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Abstract
Among the recent deents to improve oil and gas

recovery, water injection called waterflooding could be

promising. The objective of this work is to ascertain the

optimal water injection arrangement between vertical

and horizontal waterflooding using ECLIPSE Reservoir

simulation software. Within this work, analyses of oil

production rate, water cut, reservoir pressure drop,

accumulated oil production and recovery factor were

made between horizontal and vertical waterflooding in

a homogeneous reservoir. Result shows that horizontal

waterflooding could be effective if water breakthrough

is delayed. The increase in oil recovery achieved

through this method varied between 6% and 36% while

the delay in breakthrough varied between 459 days and

1362 days. This work also predicts production

performance for ten years which would be useful for

dynamic optimization of waterflooding. However,

reservoir heterogeneity would introduce geological

uncertainty, which could bring mismatch between the

simulated case and a real case.

Keywords:   ECLIPSE, IOR, waterflooding, reservoir

1 Introduction

Waterflooding is a secondary method of oil recovery

where water is injected into the reservoir with the aim to

increase the pressure and thereby increasing oil

production (Binder et al., 1956). Waterflooding was first

practiced for pressure maintenance after primary

depletion and has since become the most widely adopted

IOR technique (Morrow and Buckley, 2011). It is now

commonly applied at the beginning of reservoir

development(Morrow and Buckley, 2011).

With water injection, the reservoir pressure is

sustained and oil is pushed towards the production well.

The oil-water front progresses toward the production

well until water breaks through into the production

stream. With the increasing water production, the oil

production rate diminishes, until the time when the

recovery is no longer profitable and the production is

brought to an end (Van Essen et al, 2006). Up to 35%

   
Figure 1.  Typical Horizontal and Vertical flooding 

arrangements (Van Essen et al, 2006): Left (Horizontal 

waterflooding), Right (Vertical waterflooding). 

oil recovery could be achieved economically through 

waterflooding  (Van Essen et al, 2006). Figure1 depicts  

a typical horizontal and vertical waterflooding 

arrangement respectively. 

Water can be injected through a vertical or a 

horizontal well. Determining the optimal position and 

orientation of the wells has a potential high economic 

impact (Bangerth et al, 2006). One major difference 

between the horizontal and vertical water injection is the 

water breakthrough behavior. Asheim studied the 

optimization of vertical well waterflooding processes 

with fixed well locations (Zandvliet et al, 2008) while 

Brouwer and Jansen studied the optimization of 

waterflooding using a horizontal injection (Brouwer et 

al, 2001). In both cases, delay in water breakthrough 

improves production rate. Also from literature, it has 

been shown that water breakthrough can be delayed by 

changing the position of the injection well profiles 

(Brouwer et al, 2001). Studies also revealed that the use 

of horizontal well, delays the water breakthrough and 

improves the vertical sweep efficiency (Baker, 1998). 

In this paper, computational study of waterflooding 

in a homogenous reservoir was treated under 6 sections. 

Sections 1 and 2 deal with the introduction and the 

theory of waterflooding. Section 3 describes the 

ECLIPSE mathematical model used in the simulations 

while Section 4 presents the reservoir model used for the 

simulations. The simulated results were compared 

between horizontal and vertical waterflooding in 

Section 5 with distinct conclusions are in Section 6. 
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2 Theory 

The principal reason for waterflooding is to increase 

the oil production rate and improve oil recovery. This is 

achieved through voidage replacement to support the 

reservoir pressure and sweep or displace oil from the 

reservoir towards the production well (SPE, 2014). The 

efficiency of such displacement depends on many 

factors like oil viscosity, density and rock 

characteristics. Reservoir screening is necessary for the 

technical and economic success of waterflooding.  

2.1 Residual Oil Saturation 

Residual oil saturation and connate water saturation are 

very important numbers in waterflooding. The connate 

water saturation is saturation is the lowest water 

saturation found in situ and determines how much oil is 

available initially, while the residual oil saturation 

indicates how much of the original oil in place (OOIP) 

will remain in the pores after sweeping the reservoir 

with injected water (SPE, 2014). Equation (1) represents 

the unit-displacement efficiency with the condition that 

the oil formation volume factor is the same at the start 

and the end of the waterflooding (SPE, 2014): 

 ED = 1 - 
Sorw

Soi

          (1) 

 Sorw = 1 - Swc (2)

where ED is the unit displacement efficiency Soi is the 

initial oil saturation, Sorw is the residual oil saturation 

and Swc is the connate water saturation. 

