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Abstract
For assessing whether a system model is a good

candidate for a particular simulation scenario or

choosing the best system model between multiple

design alternatives it is important to be able to evaluate

the suitability of the system model. In this paper we

present a methodology based on finite state machine

requirements verifying system behaviour in a Modelica

environment where the intended system model usage is

within a moving base driving simulator. A use case

illustrate the methodology with a Modelica powertrain

system model using replaceable components and

measured data from a Golf V. The achieved results show

the importance of context of requirements and how users

are assisted in finding system model issues.

Keywords: system model assessment, requirement
modelling, Modelica, finite state machine, powertrain

validations

1 Introduction

With the increasing complexity of cyber-physical

systems, determining whether a particular system design

alternative fulfils all the requirements that are imposed

on the system under development can no longer be done

manually and requires formalizing the requirements into

some computable form. Verifying the validity of a

system design through simulation will reduce the risk of

modelling errors and allow to evaluate the suitability of

the model for a particular purpose.

In the context of this paper, we illustrate the

validation process on a powertrain model with an

intended use in a driving simulator. A simulator model

is validated before conducting a driving simulator study

as well as over the whole evaluation time period and in

particular whenever a developer changes parts of a

model, to guarantee that the model is suitable for the

intended driving tasks.

One common way to test a powertrain is to use

driving cycles. For the use case in this paper we have

logged a driver for two different driving cycles, the

Artemis Road Driving Cycle and the 130 km/h variant

of the Artemis Motorway Driving Cycle. Using this

logged data it is possible to run the model offline and we

use these datasets to verify that the model is working as 

intended using requirements. 

The physical model and the requirement model are 

both written in Modelica (Modelica Association, 2014). 

Using the same language to express both the 

requirement and the design model simplifies the co-

simulation of the two. The declarative nature of 

Modelica lends itself well to the description of the 

requirement model and the component based nature of 

the verification framework allows to quickly create 

different configurations for testing. 

The paper is organized as follows: Section 2 presents 

the use case that will be used to illustrate the 

methodology, Section 3 describes the requirement 

model, Section 4 illustrates the setup for the whole 

verification framework, used in Section 5 to show the 

model validation process, and finally the conclusion and 

future work are discussed in Section 6. 

2 Use Case 

To acquire data for the powertrain system models and 

the requirement model the vehicle propulsion laboratory 

at Linköping University was used. In this laboratory 

chassis dynamometers are connected to the wheel hubs 

of the test vehicle, in this case a Golf V, measuring 

signals such as the torque and rotational speed at the 

driving wheels. Used setup, shown in Figure 1, is further 

described in (Öberg et al, 2013). 

 

Figure 1. The Golf V used for measuring powertrain data 

connected to chassis dynamometers at the vehicle 

propulsion laboratory at Linköping University. 
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2.1 Driving Task Specification 

The system models are used to simulate the powertrain 

during various driving tasks. Examples of such driving 

tasks are driving monotonously on a motorway with low 

traffic or city driving which typically includes more 

accelerations and driver input. Driving tasks can be 

represented by driving cycles. Thus, to connect our 

conclusions to real driving, two different driving cycles 

were used, the 130 km/h variant of the Artemis 

Motorway Driving Cycle and the Artemis Road Driving 

Cycle, see (Andre, 2004). In the laboratory, the driver 

was asked to drive according to the chosen driving cycle 

as close as possible. 

Gathered data was used to parameterize the system 

model and also as a test case to evaluate the requirement 

model’s performance. Since the requirement model 

should ensure that the system model captures the driving 

cycle characteristics and thus it is suitable for the 

represented driving task. 

3 Requirement Model 

Alongside the system model for the powertrain, we 

define the requirement model. It is important to note that 

the requirement model should not impact the physical 

model of the system and therefore has read-only access 

to the information necessary for the verification. 

