
Simulator Coupling for Network Fault Injection Testing

Emilia Cioroaica Thomas Kuhn

Embedded Software Engineering, Fraunhofer IESE, Germany,
{Emilia.Cioroaica,Thomas.Kuhn}@iese.fraunhofer.de

Abstract
System architectures of embedded systems are undergoing
major changes. Embedded systems are becoming cyber-
physical systems (CPS) with open interfaces and resulting
distributed control loops. This calls for new testing ap-
proaches that enable early evaluation of system and safety
concepts, and support the evaluation of system designs be-
fore they are implemented. Simulation is a common tech-
nology that supports the testing of embedded systems, but
existing simulators are focused and specialized. A single
simulator often does not support all models needed to pro-
vide a valid testing environment for system designs. In
this paper, we describe our framework for the coupling
of communication simulators to enable virtual testing and
safeguarding of embedded system designs. The integra-
tion of network simulation models and fault injectors en-
ables testing of safety concepts. The applicability of our
approach is illustrated in the context of a case study based
on a vehicle system design realized as contract work.
Keywords: virtual testing, simulation, simulator coupling,
communicating systems, embedded systems, fault injec-
tion

1 Introduction
Enabling the development of safety concepts for open sys-
tems is one of the most pressing challenges in embed-
ded systems development. Formerly self-contained and
isolated systems are being equipped with open interfaces
to enable communication. Closed safety-relevant control
loops open up and integrate remote devices via wireless
networks. This requires the development of new safety
concepts that include detection and handling of potential
transmission errors. The development of safety concepts
becomes even more challenging when wireless links are
used, because these are much less predictable than wired
links.

Development and testing of communication systems
has always been supported by simulations. They provide
a virtual testbed that enables the evaluation of application
and protocol aspects. Safety concepts could benefit from
this technology as well. However, network simulators are
often optimized with respect to performance simulation.
The provided protocol and network models accurately re-
semble timing; errors are, however, only represented by
an error flag indicating the presence of a transmission er-
ror, and this causes, for example, the dropping of a faulty

frame. For the development of safety concepts, a more
detailed simulation of faults is necessary. The loss of a
frame, for example, is not significant from the viewpoint
of a safety engineer. Much more significant are flipped
bits, which lead to wrong data being received that is not
detected by CRC checksums. Safety concepts need to han-
dle these faults as well. Fault injection testing (Guthoff
and Sieh, 1995; Barton et al., 1990; Zussa et al., 2014) is
one approach for validating designs with respect to their
robustness against faults. However, it only covers func-
tional transmission models that support fault injection, but
not performance evaluation.

The development of networked embedded systems re-
quires consideration of both aspects: functional transmis-
sion of errors and performance optimization. Safety con-
cepts create additional overhead with their measures: they
do not only need to be robust against faults and econom-
ical with respect to the additionally used resources, but
their failure-handling strategies must not affect other com-
munications beyond a permitted degree either. To sup-
port the development of next-generation safety concepts,
we have therefore developed a framework for coupling
fault injection testing with network simulation. In this
publication, we document the integration of different net-
work simulators into our simulation framework FERAL
(Framework for Evaluation on Requirements and Archi-
tecture Level)(Kuhn et al., 2013), and discuss the integra-
tion of fault injection testing for the evaluation of safety
concepts for open embedded systems.

The remainder of this paper is structured as follows:
Section 2 contains a survey of related work. Section 3
presents the challenges of virtual testing on an open em-
bedded system example. Section 4 documents our frame-
work for the coupling of simulation models for network
simulation. Section 5 adds the aspect of fault injection
testing. Section 6 presents a case study showing use cases
of our virtual testing environment. In Section 7, we draw
conclusions and lay out future work.

