
Powertrain Model Assessment for Different Driving Tasks

through Requirement Verification

Anders Andersson1 Lena Buffoni2
1Swedish National Road and Transport Research Institute, Sweden, anders.andersson@vti.se

2IDA, Linköping University, Sweden, lena.buffoni@liu.se

Abstract
For assessing whether a system model is a good

candidate for a particular simulation scenario or

choosing the best system model between multiple

design alternatives it is important to be able to evaluate

the suitability of the system model. In this paper we

present a methodology based on finite state machine

requirements verifying system behaviour in a Modelica

environment where the intended system model usage is

within a moving base driving simulator. A use case

illustrate the methodology with a Modelica powertrain

system model using replaceable components and

measured data from a Golf V. The achieved results show

the importance of context of requirements and how users

are assisted in finding system model issues.

Keywords: system model assessment, requirement
modelling, Modelica, finite state machine, powertrain

validations

1 Introduction

With the increasing complexity of cyber-physical

systems, determining whether a particular system design

alternative fulfils all the requirements that are imposed

on the system under development can no longer be done

manually and requires formalizing the requirements into

some computable form. Verifying the validity of a

system design through simulation will reduce the risk of

modelling errors and allow to evaluate the suitability of

the model for a particular purpose.

In the context of this paper, we illustrate the

validation process on a powertrain model with an

intended use in a driving simulator. A simulator model

is validated before conducting a driving simulator study

as well as over the whole evaluation time period and in

particular whenever a developer changes parts of a

model, to guarantee that the model is suitable for the

intended driving tasks.

One common way to test a powertrain is to use

driving cycles. For the use case in this paper we have

logged a driver for two different driving cycles, the

Artemis Road Driving Cycle and the 130 km/h variant

of the Artemis Motorway Driving Cycle. Using this

logged data it is possible to run the model offline and we

use these datasets to verify that the model is working as

intended using requirements.

The physical model and the requirement model are

both written in Modelica (Modelica Association, 2014).

Using the same language to express both the

requirement and the design model simplifies the co-

simulation of the two. The declarative nature of

Modelica lends itself well to the description of the

requirement model and the component based nature of

the verification framework allows to quickly create

different configurations for testing.

The paper is organized as follows: Section 2 presents

the use case that will be used to illustrate the

methodology, Section 3 describes the requirement

model, Section 4 illustrates the setup for the whole

verification framework, used in Section 5 to show the

model validation process, and finally the conclusion and

future work are discussed in Section 6.

2 Use Case

To acquire data for the powertrain system models and

the requirement model the vehicle propulsion laboratory

at Linköping University was used. In this laboratory

chassis dynamometers are connected to the wheel hubs

of the test vehicle, in this case a Golf V, measuring

signals such as the torque and rotational speed at the

driving wheels. Used setup, shown in Figure 1, is further

described in (Öberg et al, 2013).

Figure 1. The Golf V used for measuring powertrain data

connected to chassis dynamometers at the vehicle

propulsion laboratory at Linköping University.

EUROSIM 2016 & SIMS 2016

721DOI: 10.3384/ecp17142721 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

2.1 Driving Task Specification

The system models are used to simulate the powertrain

during various driving tasks. Examples of such driving

tasks are driving monotonously on a motorway with low

traffic or city driving which typically includes more

accelerations and driver input. Driving tasks can be

represented by driving cycles. Thus, to connect our

conclusions to real driving, two different driving cycles

were used, the 130 km/h variant of the Artemis

Motorway Driving Cycle and the Artemis Road Driving

Cycle, see (Andre, 2004). In the laboratory, the driver

was asked to drive according to the chosen driving cycle

as close as possible.

Gathered data was used to parameterize the system

model and also as a test case to evaluate the requirement

model’s performance. Since the requirement model

should ensure that the system model captures the driving

cycle characteristics and thus it is suitable for the

represented driving task.

3 Requirement Model

Alongside the system model for the powertrain, we

define the requirement model. It is important to note that

the requirement model should not impact the physical

model of the system and therefore has read-only access

to the information necessary for the verification.

3.1 Requirement Modelling in Modelica

To represent requirements in Modelica, we use the

following conventions (Schamai et al, 2014):

 A requirement is identified by extending the partial

Requirement interface.

 A requirement is associated with a status and a set

of properties to reason on the status.