3.1 Requirement Modelling in Modelica 

To represent requirements in Modelica, we use the 

following conventions (Schamai et al, 2014): 

 A requirement is identified by extending the partial 

Requirement interface. 

 A requirement is associated with a status and a set 

of properties to reason on the status. 

A status can take the following values: 

 VIOLATED when the conditions of the requirement 

are not fulfilled by the design model; 

 NOT_VIOLATED when the conditions of the 

requirement are fulfilled by the design model; 

 NOT_APPLICABLE when the requirement does not 

apply, for instance a requirement that describes the 

behavior of a vehicle when switching gears cannot 

be verified in a scenario where the vehicle is always 

in first gear. This is important to identify 

requirements that were never tested during a 

simulation. 

It is important to note that the status of a requirement 

evolves over time, and that the status of the requirement 

at the last instant of the simulation cannot be used to 

determine whether the requirement has been violated 

earlier in the simulation. For this reason, each 

requirement is also associated with the following 

variables: 

 hasBeenVerified indicates if a requirement has 

ever been checked during a simulation run 

 hasBeenViolated indicates if a requirement has 

been violated during a simulation run 

These predicates can be used to analyze the 

simulation results. 

There is no unique way to specify a requirement 

model, but in this paper we choose to represent 

requirement as finite state machines (Thiele et al, 2015) 

because this allows to intuitively map the state of the 

system through inputs to the 3 possible states of the 

requirement. Other alternatives would have been 

representing requirements as conditional equations or 

using a dedicated library (for example (Otter et al, 
2015)). 

In is important to note that when modeling 

requirements as state-machines the clock frequency is a 

key design choice. In the current implementation the 

transitions are triggered by a clock event and thus a zero 

crossing is not detected. As a consequence, an event 

with a frequency shorter than the clock interval can 

possibly be missed. For the simulations in this study 

case we set the clock period to 0.5. 

3.2 Powertrain Use Case Requirements 

For this case study we have selected a set of 4 different 

requirements where three of them are related to system 

model validity and one is related to model logics. A 

textual description of the requirement set is given in 

Table 1. 

Table 1. Textual requirement description. 

Requirement 
ID 

Description 

req1 The accelerator and clutch pedal 
value should always be between 0 
and 1. 

req2 When driving calmly there should be 
a limited amount of gear changes 
per minute when using an automatic 
gearbox. 

req3 When the car is moving the 
difference between modeled and 
measured engine RPM should be 
below an acceptable error when the 
clutch is not used. 

req4 When the car is moving the 
difference between modeled and 
measured vehicle speed should be 
small over time. 

 

The textual descriptions of requirements in Table 1 

can be ambiguous. For instance it is unclear, whether 

“between 0 and 1” is an open or a closed interval. 
Formalizing these requirements as a computable model 

removes such ambiguities. As described in the previous 
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section, each requirement in Table 1 is modeled by a 

finite state machine. For an example of how these 

requirement finite state machines look, see Figure 2. 

 

 

Figure 2. Finite state machines used to model req1 above 

and req4 below. The requirement status corresponds to 

state circle format where a green line means 

NOT_VIOLATED, a red dashed line means VIOLATED and 

a blue dash dotted line means NOT_APPLICABLE. 

One of the advantages of using a component-based 

language to model requirements is the possibility of 

hierarchically composing smaller requirements into 

more complex requirements. For instance, req1 is a 

combination of two requirements: one requirement for 

the acceleration pedal and another requirement for the 

clutch pedal. These are requirements on the inputs of the 

system and are grouped together for convenience 

purposes. 