2 Related Work
Most existing approaches for simulator coupling are tai-
lored couplings between simulators to support testing of
systems or to predict the properties of a product under de-
velopment. This leads to considerable overhead because
event detection, simulation accuracy, and the correct cou-
pling of execution models must be considered individually
for each coupling. The following references indicate the

EUROSIM 2016 & SIMS 2016

742DOI: 10.3384/ecp17142742 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

concrete necessity for simulator coupling.
The work presented in (Siddique et al., 2007) illustrates

the networking domain as another application area of sim-
ulator coupling. Through the layered approach used for
most communication stacks (Schumacher et al., 2009),
this domain is predestined for the integration of simula-
tors. By coupling simulators for link layer protocols and
network layers, the authors of (Siddique et al., 2007) build
an infrastructure for locating interactions between effects
on both layers. The work described in (Schumacher et al.,
2009) applies the simulator coupling approach to the au-
tomotive domain to simulate the impact of Car-to-X sys-
tems. This requires coupling of the OMNeT++ simulator,
which provides a network simulation, and the road traffic
simulator SUMO. The coupling has to integrate the posi-
tion data for each vehicle as created by SUMO with the
OMNeT++ simulator, so that wireless networking char-
acteristics and the impact of car movements are correctly
simulated, including the effects of the Car-to-X applica-
tion under evaluation.

PicSim (Björkbom et al., 2011) is a tool for the inves-
tigation of networked and wireless control systems where
two tools, Simulink and ns-2, run on two different PCs,
which are connected via LAN. One of the PCs runs a
Simulink model in a MATLAB version either for Win-
dows or for Linux. The second PC runs the network sim-
ulation and needs to have a Linux operating system. The
two simulators are then started at the same time and are
synchronized to share their results. In this way, two impor-
tant parts of the system - functional and network behavior
- can be brought together and interdependencies can be
tested. The network behavior focuses on wireless com-
munication.

The approach described in (Zhang et al., 2013) cou-
ples the notations/tools CarSim, SystemC, and C-Code to
simulate and test the behavior of a cyber-physical system.
Such a CPS is made up of three parts: a physical layer, a
network/platform layer, and a software layer. CarSim is
used to simulate the physical layer, while SystemC han-
dles the network/platform layer and the software layer is
described by C code. The framework is enhanced by a
tool for model-based design to allow the creation of rapid
prototypes. The authors of (Eyisi et al., 2012) present the
Networked Control Systems Wind Tunnel (NCSWT), an
integrated modeling and simulation tool for the evaluation
of Networked Control Systems (NCS). NCSWT integrates
Matlab/Simulink and the network simulator ns-2 for mod-
eling and simulation of NCS using the High Level Archi-
tecture (HLA) (Kuhl et al., 1999) standard.

Existing fault injection approaches focus on the injec-
tion of specific faults or classes of faults at the system level
(Barton et al., 1990; Guthoff and Sieh, 1995) or at the soft-
ware level (Duraes and Madeira, 2006) in order to validate
the system’s functional behavior.

Related work shows that simulator coupling is a com-
monly applied technique for evaluating communicating
systems. Performance evaluation is a proven technique for

predicting network performance. Safety-relevant systems
additionally need to be evaluated with respect to their re-
silience. Consequently, fault injection techniques should
be additionally used to evaluate network performance, ad-
ditional overhead due to safety measures, and the impact
of faults in one integrated simulation.

3 Virtual Testing of Open embedded
Systems

Figure 1 illustrates the functional structure of a remotely
controlled lift system, which will be used as an explana-
tory example for this paper. This system enables remote
control of a hydraulic lift with a smartphone. The develop-
ment of such a system starts with requirements and high-
level models for functional behavior and safety concepts.
Simulator coupling, as documented in (Kuhn et al., 2013),
enables the coupling of these models into one integrated
simulation, and therefore the rapid evaluation of concepts
and early feedback to developers.

Figure 1. Example Remote Lift Controller System.

For the evaluation of the safety concepts of the exam-
ple system, a functional structure as shown in 1 is not
sufficient. Networks are an integral part of this system,
and they affect its safe operation. Safety concepts need
to handle network errors reliably. Figure 3 illustrates a
revised version of 1 that includes network simulation for
the evaluation of safety concepts. Simulation of wireless
(LAN) networks is provided by the ns-3 network simula-
tor 0; other simulators are integrated to simulate CAN bus
networks and generic wired links. The coupled simulation
models split the system into three semantic domains that
execute discrete event and discrete time models.

