, 

a simulation step of a simulation core on Windows 

has to be commanded from a task on the real-time 

operating system.  

2. Allocation of multi-rate methods: The choice of an 

available multi-rate method depends on the 

behavior model as well as on the characteristic of a 

signal. Furthermore, multiscale modeling can be 

considered: In a fast simulation core, a simplified 

and performant simulation approach is realized 

which is guided by a slow simulation core based on 

a precise simulation approach.  

3. Accuracy and stability: Whether a behavior model 

requires the same cycle time as the control system 

is depending on the characteristic of the linked I/O 

signals of the control system. The effects of signal 

jumps as well as inaccuracies because of the multi-

rate method has to be considered. Furthermore, 

control commands could have the demand on 

immediate processing by the simulation.   

4. Look-ahead simulation: For the use of interpolation 

multi-rate methods, it might be necessary to 

parallel computing of the same simulation core 

with different cycle times. Furthermore, 

simulations faster than real-time can also be 

considered. As long as there is no control 

command, these calculations can be correct. 

5. Communication between cores: A performant data 

exchange between the simulation cores is very 

important. Communication in-between the real-

time operating system as well as between Windows 

and the real-time operating system has to be taken 

into account. 

5 Case Study on a Physics-Based 

Material Flow Simulation 

The high demands on time-deterministic algorithms is 

especially within the context of material flow simulation 

a major problem. In modern production systems, several 

conveyor systems combine individual machines to a 

material flow system. The real control system, in this 

case the individual machine controls as well as the 

superordinated production control, can be connected 

with a virtual production in a HiLS if a material-flow 

model is available. For example, looking at machines 

from packaging or beverage industry, the state of the 

control, the plant layout and operational throughput are 

directly related to the physical and geometric properties 

of the material flow. The material flow consists of a high 
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number of moving objects (> 1000), which interact with 

each other over collisions. A behavior model for the 

dynamics of the material flow has to be found to 

simulate the exact process sequences and to reproduce a 

realistic interaction with the control system via fieldbus 

I/Os.  

A physics-based simulation approach calculates the 

object motion on runtime of a simulation based on the 

laws of classical mechanics (rigid-body simulation). 

Physical (e.g. mass, coefficient of friction) and 

geometric (collision shapes) properties of the simulation 

objects as well as the object arrangement (positions and 

orientations) and simulation scene properties (e.g. force 

of gravitation)  are required for modelling the initial 

configuration of a simulation scene. Full-grown 

simulation cores, called physics engines, for the 

simulation of physical systems are available. These 

physics engines provide rigid body dynamics including 

collision detection and can be used for a material flow 

simulation.  However, these physics engines are 

not based on time-deterministic algorithms and meet 

only soft real-time requirements. Thus, the physics 

engines cannot be executed on a real-time operating 

system for a high number of moving objects. For 

coupling the physics engine, running on Windows, a 

suitable multi-rate method has to be found. Furthermore, 

the simulation core on Windows has to be commanded 

from a task on the real-time operating system. Figure 4 

shows the simulation setup.   

Regarding a conveyor belt with 245 moving cylinders 

(see Figure 5), the computation time of a physics-based 

simulation for a 40 ms time step is about 18-40 ms (see 

Figure 6). Thus, an appropriate method has to be found, 

which provides the inputs for the time-deterministic 

simulation solver (~ 1 ms).  

               

Figure 5. Material flow scene: Conveyor belt with 245 

moving cylinders. 

One option would be to use a zero-order hold multi-

rate model. As described, this method would hold the 

last position vector from the slow simulation core as 

input for the fast simulation core until the position 

vector is updated. 

A better option would be to use a multiscale modeling 

approach. A pure kinematic simulation, which lead the 

objects on predefined trajectories, is possible under hard 

real-time conditions. A kinematic simulation (in this 

case only translational movements) calculates in each 

simulation step the next position vector 𝑟𝑛+1 of an object 

ri+1 by the current position  𝑟𝑛, the current velocity 

vector 𝑣𝑛 and the simulation time step ∆𝑡: 

𝑟𝑛+1 = 𝑟𝑛 + 𝑣𝑛 ∙ ∆𝑡       ri+1 = ri + vi ∙ ∆t (4) 

               

Figure 6. Computation time of the physics-based 

simulation. 

On this basis, a multi-rate method can be developed: 

At n = 0, the physics-based simulation model, which is 

running on the slow simulation core, sends the current 

precise position vector 𝑟𝑝 and velocity vector 𝑣𝑝 of the 

object. The multi-rate method now updates the current 

position vector (2) and uses the velocity vector to 

generate new position vectors (3) until a new data set 

arrives from the slow simulation core: 

𝑟𝑛+0 = 𝑟𝑝 (5) 

𝑟𝑛+𝑎 = 𝑟𝑛 + 𝑣𝑛 ∙ ∆𝑡 (6) 

 

               

Figure 7. Amount deviation with extrapolation algorithm. 

In this example, the soft real-time simulation solver 

with the physics-based simulation runs with a 

simulation cycle time of 40 ms and the hard real-time 

simulation solver runs with a time-deterministic cycle 

time of 1 ms. Compared with a zero-order hold multi-
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scale method, the usage of the multiscale modeling 

approach enhances the model accuracy, see Figure 7. It 

can be seen that the accuracy of a coupled physics-based 

simulation is sufficient for the requirements of a HiLS 

of machines.   

The case study is implemented in a real-time 

environment using Beckhoff TwinCAT real-time 

extension for Microsoft Windows 7 64bit. For the 

physics-based simulation, the physics engine NVIDIA 

PhysX  SDK 3.3.3  and for the virtual machine the 

simulation tool ISG-virtuos is used.     

6 Summary and Outlook 

The requirements regarding model depth and model 

scope of the virtual machine in a HiLS are continually 

on the rise. The currently used simulation setup reaches 

its limits because of the limitation on a single simulation 

solver. To master these demands the division of the 

single simulation solver into functional units based on 

multi-rate methods should be considered, so that multi-

core and GPGPU technologies as well as a wider range 

of simulation algorithms with different real-time 

requirements and cycle times can be used to achieve the 

given objective of a virtual production. Therefore a 

precise observation is necessary, to keep meeting the 

requirements on a time-synchronous and lossless data 

processing in relation to the cycle time of the control 

system.  

Out of this context, this paper presents the objective 

of a simulator based on several interlinked simulation 

solvers with different real-time requirements and cycle 

times connected by a multi-rate approach to increase the 

model depth and model scope of a HiLS of machines. 

The feasibility is demonstrated by the example of a 

material flow simulation. 

The objective and future work is an in depth analysis 

of the described approach and the analysis of the 

interaction with an industrial control system. 
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