The model below is the description of the state 

machine for req4 in Modelica. It corresponds to the 

second state machine in Figure 2. We can see here that 

the requirement inherits from the partial model 

Requirement and the different states of the requirement 

are represented by the states of the state machine, e.g. 

when the vehicle is stopped, the requirement cannot be 

verified and is therefore NOT_APPLICABLE. 
model VehicleSpeed 

  extends Requirement; 

  Modelica.Blocks.Interfaces.RealInput vx; 

  Modelica.Blocks.Interfaces.RealInput vx_ref; 

  inner Integer y; 

  Real e_vx; 

 

  block VehicleStopped 

    outer Modelica.Blocks.Interfaces.IntegerOutput y; 

  equation 

    y = ReqStatus.NOT_APPLICABLE; 

  end VehicleStopped; 

  VehicleStopped stop; 

 

  block NormalDriving 

    outer Modelica.Blocks.Interfaces.IntegerOutput y; 

  equation 

    y = ReqStatus.NOT_VIOLATED; 

  end NormalDriving; 

  NormalDriving normal; 

 

  block DetectedError 

    outer Modelica.Blocks.Interfaces.IntegerOutput y; 

  equation 

    y = ReqStatus.NOT_VIOLATED; 

  end DetectedError; 

  DetectedError unsure; 

 

  block PersistingError 

    outer Modelica.Blocks.Interfaces.IntegerOutput y; 

  equation 

    y = ReqStatus.VIOLATED; 

  end PersistingError; 

  PersistingError error; 

 

equation 

  status = y; 

  e_vx = abs(vx_ref - vx); 

  initialState(stop); 

  transition(stop,normal,vx >= 1); 

  transition(normal,stop,vx < 1,  

    immediate=false,reset=true, 

    synchronize=false,priority=1); 

  transition(unsure,stop,vx < 1,immediate=false); 

  transition(error,stop,vx < 1,immediate=false); 

  transition(normal,unsure,e_vx >= 15/3.6,  

    priority=2,immediate=false); 

  transition(unsure,normal,e_vx <15/3.6, 

    priority=2,immediate=false); 

  transition(unsure,error,timeInState() >= 30, 

    priority=3,immediate=false,reset=true, 

    synchronize=false); 

  transition(error,normal,e_vx <15/3.6, 

    priority=2,immediate=false); 

end VehicleSpeed; 

The requirement model is encapsulated in a single 

Modelica component (the green box in Figure 3), which 

is then connected with the rest of the verification setup. 

As requirements are parameterizable, the same 

requirement can be instantiated several times in a 

requirement model. For instance, the requirement 

WithinLimits used to verify that an input stays within 

certain boundaries is used twice in req1 both for the 

clutch and the accelerator pedal values. 

4 Verification Model 

A verification model (Schamai et al, 2014) contains: 

 The design alternative chosen to model the system 

 A requirement model 

 A particular scenario used for the verification 

For this case study we test the set of requirements 

presented in Table 1 on two different versions of a 

powertrain model to test how each model performs and 

whether it is suitable for the target application. The 

general setup framework is shown in Figure 3. 

With this setup we can thus verify different 

configurations of the model against different scenarios 

represented by different logged data. The requirement 

model is in this setup not changed. In Figure 3 we can 

also see the parts of the physical system representing the 

vehicle. These models will not be changed and thus in 

our test the same test vehicle is used, e.g. vehicle mass 

is not changed between different simulation setups. 

In this paper we test 2 possible design alternatives in 
2 scenarios for the set of requirements defined in Section 

3, resulting in the total of 4 verification models. 
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4.1 Design Alternatives 

When testing different design alternatives, it is 

important to be able to interchange different parts of the 

system i.e. powertrain model easily. In Modelica a 

structured way to do this is to use replaceable 

components (Modelica Association, 2014), (Fritzson, 

2014). Parts of the verification model are declared as 

replaceable and are instantiated with different types of 

components when the verification scenarios are 

generated. 

To verify our approach we have chosen to compare 

two different powertrain models. These two models 

were created by two students and for information on the 

powertrain model version 1 (v1) see (Andersson et al, 
2016) and on the powertrain model version 2 (v2) see 

(Zetterlund, 2015). The second model is meant to be an 

improved version of the first model. One of the major 

improvements is better performance for lower gear 

driving. 
One of the goals in this case-study is to check whether 

model v2 is a more accurate model. 