Fault injection testing enables test-based evaluation of
safety concepts. To support the evaluation of safety con-
cepts for networked systems, fault injection testing needs
to be supported for all network simulation components.

In the context of the example system shown in Figure
3, this includes the ns-3 network simulator, the CAN bus
simulation, and the tailored models wired links.

To assure safety, the system behavior needs to be tested
in holistic simulations. Faults are injected at the level of
simulation components, while behavior needs to be ob-
served both at the component and at the system level. To
enable fault injection testing for system designs with dif-
ferent levels of abstraction, fault injection needs to be de-
coupled from the network simulation.

EUROSIM 2016 & SIMS 2016

743DOI: 10.3384/ecp17142742 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 2. Internal structure of an ns-3 Wi-Fi simulation.

4 Simulator Coupling for Network
Simulation

Network simulators offer their simulation models with
proprietary interfaces. Development of simulated proto-
col stacks is possible by combining these interfaces. Fig-
ure 4 illustrates the structure of a CAN bus simulation. It
consists of the CAN medium, which simulates the CAN
bus medium and signal propagation, the CAN bus con-
trollers (CANCtrl), and interface components (CanIF). In-
terface components aggregate raw data into CAN frames
and add offsets, if necessary. On top of the CAN interface
components, applications and higher-level protocols like
ISOBUS may be implemented.

Developing a generic approach for the coupling of net-
work simulation models and fault injection testing re-
quires an understanding of the inner structure of network
simulators, and development of a high-level architecture
that encapsulates the components that are specific for each
network simulation. Figure 2 and Figure 5 illustrate the ar-
chitecture of simulated communication stacks for the ns-3
and OMNeT++ simulators.

The example structure shown in Figure 2 illustrates the
component instances that create a simulated Wi-Fi net-
work in the ns-3 simulator. Four types of layers can be
identified: The Application layer consists of the simulated
application behavior. The Protocol layers implement the
UDP and IP protocols. The Network Interface layer simu-
lates the medium access control of the Wi-Fi network; its
simulation is split into different components. The Physi-
cal layer is simulated by components that simulate phys-
ical layer encoding and the physical channel. Since ns-3
is a discrete event simulator, frame propagation is based
on discrete events as well. Every frame is marked by an
event that indicates the transmission of its first bit as well
as the frame length. When receiving a physical transmis-

sion, every frame is represented by the time that its first
bit is received and by the time when its last bit is received.
This information is used together with the received signal
strength, which is calculated by the propagation model of
the physical channel model for the simulation of frame
collisions. Upper layers represent frames transmitted and
received by one event only. The internal structure of an
OMNeT++ simulation is similar. Figure 5 illustrates the
component instances that create an Ethernet simulation. It
consists of the same basic layers as the ns-3 network sim-
ulation. And similar to ns-3, the simulation of the phys-
ical channel (EtherBus or YansWiFiChan) is instantiated
once; the other components in the Physical layer, the Net-
work Interface layer, and the Protocol layers are instan-
tiated once per simulated network node. Components on
the application level may be instantiated multiple times.

The coupling of simulators should yield a protocol
stack structure as shown in Figure 4. Applications and
application-level protocols should be able to connect to
simulated networks. The type of simulated network
should be easily replaceable, enabling the simulation of
a scenario with both an idealistic network for functional
evaluation and its evaluation with a realistic network sim-
ulation for performance evaluation.

Figure 6 illustrates our common structure for the inte-
gration of network simulation models and functional mod-
els. It also shows the types of layers from integrated net-
work simulators that are encapsulated and integrated as
simulation components (Kuhn et al., 2013). White-box
network simulation models that define all relevant com-
ponents like queue, medium access control, and applica-
tion interfaces can be integrated in the same way as black-
box components that hide their internal structure. This
enables both the rapid integration of existing simulators
with low effort as a black-box simulation and the more
effort-consuming integration of simulators as white-box
components. White-box components require the devel-
opment of more and additional components, but also en-
able much finer-grained customization of simulated net-
works.The component named Application Interface real-
izes the interface between higher-level protocols and ap-
plications, and the network simulation. Its structure is
documented in Figure 7.