A status can take the following values:

 VIOLATED when the conditions of the requirement

are not fulfilled by the design model;

 NOT_VIOLATED when the conditions of the

requirement are fulfilled by the design model;

 NOT_APPLICABLE when the requirement does not

apply, for instance a requirement that describes the

behavior of a vehicle when switching gears cannot

be verified in a scenario where the vehicle is always

in first gear. This is important to identify

requirements that were never tested during a

simulation.

It is important to note that the status of a requirement

evolves over time, and that the status of the requirement

at the last instant of the simulation cannot be used to

determine whether the requirement has been violated

earlier in the simulation. For this reason, each

requirement is also associated with the following

variables:

 hasBeenVerified indicates if a requirement has

ever been checked during a simulation run

 hasBeenViolated indicates if a requirement has

been violated during a simulation run

These predicates can be used to analyze the

simulation results.

There is no unique way to specify a requirement

model, but in this paper we choose to represent

requirement as finite state machines (Thiele et al, 2015)

because this allows to intuitively map the state of the

system through inputs to the 3 possible states of the

requirement. Other alternatives would have been

representing requirements as conditional equations or

using a dedicated library (for example (Otter et al,
2015)).

In is important to note that when modeling

requirements as state-machines the clock frequency is a

key design choice. In the current implementation the

transitions are triggered by a clock event and thus a zero

crossing is not detected. As a consequence, an event

with a frequency shorter than the clock interval can

possibly be missed. For the simulations in this study

case we set the clock period to 0.5.

3.2 Powertrain Use Case Requirements

For this case study we have selected a set of 4 different

requirements where three of them are related to system

model validity and one is related to model logics. A

textual description of the requirement set is given in

Table 1.

Table 1. Textual requirement description.

Requirement
ID

Description

req1 The accelerator and clutch pedal
value should always be between 0
and 1.

req2 When driving calmly there should be
a limited amount of gear changes
per minute when using an automatic
gearbox.

req3 When the car is moving the
difference between modeled and
measured engine RPM should be
below an acceptable error when the
clutch is not used.

req4 When the car is moving the
difference between modeled and
measured vehicle speed should be
small over time.

The textual descriptions of requirements in Table 1

can be ambiguous. For instance it is unclear, whether

“between 0 and 1” is an open or a closed interval.
Formalizing these requirements as a computable model

removes such ambiguities. As described in the previous

EUROSIM 2016 & SIMS 2016

722DOI: 10.3384/ecp17142721 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

section, each requirement in Table 1 is modeled by a

finite state machine. For an example of how these

requirement finite state machines look, see Figure 2.

Figure 2. Finite state machines used to model req1 above

and req4 below. The requirement status corresponds to

state circle format where a green line means

NOT_VIOLATED, a red dashed line means VIOLATED and

a blue dash dotted line means NOT_APPLICABLE.

One of the advantages of using a component-based

language to model requirements is the possibility of

hierarchically composing smaller requirements into

more complex requirements. For instance, req1 is a

combination of two requirements: one requirement for

the acceleration pedal and another requirement for the

clutch pedal. These are requirements on the inputs of the

system and are grouped together for convenience

purposes.

The model below is the description of the state

machine for req4 in Modelica. It corresponds to the

second state machine in Figure 2. We can see here that

the requirement inherits from the partial model

Requirement and the different states of the requirement

are represented by the states of the state machine, e.g.

when the vehicle is stopped, the requirement cannot be

verified and is therefore NOT_APPLICABLE.
model VehicleSpeed

 extends Requirement;

 Modelica.Blocks.Interfaces.RealInput vx;

 Modelica.Blocks.Interfaces.RealInput vx_ref;

 inner Integer y;

 Real e_vx;

 block VehicleStopped

 outer Modelica.Blocks.Interfaces.IntegerOutput y;

 equation

 y = ReqStatus.NOT_APPLICABLE;

 end VehicleStopped;

 VehicleStopped stop;

 block NormalDriving

 outer Modelica.Blocks.Interfaces.IntegerOutput y;

 equation

 y = ReqStatus.NOT_VIOLATED;

 end NormalDriving;

 NormalDriving normal;

 block DetectedError

 outer Modelica.Blocks.Interfaces.IntegerOutput y;

 equation

 y = ReqStatus.NOT_VIOLATED;

 end DetectedError;

 DetectedError unsure;

 block PersistingError

 outer Modelica.Blocks.Interfaces.IntegerOutput y;

 equation

 y = ReqStatus.VIOLATED;

 end PersistingError;