2.2 Wettability 

The wettability of a reservoir rock can be defined as the 

tendency of a fluid to spread on, or to adhere to a solid 

surface in the presence of another immiscible fluid 

(Owens and Archer, 1971). In an oil- water system it is 

a measure of the preference the rock has for either oil or 

water (Anderson, 1987). Changes in wettability 

influence the capillary pressure, irreducible water 

saturation, relative permeability and water flood 

behavior (Anderson, 1987). Maximum oil production 

rate by waterflooding is normally achieved at water-wet 

conditions shortly after water breakthrough 

(Jadhunandan and Morrow, 1995). 

2.3 Capillary Pressure 

Capillary pressure is the pressure difference existing 

across the interface separating two immiscible fluids in 

porous media. Capillary pressure determines the amount 

of recoverable oil for waterflooding applications 

through imbibition process for water wet reservoir 

(SPE, 2014). 

2.4 Relative Permeability 

The Relative permeability is the ratio of the effective 

permeability to the absolute permeability of each phase. 

It is expressed for a specific saturation of the phases as 

 kr,i = 
ki

k
  (3) 

where is the phase relative permeability, k is the total 

effective permeability and is the phase effective 

permeability. 

Relative permeability affects the unit displacement 

efficiency and how much of the OOIP will be recovered 

before the waterflooding economic limit is reached. 

When the interfacial tension between oil and gas phases 

decreases, the relative permeability values change (Al-

Wahaibi et al., 2006), which influences the oil and gas 

recovery as well as the reservoir pressure. Figure 2 

shows the plot of relative permeability curve used for 

the simulation. 

2.5 Mobility 

Mobility, λ is described as the ratio between the 

endpoint effective permeability and the fluid viscosity, 

μ. It shows how easy the fluid is flowing through a 

porous medium (Ydstebø, 2013). Mobility ratio, M, 

plays an important role during waterflooding. It can be 

defined as the ratio between the mobility of the 

displacing fluid (water) and the displaced fluid (oil) 

(Ydstebø, 2013): 

M = 
λ(displacing)

λ(displaced)

 = 
Kr(displacing)

.µ
(displaced)

Kr(displaced).µ(displacing)

                (4) 

where M is the mobility ratio, λ is the mobility, kr is the 

relative permeability, µ is the viscosity. The subscripts 

displacing and displaced represent the displacing phase 

and the displaced phases respectively.  

Mobility ratio is considered to be either favorable if 

the value of (4) is less than or equal to unity or 

unfavorable if the value is greater than unity (SPE, 

2014). Favorable mobility ratio means that the displaced 

phase (oil) can move more quickly than the displacing 

phase (water) through the reservoir rock. 

3 Computational Model 

ECLIPSE Reservoir simulation is a form of numerical 

modeling used to quantify and interpret physical 

phenomena with the ability to predict future 

performance. The process involves dividing the 

reservoir into several discrete units in three dimensions, 

and modeling the progression of reservoir and fluid 

properties through space and time in a series of discrete 

steps (Schlumberger, 2013). Equations (5-11) are solved 

for each cell and each time step which are a combination 

of the material balance equation and Darcy’s law 

(Schlumberger, 2008). 
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i. Darcy’s law (without gravity term) is expressed as 

q  =  -
K

μ
∇P   (5) 

where q is the flux, k is the permeability; µ is the 

viscosity and   is the pressure gradient. 

 

ii. Material Balance is expressed as 

-∇.M  = 
∂

∂t
(∅ρ)  +  Q   (6) 

where M is the mobility ratio, ∅ is the porosity, ρ 

is density and Q is volume flow rate. Here, mass 

flux is considered as the sum of the accumulation 

and Injection/Production.  

 

iii. Simulator Flow Equation (with gravity term) is 

given in (7). 

 

Figure 2.  Relative Permeability curve (water-wetted). 

 

Figure 3.  Reservoir Geometry (3D): up(horizontal 

injection), down(vertical injection). 

∇.[λ(∇P  -  γ∇Z)] = 
∂

∂t
(

∅

β
)  + 

Q

ρ
   (7) 

λ  =  -
K

μβ
   (8) 

where M is mobility, t is time, β is momentum 

transfer coefficient, γ is relative gravity and Z 

is vertical position. 

 

iv. Well Model is expressed as: 

 qp,j = TwjMp,j(Pj - Pw - Hwj) (9) 

 Mo,j = 
Ko,j

Bo,j .  μo,j
 + Rv

Kg,j

Bg,j .  μg,j
 (10) 

 Mg,j = 
Kg,j

Bg,j .  μg,j
 + Rs

Ko,j

Bo,j .  μo,j
 (11) 

where T is the transmissibility, P is the pressure, 

H is the pressure head, B is the formation 

volume factor, Rs is the gas-oil ratio and Rv is 

the oil-gas ratio. The subscripts p is phase, j is 

connection, w is well, o is oil and g is gas. 