4.2 Verification Scenarios 

To verify the powertrain system models two driving 

cycles were used. These are the 130 km/h variant of the 

Artemis Motorway Driving Cycle and the Artemis Road 

Driving Cycle. Data from these driving cycles are 

collected from the chassis dynamometers and the 

vehicle CAN bus in the vehicle propulsion laboratory. 

Using logged data from the chassis dynamometers 

the powertrain models should produce the same or 

similar vehicle response as in the vehicle in the chassis 

dynamometers. Since the used driving cycle then highly 

influence the test of the vehicle we have chosen to use 

two easier tests which will test the powertrain under 

calm conditions. 

The Artemis Motorway Driving Cycle is calm 

driving with one part in the middle of the test with a 

reduction in speed. The Artemis Road Driving Cycle is 

a more dynamic test and excites more dynamics in the 

powertrain model where for example there are three 

Figure 3. The complete model in OpenModelica with replaceable parts. The orange box marks the driver input 

which is modified depending on which data needs to be tested. The blue box is the model under test and is this is 

where the two different powertrain models are tested. The green box is the requirement model. 
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stops to zero vehicle speed. This means that if a 

powertrain model is accurate enough for a driving task 

when we verify our model the conclusion should be that 

if the requirements are passed for the Artemis Motorway 

Driving Cycle the model can be used for simulator 

studies when motorway driving is tested. 

In our scenario the logged data is part of the 

simulation which means that a requirement can be 

checked during simulation and thus cancel the 

simulation if a requirement is violated. 

Our goal is to assess whether the models can be used 

with the represented scenarios. 

5 Simulation and Results 

When running the different setups a Python interface to 

OpenModelica (Ganeson et al, 2012) is used and a 

Python script is used to instantiate every chosen 

combination of the different powertrain system models 

with the driver input. Each combination is associated 

with a unique identifier and a .mat file containing the 

simulation results for each combination. The data is then 

analyzed in Matlab to check if the requirements are 

violated and/or verified. 

When running the simulation with a clock period of 

1.0 s, we miss some events that lead to the violation of 

req3. Therefore, we use a clock period of 0.5 s. 

We start by looking at the 130 km/h variant of the 

Artemis Motorway Driving Cycle which represents 

motorway driving. In Figure 4 version 1 and 2 of the 

powertrain system model with requirements are plotted 

(req1 at the top with the other requirements 

consecutively downwards). From the figure we can see 

that the requirement on the inputs (req1) is never 

violated. This is predictable since we have been in 

control of the measurement equipment and has thus 

made sure that correct inputs have been used. The 

second requirement is not verified which is also 

expected since a manual gearbox was used during each 

simulation and this requirement would only be 

applicable for an automatic gearbox. Looking at 

requirements three and four (req3 and req4) we see 

that during the time 0 to 100 when the model error is the 

largest for both vehicle speed and engine RPM is also 

when the requirements are violated for the model v1. 

This is illustrated more in detail in Figure 5 where the 

first 55 seconds is shown. 

 

Figure 5. A close up of the first 55 seconds for models v1 

and v2 during the 130 km/h variant of the Artemis 

Motorway Driving Cycle. Here req3 and req4 are 

shown. 

In Figure 5 it can be seen that every time the clutch is 

pressed (at approximately the times 4, 9 and 17 seconds) 

an error in vehicle speed is introduced. For the system 

model v1 the error persists for more than 30 seconds 

after the third usage of the clutch and thus req4 is 

Figure 4. The powertrain model v1 and v2 during the 130 km/h variant of the Artemis Motorway Driving Cycle. The top 

four figures are the requirements one to four and the lower to figures show the difference in engine RPM end vehicle 

speed. 
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violated, see finite state machine in Figure 2. For the 

system model v2 it can be seen that a vehicle speed error 

is still present but significantly smaller. As the clutch 

error is below an acceptable limit req4 is not violated. 