Applications create PDUs that transmit serialized infor-
mation through communication networks. In addition to
the transmitted data, addressing information might be pro-
vided to the simulation components. This addressing in-
formation may contain, for example, a CAN bus message
ID, or a UDP address including a receiver port number.
Adapters may use and change this information to simulate
mappings that are realized by the protocol under develop-
ment. As shown in Figure 7, PDUs additionally contain
a list of key/value pairs that store data that is specific to
the simulation models and a list of failure modes for this
frame.

EUROSIM 2016 & SIMS 2016

744DOI: 10.3384/ecp17142742 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 3. Component types and models of computation of the system example.

Figure 4. Abstract structure of network simulator.

5 Network Fault Injection Testing
The integration of network simulators as simulation com-
ponents enables accurate simulation of networked embed-
ded system components. FERAL enables the rapid de-
velopment of simulation components and their coupling.
Fault injection testing, however, requires a generic ap-
proach that is independent of the simulation components
that provide the network simulation. Figure 8 lists the rel-
evant failure modes, which were derived from ISO 26262
(ISO 2011) for communication in road vehicles.

While all communication networks basically introduce
the possibility of all types of communication failures, the
concrete probability of a particular failure depends on the
type of communication system to be used. Tailored fault
detection and containment mechanisms need to reduce the
probability and/or the impact of faults and at the same time
conserve resources of the communication system. They
add, for example, additional checksums and drop faulty
frames instead of passing them to higher protocol lay-
ers, preventing the processing of corrupted data by safety-
relevant applications.

To effectively simulate failure propagation in embed-
ded systems, the simulation of faults happening and their

Figure 5. OMNeT++ detailed structure.

consequences need to be split from each other. A possible
fault on a communication medium is the flipping of mul-
tiple bits. A consequence of this fault could be either the
dropping of the frame if the bit flip is detected, or a wrong
value that is passed to the application.

Our fault injection framework realizes this separation
by defining explicit fault injectors and fault processors.
Fault injectors create faults in the system. Fault processors
simulate consequences of faults. Both fault injectors and
fault processors may operate statistically in performance
evaluation scenarios to determine performance impacts, or
deterministically to evaluate the suitability of a safety con-
cept for the virtual certification of a system.

Figure 9 illustrates fault injection testing with one
black-box network simulation component. Fault injec-
tors and fault processors are placed in the communica-
tion paths of the network simulation. Both fault injec-
tors and fault processors are added to inbound commu-

EUROSIM 2016 & SIMS 2016

745DOI: 10.3384/ecp17142742 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 6. Common structure for integrating network simulation
models.

Figure 7. Interface for applications and protocols and PDU
structure.

nication paths, whereas only fault processors are added
to outbound communication paths. Fault processors in in-
bound communication paths therefore can control whether
adapters will process the faults for the native simulation
model or not. Faults that are created by fault injector com-
ponents are added to the failure-modes list of transmitted
PDUs (cf. Figure 7). Fault processors scan the list of faults
for each PDU and modify the PDU based on their imple-
mentation.

Fault processors and fault injectors enable fault injec-
tion testing independent of network simulation compo-
nents, and consequently their independent development.
Therefore, it is best if network simulation models do not
realize fault processing at all, but leave the simulation of
faults to explicit fault injector and fault processor compo-
nents.

Figure 10 illustrates fault injection testing with our
common structure for the coupling of functional and net-
work simulation models. Fault injectors on medium in-
puts inject faults that affect all receivers, e.g. interferences
from other transmissions or a broken cable. Injected faults
are stored in the failure-modes field of transmitted PDUs,
as shown in Figure 7. Fault processors on medium in-

Figure 8. Failures in end-to-end communication.

Figure 9. Fault injectors and fault processors.