 PersistingError error;

equation

 status = y;

 e_vx = abs(vx_ref - vx);

 initialState(stop);

 transition(stop,normal,vx >= 1);

 transition(normal,stop,vx < 1,

 immediate=false,reset=true,

 synchronize=false,priority=1);

 transition(unsure,stop,vx < 1,immediate=false);

 transition(error,stop,vx < 1,immediate=false);

 transition(normal,unsure,e_vx >= 15/3.6,

 priority=2,immediate=false);

 transition(unsure,normal,e_vx <15/3.6,

 priority=2,immediate=false);

 transition(unsure,error,timeInState() >= 30,

 priority=3,immediate=false,reset=true,

 synchronize=false);

 transition(error,normal,e_vx <15/3.6,

 priority=2,immediate=false);

end VehicleSpeed;

The requirement model is encapsulated in a single

Modelica component (the green box in Figure 3), which

is then connected with the rest of the verification setup.

As requirements are parameterizable, the same

requirement can be instantiated several times in a

requirement model. For instance, the requirement

WithinLimits used to verify that an input stays within

certain boundaries is used twice in req1 both for the

clutch and the accelerator pedal values.

4 Verification Model

A verification model (Schamai et al, 2014) contains:

 The design alternative chosen to model the system

 A requirement model

 A particular scenario used for the verification

For this case study we test the set of requirements

presented in Table 1 on two different versions of a

powertrain model to test how each model performs and

whether it is suitable for the target application. The

general setup framework is shown in Figure 3.

With this setup we can thus verify different

configurations of the model against different scenarios

represented by different logged data. The requirement

model is in this setup not changed. In Figure 3 we can

also see the parts of the physical system representing the

vehicle. These models will not be changed and thus in

our test the same test vehicle is used, e.g. vehicle mass

is not changed between different simulation setups.

In this paper we test 2 possible design alternatives in
2 scenarios for the set of requirements defined in Section

3, resulting in the total of 4 verification models.

EUROSIM 2016 & SIMS 2016

723DOI: 10.3384/ecp17142721 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

4.1 Design Alternatives

When testing different design alternatives, it is

important to be able to interchange different parts of the

system i.e. powertrain model easily. In Modelica a

structured way to do this is to use replaceable

components (Modelica Association, 2014), (Fritzson,

2014). Parts of the verification model are declared as

replaceable and are instantiated with different types of

components when the verification scenarios are

generated.

To verify our approach we have chosen to compare

two different powertrain models. These two models

were created by two students and for information on the

powertrain model version 1 (v1) see (Andersson et al,
2016) and on the powertrain model version 2 (v2) see

(Zetterlund, 2015). The second model is meant to be an

improved version of the first model. One of the major

improvements is better performance for lower gear

driving.
One of the goals in this case-study is to check whether

model v2 is a more accurate model.

4.2 Verification Scenarios

To verify the powertrain system models two driving

cycles were used. These are the 130 km/h variant of the

Artemis Motorway Driving Cycle and the Artemis Road

Driving Cycle. Data from these driving cycles are

collected from the chassis dynamometers and the

vehicle CAN bus in the vehicle propulsion laboratory.

Using logged data from the chassis dynamometers

the powertrain models should produce the same or

similar vehicle response as in the vehicle in the chassis

dynamometers. Since the used driving cycle then highly

influence the test of the vehicle we have chosen to use

two easier tests which will test the powertrain under

calm conditions.

The Artemis Motorway Driving Cycle is calm

driving with one part in the middle of the test with a

reduction in speed. The Artemis Road Driving Cycle is

a more dynamic test and excites more dynamics in the

powertrain model where for example there are three

Figure 3. The complete model in OpenModelica with replaceable parts. The orange box marks the driver input

which is modified depending on which data needs to be tested. The blue box is the model under test and is this is

where the two different powertrain models are tested. The green box is the requirement model.

EUROSIM 2016 & SIMS 2016

724DOI: 10.3384/ecp17142721 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

stops to zero vehicle speed. This means that if a

powertrain model is accurate enough for a driving task

when we verify our model the conclusion should be that

if the requirements are passed for the Artemis Motorway

Driving Cycle the model can be used for simulator

studies when motorway driving is tested.

In our scenario the logged data is part of the

simulation which means that a requirement can be

checked during simulation and thus cancel the

simulation if a requirement is violated.

Our goal is to assess whether the models can be used

with the represented scenarios.