This is where model v2 is improved and thus the results 

are expected. 

Running the simulation for our second driving cycle 

in the same way we get a matrix of requirements that we 

check for the values of hasBeenVerified and 

hasBeenViolated. The results are summed up in 

Table 2 where a green box means that the requirement 

has been verified and is not violated, a red box indicates 

that the requirement has been violated and a blue box 

means that the requirement has not been verified. 

Table 2.  

Table 2. Requirement status for the two powertrain 

models with two driving cycles. 

  

re
q

1
 

re
q

2
 

re
q

3
 

re
q

4
 

Model v1 
ArtemisMw130     

ArtemisRoad     

Model v2 
ArtemisMw130     

ArtemisRoad     

 

As can be seen in Table 2 the requirement set for the 

improved version of the model is not violated for the 

calmer motorway driving cycle while both models need 

improvement to meet the requirements for the rural road 

conditions. We can also see that req1, req3 and req4 

have all been verified for all test cases and since 

automatic gearbox were never used req2 were never 

verified. This result is predictable since model v2 is an 

improved version and should thus have better 

performance than model v1. From Figure 5 we can see 

that the difference between the models is in the region 

where lower gears are used. This was a region where 

model v1 was improved which further gives confidence 

that the results are correct. We also see that based on our 

requirement model none of the models are fit for rural 

road driving. This may mean that either the 

requirements are too strict or the model needs 

improvement. 

Another aspect is that we do not distinguish between 

requirements violated early in the cycle and later on. 

Further inspection of the data shows that the 

requirements are typically violated when accelerating 

the vehicle from stand still to approximately 50 km/h. 

However, for a rural drive where the speed is above this 

limit most of the time this model could be used. This 

underlines the importance of context when looking at 

model assessment for a particular application. Thus a 

further repository with driving cycles would improve 

the accuracy of model verification. 

Another advantage of this verification framework is

that we could have several system models which doesn’t

violate any of the requirements for a driving task. In

such a case where several models are good enough a

model can be chosen based on a particular criteria not

related to model accuracy. One example of such an

application is models for real-time simulation where a

developer can try out different numerical solvers for

different system models to find the system model with

good enough performance and lowest computation

effort.

It should also be noted that we know that the clutch

dynamics are not properly modeled, since the logged

data from the CAN bus are 1 or 0. This has been taken

into account in the requirements where e.g. the engine

RPM is not checked when the clutch is pressed. This is

also something that needs to be improved and if this is

taken into account both models will violate req3. To

improve the clutch model it would be good to run the

vehicle while also logging intermediate clutch values to

get the missing data.

6 Conclusions and Future Work

In this paper we have

 illustrated the use of requirement modeling using

finite state machines in Modelica

 presented a setup for model validation of a physical

system model using replaceable components to

easily build different design and validation

alternatives

 discussed the simulation results for different

combinations of validation scenarios and used them

to reason on the fitness of the chosen design

alternatives for a particular purpose

In this paper we present the results at requirement

level to see whether each requirement is fulfilled by a

particular system design. For violated requirements

however, it is not so obvious to trace the root of the

problem back to the time when the requirement is

violated, as the violations at time t can be due for

instance to driver actions at time (t-n)., e.g. see req4

where an error needs to persist for over 30 seconds to be

VIOLATED. Therefore, once a violation is detected, a

detailed analysis of the simulation results in the time

frame surrounding the violation is still necessary by a

human expert. However the semi-automation of the

requirement verification process helps pinpoint the

places where human intervention is necessary.

In the case-study presented in this paper, the

overhead added by the simulation of the requirement

model alongside the system model is considered to be

negligible, however in larger-scale cases this will need

to be taken into consideration. Therefore the next step is

to take the overhead in account in the verification

process.
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