Figure 10. Fault injectors and fault processors.

puts convert injected faults into failures that affect all re-
ceivers. Interferences may, for example, lead to shifted
bits or dropped frames, or may have no consequence at
all if the interference was not sufficiently strong. Fault
injectors and processors with medium outputs model ef-
fects that only one or a subset of all receivers suffer from.
Application-level fault processors enable developers to
convert network faults into application-specific faults. For
example, they turn undetected bit shifts into application-
specific changed inputs. This enables worst-case analysis
with critical inputs for application components.

Currently, the fault injectors and processors are avail-
able for use at the medium, device, and application level,
as in Table 1.

Injectors Processors
Interference (once) (Multi) bit change
Interference burts Frame drop
Signal fading Frame creation
Cable break Retransmission
Collision Delay
Logic error Sequence change

Value change

Table 1. Fault Injectors and Processors

Fault injectors and processors support different activa-
tion patterns. They can be activated once at a given point
in time, in intervals, or sporadically. Fault processors rep-
resent both high-level effects caused by protocols, e.g.,
duplication or the change of frame sequences due to re-
transmission, and low-level effects like bit changes. At
the application level, remaining (uncaught) faults of the
interference type may yield a value change that changes
frame contents at the logic level.

EUROSIM 2016 & SIMS 2016

746DOI: 10.3384/ecp17142742 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

6 Case Study
The lift remote control example from Section 3 is an
anonymized case study based on an industry cooperation
project. Horizontal movements of a lift are controlled with
a smartphone by at most two operators. Safety measures
are applied to ensure that the received user input fully re-
flects the intention of both users. If contradictory com-
mands are received, movement stops. Periodic heartbeats
ensure that communication with both operators is possi-
ble. Both the smartphone and the wireless network are
considered to be untrusted for system design. Therefore,
potential errors in smartphones and networks need to be
handled. All safety-relevant processing is performed on
the wireless LAN receiver. The case study presented here
implements a simulation model that reflects the system
model illustrated in Figure 3 with additional fault injec-
tion as illustrated in Figure 10. The Wi-Fi network was
simulated by the ns-3 simulator; the CAN bus simulation
model was developed at Fraunhofer IESE. Corrective ac-
tions defined by the safety concept were integrated into
the wireless receiver.

Figure 11. Fault injectors and fault processors.

In this case study, the response of the system to injected
faults was evaluated. Once a fault had been injected, it
was observed how the system reacted and how well the
corrective actions were applied to avoid potential hazards.
Figure 11 illustrates one simulated scenario: Due to a sim-
ulated network failure, the wireless receiver stops receiv-
ing heartbeat messages from the smartphone. As a safety
measure, the hydraulic lift stops moving. This is realized
by the wireless receiver implementation which, as soon
as the heartbeat is not being received anymore, sends stop
movement commands to the hydraulic lift. The dotted line
represents the user’s intended behavior, while the continu-
ous line shows the safe system behavior in the case of the
injected fault.

Figure 12. Fault injectors and fault processors.

The second scenario validates another safety function.
According to the safety concept, if the two remote opera-
tors issue different commands, the lift needs to stop mov-
ing immediately. This way, every operator can prevent fur-
ther movements of the lift if he detects a hazard. Valida-
tion of this function requires the integration of a physical
network simulation model. As shown in Figure 12, two
remote operators are placed at different locations. Due
to the topology of the environment, transmissions from
the two users to each other are shielded. Therefore, the
CSMA mechanism of wireless networks cannot prevent
collisions from happening at the wireless receiver. Conse-
quently, control commands collide, which cause the com-
mands with stronger signal strength from operator 2 to be
received.

Figure 13. Fault injectors and fault processors.

Frame collisions prevent the more distant operator from
communicating with the lift. Due to a sufficient number
of heartbeats being properly received, this situation is not
detected by the wireless receiver, which is a flaw in the
safety concept. As shown in Figure 13, the lift does not
stop moving at time 6000, but continues its movement up-
wards, shown by the solid line. The dotted line represents
the expected behavior when two contradictory commands

EUROSIM 2016 & SIMS 2016

747DOI: 10.3384/ecp17142742 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

are issued. The simulation results show that this case was
not properly handled by the safety concept

7 Conclusions and future work
In this paper, we presented our work regarding simulator
coupling for network and functional simulation, as well
as simulator-independent fault injection testing. We ana-
lyzed existing simulators and devised a reference structure
that represents the most important components of commu-
nication stacks. Fault injector and fault processor com-
ponents enable fault injection testing that is independent
of the simulators used. Therefore, failure models are in-
dependent of functional models and can be used in both
functional and performance evaluation simulations.