5 Simulation and Results

When running the different setups a Python interface to

OpenModelica (Ganeson et al, 2012) is used and a

Python script is used to instantiate every chosen

combination of the different powertrain system models

with the driver input. Each combination is associated

with a unique identifier and a .mat file containing the

simulation results for each combination. The data is then

analyzed in Matlab to check if the requirements are

violated and/or verified.

When running the simulation with a clock period of

1.0 s, we miss some events that lead to the violation of

req3. Therefore, we use a clock period of 0.5 s.

We start by looking at the 130 km/h variant of the

Artemis Motorway Driving Cycle which represents

motorway driving. In Figure 4 version 1 and 2 of the

powertrain system model with requirements are plotted

(req1 at the top with the other requirements

consecutively downwards). From the figure we can see

that the requirement on the inputs (req1) is never

violated. This is predictable since we have been in

control of the measurement equipment and has thus

made sure that correct inputs have been used. The

second requirement is not verified which is also

expected since a manual gearbox was used during each

simulation and this requirement would only be

applicable for an automatic gearbox. Looking at

requirements three and four (req3 and req4) we see

that during the time 0 to 100 when the model error is the

largest for both vehicle speed and engine RPM is also

when the requirements are violated for the model v1.

This is illustrated more in detail in Figure 5 where the

first 55 seconds is shown.

Figure 5. A close up of the first 55 seconds for models v1

and v2 during the 130 km/h variant of the Artemis

Motorway Driving Cycle. Here req3 and req4 are

shown.

In Figure 5 it can be seen that every time the clutch is

pressed (at approximately the times 4, 9 and 17 seconds)

an error in vehicle speed is introduced. For the system

model v1 the error persists for more than 30 seconds

after the third usage of the clutch and thus req4 is

Figure 4. The powertrain model v1 and v2 during the 130 km/h variant of the Artemis Motorway Driving Cycle. The top

four figures are the requirements one to four and the lower to figures show the difference in engine RPM end vehicle

speed.

EUROSIM 2016 & SIMS 2016

725DOI: 10.3384/ecp17142721 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

violated, see finite state machine in Figure 2. For the

system model v2 it can be seen that a vehicle speed error

is still present but significantly smaller. As the clutch

error is below an acceptable limit req4 is not violated.

This is where model v2 is improved and thus the results

are expected.

Running the simulation for our second driving cycle

in the same way we get a matrix of requirements that we

check for the values of hasBeenVerified and

hasBeenViolated. The results are summed up in

Table 2 where a green box means that the requirement

has been verified and is not violated, a red box indicates

that the requirement has been violated and a blue box

means that the requirement has not been verified.

Table 2.

Table 2. Requirement status for the two powertrain

models with two driving cycles.

re
q

1

re
q

2

re
q

3

re
q

4

Model v1
ArtemisMw130

ArtemisRoad

Model v2
ArtemisMw130

ArtemisRoad

As can be seen in Table 2 the requirement set for the

improved version of the model is not violated for the

calmer motorway driving cycle while both models need

improvement to meet the requirements for the rural road

conditions. We can also see that req1, req3 and req4

have all been verified for all test cases and since

automatic gearbox were never used req2 were never

verified. This result is predictable since model v2 is an

improved version and should thus have better

performance than model v1. From Figure 5 we can see

that the difference between the models is in the region

where lower gears are used. This was a region where

model v1 was improved which further gives confidence

that the results are correct. We also see that based on our

requirement model none of the models are fit for rural

road driving. This may mean that either the

requirements are too strict or the model needs

improvement.

Another aspect is that we do not distinguish between

requirements violated early in the cycle and later on.

Further inspection of the data shows that the

requirements are typically violated when accelerating

the vehicle from stand still to approximately 50 km/h.

However, for a rural drive where the speed is above this

limit most of the time this model could be used. This

underlines the importance of context when looking at

model assessment for a particular application. Thus a

further repository with driving cycles would improve

the accuracy of model verification.

Another advantage of this verification framework is

that we could have several system models which doesn’t

violate any of the requirements for a driving task. In

such a case where several models are good enough a

model can be chosen based on a particular criteria not

related to model accuracy. One example of such an

application is models for real-time simulation where a

developer can try out different numerical solvers for

different system models to find the system model with

good enough performance and lowest computation

effort.