4 ECLIPSE Simulation 

Simulations were carried out for 10 years by injecting 

water at a constant rate through a horizontal and a 

vertical well respectively. In both cases, water was 

injected at the same depth as the production well. Also 

the same lateral distance was maintained between the 

injection well and the production for both cases. 

Different simulations were performed by varying 

injection rate from 200m3/day to 2,500 m3/day for each 

case. A base case without water injection was 

considered for reference. 

4.1 Geometry 

Rectangular reservoir geometry was considered with the 

dimension 900m x 900m x 70m. Figure 3 shows the 

reservoir geometry for the horizontal and the vertical 

water injection used in the simulation. The horizontal 

production (P1) and injection (INJW) wells are 800m 

long respectively while the length of the vertical 

injection well (INJW) is 40m. 

4.2 Reservoir Conditions 

The reservoir is homogeneous and consists of water-

wetted rock. Although the reservoir fluid consists of live 

black oil, gas production was not considered for 

simplicity. The composition of oil components is 

assumed to be constant relative to pressure and time. It 

is also assumed that the reservoir fluid is Newtonian and 

that Darcy’s law applies. Also, the production of light 

oil in a moderate permeability zone is of interest. The 
reservoir conditions are summarized in Table 1. 
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4.3 Initial Conditions 

Initially, the reservoir is assumed to be in hydrostatic 

equilibrium consisting of only oil. It is also desired to 

have the reservoir pressure above the bubble point to 

avoid gas production. Initial drawdown pressure of 

10bar is also desired. Table 2 shows the initial 

conditions considered for the simulation. 

5 Results and Discussion 

In this simulation, analysis of the oil production rate, 

water cut, reservoir pressure, accumulated oil 

production and recovery factor were made for the 

horizontal and vertical waterflooding. A base case 

without water injection was also considered as 

reference. 

6 Results and Discussion 

In this simulation, analysis of the oil production rate, 

water cut, reservoir pressure, accumulated oil 

production and recovery factor were made for the 

horizontal and vertical waterflooding. A base case 

Table 1. Reservoir Conditions. 

Parameter Value Unit 

Components Oil, water, gas - 

Wettability  Water-wetted - 

Porosity 0.25 - 

X Permeability 1 Darcy 

Y Permeability 1 Darcy 

Z Permeability 0.1 Darcy 

Rock compressibility  5.0E-5@ 10Bar /Bar 

Oil gravity  35 °Api 

Residual oil saturation 0.3 - 

Oil viscosity  3 @ 320Bar cP 

Water Density 1000 kg/m3 

Water viscosity 0.5 cP 

Connate water saturation 0.2 - 

Gas density 1 kg/m3 

Total simulation time 3653 days 

No of Grids 567 (9x9x7) - 

Table 2. Initial Conditions 

Initial condition Value Unit 

Reservoir pressure 320 Bar 

Bottomhole pressure 310 Bar 

Bubble point pressure 182 Bar 

Oil saturation 1 - 

Water saturation 0 - 

Gas saturation 0 - 

6.1 Production Rate Trend 

Figure 4 shows the oil production rate for horizontal and 

vertical water injection respectively. The plot shows that 

horizontal waterflooding maintains higher oil 

production rate for a longer period until water breaks 

through. After water breakthrough, the production rate 

drops more for horizontal waterflooding than the 

vertical case. This may be attributed to rapid water 

production in all zones in the horizontal waterflooding 

case, whereas for the vertical case water breakthrough 

occurs first in a few zones. The production rate for the 

base case is very low compared to the cases with 

waterflooding. This is in agreement that waterflooding 

improve the oil production rate (Morrow and Buckley, 

2011). 

6.2 Reservoir Pressure Trend 

Figure 5 shows the simulated reservoir pressure trend. 

For injection rates less than 1500m3/day, the pressure 

drop with horizontal injection is between 4% and 6% 

less than for the vertical case. For injection rates 

between 1500m3/day and 2500m3/day, the pressure drop 

is between 9% and 14% less with horizontal flooding 

compared to vertical flooding. 

 

 

Figure 4.  Plot of oil production rate against time: upper 

plot(horizontal), lower plot(vertical). 
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6.3 Watercut Trend 

The water cut trend is shown in Figure 6. It is observed 

that water breakthrough is delayed between 459 days 

and 1362 days with horizontal case compared with the 

vertical case. Despite of the late water breakthrough, the 

water cut after 3653 days is higher using horizontal 

flooding in all the cases.  

 

 

Figure 5.  Plot of reservoir pressure against time: upper 

plot(horizontal), lower plot(vertical ). 