This enables the rapid development of virtual commu-
nication stacks. Integration of fault injection testing using
fault injectors and fault processors enables both statistical
injection of faults that resemble the error distribution of a
real network.

Future work in this area includes the extension of fault
injection testing with platform models. Research needs
to be done to evaluate whether memory and processor
failures as well as failures in different application mod-
els can be integrated into simulations using fault injectors
and fault processors in a similar manner as that used for
integrating communication failures.

References
James H. Barton, Edward W. Czeck, Zary Z Segall, and Daniel P.

Siewiorek. Fault injection experiments using fiat. IEEE
Transactions on Computers, 39(4):575–582, 1990.

Mikael Björkbom, Shekar Nethi, Lasse M Eriksson, and Riku
Jäntti. Wireless control system design and co-simulation.
Control Engineering Practice, 19(9):1075–1086, 2011.

Joao A Duraes and Henrique S Madeira. Emulation of soft-
ware faults: A field data study and a practical approach.
IEEE transactions on software engineering, 32(11):849–867,
2006. doi:10.1109/TSE.2006.113.

Emeka Eyisi, Jia Bai, Derek Riley, Jiannian Weng, Wei Yan,
Yuan Xue, Xenofon Koutsoukos, and Janos Sztipanovits. Nc-
swt: An integrated modeling and simulation tool for net-
worked control systems. Simulation Modelling Practice and
Theory, 27:90–111, 2012.

Jens Guthoff and Volkmar Sieh. Combining software-
implemented and simulation-based fault injection into a sin-
gle fault injection method. In Fault-Tolerant Computing,
1995. FTCS-25. Digest of Papers., Twenty-Fifth International
Symposium on, pages 196–206. IEEE, 1995.

Frederick Kuhl, Richard Weatherly, and Judith Dahmann. Creat-
ing computer simulation systems: an introduction to the high
level architecture. Prentice Hall PTR, 1999.

Thomas Kuhn, Thomas Forster, Tobias Braun, and Reinhard
Gotzhein. Feral - f̌ramework for simulator coupling on

requirements and architecture level. In Formal Methods
and Models for Codesign (MEMOCODE), 2013 Eleventh

IEEE/ACM International Conference on, pages 11–22. IEEE,
2013.

Henrik Schumacher, Moritz Schack, and Thomas Kürner. Cou-
pling of simulators for the investigation of car-to-x commu-
nication aspects. In Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific, pages 58–63. IEEE, 2009.

Mohammad M Siddique, Andreas J Konsgen, and Carmelita
Gorg. Vertical coupling between network simulator and
ieee802. 11 based simulator. In Information and Communica-
tion Technology, 2007. ICICT’07. International Conference
on, pages 127–130. IEEE, 2007.

Zhenkai Zhang, Joseph Porter, Emeka Eyisi, Gabor Karsai,
Xenofon Koutsoukos, and Janos Sztipanovits. Co-simulation
framework for design of time-triggered cyber physical sys-
tems. In Proceedings of the ACM/IEEE 4th International
Conference on Cyber-Physical Systems, pages 119–128.
ACM, 2013.

Loic Zussa, Jean-Max Dutertre, Jessy Clediere, and Bruno Ro-
bisson. Analysis of the fault injection mechanism related
to negative and positive power supply glitches using an on-
chip voltmeter. In Hardware-Oriented Security and Trust
(HOST), 2014 IEEE International Symposium on, pages 130–
135. IEEE, 2014.

EUROSIM 2016 & SIMS 2016

748DOI: 10.3384/ecp17142742 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://dx.doi.org/10.1109/TSE.2006.113

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