It should also be noted that we know that the clutch

dynamics are not properly modeled, since the logged

data from the CAN bus are 1 or 0. This has been taken

into account in the requirements where e.g. the engine

RPM is not checked when the clutch is pressed. This is

also something that needs to be improved and if this is

taken into account both models will violate req3. To

improve the clutch model it would be good to run the

vehicle while also logging intermediate clutch values to

get the missing data.

6 Conclusions and Future Work

In this paper we have

 illustrated the use of requirement modeling using

finite state machines in Modelica

 presented a setup for model validation of a physical

system model using replaceable components to

easily build different design and validation

alternatives

 discussed the simulation results for different

combinations of validation scenarios and used them

to reason on the fitness of the chosen design

alternatives for a particular purpose

In this paper we present the results at requirement

level to see whether each requirement is fulfilled by a

particular system design. For violated requirements

however, it is not so obvious to trace the root of the

problem back to the time when the requirement is

violated, as the violations at time t can be due for

instance to driver actions at time (t-n)., e.g. see req4

where an error needs to persist for over 30 seconds to be

VIOLATED. Therefore, once a violation is detected, a

detailed analysis of the simulation results in the time

frame surrounding the violation is still necessary by a

human expert. However the semi-automation of the

requirement verification process helps pinpoint the

places where human intervention is necessary.

In the case-study presented in this paper, the

overhead added by the simulation of the requirement

model alongside the system model is considered to be

negligible, however in larger-scale cases this will need

to be taken into consideration. Therefore the next step is

to take the overhead in account in the verification

process.

EUROSIM 2016 & SIMS 2016

726DOI: 10.3384/ecp17142721 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Acknowledgments

This work is partially supported by the EU INTO-CPS

project and the ITEA MODRIO and OPENCPS projects

via the Swedish Government (Vinnova) and the German

and French Government.

References

Anders Andersson, Sogol Kharrazi, Simon Lind, and Andreas

Myklebust. Parameterization procedure of a powertrain

model for a driving simulator. Advances in Transportation

Studies, 2016, 1.

Michel Andre, The ARTEMIS European driving cycles for

measuring car pollutant emissions. Science of the Total

Environment 334– 335, pages 73–84, 2004.

Modelica Association. Modelica 3.3 revision 1 specification.

2014. URL www.modelica.org.

Peter Fritzson. Principles of Object Oriented Modeling and

Simulation with Modelica 3.3: A Cyber-Physical Approach.

1250 pages. ISBN 9781-118-859124, Wiley IEEE Press,

2014.

Anand Ganeson, Peter Fritzson, Olena Rogovchenko, Adeel

Asghar, Martin Sjölund, and Andreas Pfeiffer. An

OpenModelica Python interface and its use in pysimulator.

In Martin Otter and Dirk Zimmer, editors, Proceedings of

the 9th International Modelica Conference. Linköping

University Electronic Press, September 2012.

Per Öberg, Peter Nyberg, and Lars Nielsen. A new chassis

dynamometer laboratory for vehicle research. SAE

International Journal of Passenger Cars- Electronic and

Electrical Systems, 2013, 6(1):152–161.

Martin Otter, Nguyen Thuy, Daniel Bouskela, Lena Buffoni,

Hilding Elmqvist, Peter Fritzson, Alfredo Garro, Audrey

Jardin, Hans Olsson, Maxime Payelleville, Wladimir

Schamai, Eric Thomas, and Andrea Tundis. Formal

requirements modeling for simulation-based verification. In

Peter Fritzson and Hilding Elmqvist, editors, Proceedings

of the 11th International Modelica Conference. Modelica

Association and Linköping University Electronic Press,

September 2015.

Wladimir Schamai, Lena Buffoni, and Peter Fritzson, An

Approach to Automated Model Composition Illustrated in

the Context of Design Verification. Journal of Modeling,

Identification and Control, Volume 35- 2, pages 79—91,

2014.

Bernhard Thiele, Adrian Pop, and Peter Fritzson. Flattening

of modelica state machines: A practical symbolic

representation. In Peter Fritzson and Hilding Elmqvist,

editors, Proceedings of the 11th International Modelica

Conference. Modelica Association and Linköping

University Electronic Press, September 2015.

Olof Zetterlund. Optimization of Vehicle Powertrain Model

Complexity for Different Driving Tasks. Master’s thesis,

Linköping University, LiTH-ISY-EX–15/4897–SE, 2015.

EUROSIM 2016 & SIMS 2016

727DOI: 10.3384/ecp17142721 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://www.modelica.org/

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