 

Figure 6.  Plot of watercut against time: upper 

plot(horizontal injection), lower plot(vertical injection). 

6.4 Accumulated Oil Production 

Figure 7 shows the accumulated oil production trend. 

The plot shows that the accumulated oil production with 

horizontal flooding is higher for injection rates less than 

1500m3/day due to lower pressure drop in the reservoir. 

For injection rates greater than 1500m3/day, 

accumulated oil production using horizontal flooding is 

less than for vertical flooding. This may be attributed to 

the rapid water production in horizontal flooding as 

opposed to vertical flooding.  

The plot of the recovery factor against injection rate 

shown in Figure 8 indicates that the recovery factor with 

horizontal flooding is less than for vertical flooding for 

injection rates greater than 1500m3/day. This may be 

due to rapid water breakthrough. 

 

 

Figure 7.  Accumulated oil production against time: 

upper plot(horizontal), lower plot(vertical). 

 

Figure 8.  Plot of recovery factor against injection rate. 
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6.5 Oil Saturation Distribution 

The case for water injection at 1500m3/day is chosen to 

illustrate how oil saturation is distributed in the reservoir 

over time for horizontal and vertical water injection 

respectively. Initially, the oil saturation is 1 for both 

cases as shown in Figure 3.  

Figure 9 shows the oil saturation distribution for 

horizontal injection after ten years. It can be seen that 

about 32% oil recovery was achieved through 

waterflooding. Figure 10 shows the oil saturation 

distribution for vertical injection after ten years. About 

33% oil recovery was achieved through waterflooding. 

6.6 Oil-Water Front Progression 

The case for water injection at 1500m3/day is used to 

illustrate how water displaces oil and sweeps oil towards 

the production well in the reservoir. Figure 11 shows the 

plan view of the oil-water front progression for the 

horizontal and vertical water injection after two years. 

Figure 10 shows the oil saturation distribution for 

vertical injection after ten years. About 33% oil 

recovery was achieved through waterflooding. 

6.7 Oil-Water Front Progression 

The case for water injection at 1500m3/day is used to 

illustrate how water displaces oil and sweeps oil towards 

the production well in the reservoir. Figure 11 shows the 

plan view of the oil-water front progression for the 

horizontal and vertical water injection after two years. 

The oil-water front progression after ten years is 

shown in Figure 12. From the plot, it can be seen that 

the oil saturation reduced due to more sweep by water 

injection. In general, result shows that oil-water front 

progresses laterally for horizontal flooding and radially 

for vertical flooding. 

 

 

      

Figure 9.  Oil saturation distribution for horizontal 

injection after 10 years. 

 

      

Figure 10.  Oil saturation distribution for vertical 

injection after 10 years. 

 

 

Figure 11.  Oil-water front progression after 2 years: 

left(horizontal injection), right(vertical injection). 

 

 

Figure 12.  Water front progression after 10 years: left

(horizontal injection) right (vertical injection).

7 Conclusions

This paper compares oil production rate, water cut,

reservoir pressure drop, accumulated oil production and

recovery factor between horizontal and vertical

waterflooding in a homogeneous reservoir. The

simulation was performed over ten years (3653 days)

using ECLIPSE Reservoir simulator.

In all cases, result shows that oil production with

water injection is higher compared with the base case.

With this, it would be preferred to apply waterflooding

for oil recovery in depleted reservoirs to the use of

primary methods. Result also shows that horizontal
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waterflooding maintains higher oil production rate for a 

longer period until water breakthrough. It is also 

observed that water breakthrough is earlier and water 

production increases gently with vertical flooding 

unlike the horizontal case where the water breakthrough 

comes late but water production increases rapidly with 

time. 

With this, it would be preferred to apply 

waterflooding for oil recovery in depleted reservoirs to 

the use of primary methods. Result also shows that 

horizontal waterflooding maintains higher oil 

production rate for a longer period until water 

breakthrough. It is also observed that water 

breakthrough is earlier and water production increases 

gently with vertical flooding unlike the horizontal case 

where the water breakthrough comes late but water 

production increases rapidly with time. 

The pressure drop is higher with vertical flooding in 

all cases compared with the horizontal flooding. This 

may be due to higher frictional pressure drop and the 

effect of gravity. More difference in pressure drop is 

noticed between horizontal and vertical flooding with 

increase in injection rate. 

Despite higher reservoir pressure and delay in water 

breakthrough, horizontal flooding accounts for less oil 

recovery due to rapid water production. With the 

implementation of inflow control device to reduce water 

production, oil recovery through horizontal 

waterflooding would be optimal and more effective than 

vertical waterflooding. 
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