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Abstract

System architectures of embedded systems are undergoing
major changes. Embedded systems are becoming cyber-
physical systems (CPS) with open interfaces and resulting
distributed control loops. This calls for new testing ap-
proaches that enable early evaluation of system and safety
concepts, and support the evaluation of system designs be-
fore they are implemented. Simulation is a common tech-
nology that supports the testing of embedded systems, but
existing simulators are focused and specialized. A single
simulator often does not support all models needed to pro-
vide a valid testing environment for system designs. In
this paper, we describe our framework for the coupling
of communication simulators to enable virtual testing and
safeguarding of embedded system designs. The integra-
tion of network simulation models and fault injectors en-
ables testing of safety concepts. The applicability of our
approach is illustrated in the context of a case study based
on a vehicle system design realized as contract work.

Keywords: virtual testing, simulation, simulator coupling,
communicating systems, embedded systems, fault injec-
tion

1 Introduction

Enabling the development of safety concepts for open sys-
tems is one of the most pressing challenges in embed-
ded systems development. Formerly self-contained and
isolated systems are being equipped with open interfaces
to enable communication. Closed safety-relevant control
loops open up and integrate remote devices via wireless
networks. This requires the development of new safety
concepts that include detection and handling of potential
transmission errors. The development of safety concepts
becomes even more challenging when wireless links are
used, because these are much less predictable than wired
links.

Development and testing of communication systems
has always been supported by simulations. They provide
a virtual testbed that enables the evaluation of application
and protocol aspects. Safety concepts could benefit from
this technology as well. However, network simulators are
often optimized with respect to performance simulation.
The provided protocol and network models accurately re-
semble timing; errors are, however, only represented by
an error flag indicating the presence of a transmission er-
ror, and this causes, for example, the dropping of a faulty
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frame. For the development of safety concepts, a more
detailed simulation of faults is necessary. The loss of a
frame, for example, is not significant from the viewpoint
of a safety engineer. Much more significant are flipped
bits, which lead to wrong data being received that is not
detected by CRC checksums. Safety concepts need to han-
dle these faults as well. Fault injection testing (Guthoff
and Sieh, 1995; Barton et al., 1990; Zussa et al., 2014) is
one approach for validating designs with respect to their
robustness against faults. However, it only covers func-
tional transmission models that support fault injection, but
not performance evaluation.

The development of networked embedded systems re-
quires consideration of both aspects: functional transmis-
sion of errors and performance optimization. Safety con-
cepts create additional overhead with their measures: they
do not only need to be robust against faults and econom-
ical with respect to the additionally used resources, but
their failure-handling strategies must not affect other com-
munications beyond a permitted degree either. To sup-
port the development of next-generation safety concepts,
we have therefore developed a framework for coupling
fault injection testing with network simulation. In this
publication, we document the integration of different net-
work simulators into our simulation framework FERAL
(Framework for Evaluation on Requirements and Archi-
tecture Level)(Kuhn et al., 2013), and discuss the integra-
tion of fault injection testing for the evaluation of safety
concepts for open embedded systems.

The remainder of this paper is structured as follows:
Section 2 contains a survey of related work. Section 3
presents the challenges of virtual testing on an open em-
bedded system example. Section 4 documents our frame-
work for the coupling of simulation models for network
simulation. Section 5 adds the aspect of fault injection
testing. Section 6 presents a case study showing use cases
of our virtual testing environment. In Section 7, we draw
conclusions and lay out future work.

2 Related Work

Most existing approaches for simulator coupling are tai-
lored couplings between simulators to support testing of
systems or to predict the properties of a product under de-
velopment. This leads to considerable overhead because
event detection, simulation accuracy, and the correct cou-
pling of execution models must be considered individually
for each coupling. The following references indicate the
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concrete necessity for simulator coupling.

The work presented in (Siddique et al., 2007) illustrates
the networking domain as another application area of sim-
ulator coupling. Through the layered approach used for
most communication stacks (Schumacher et al., 2009),
this domain is predestined for the integration of simula-
tors. By coupling simulators for link layer protocols and
network layers, the authors of (Siddique et al., 2007) build
an infrastructure for locating interactions between effects
on both layers. The work described in (Schumacher et al.,
2009) applies the simulator coupling approach to the au-
tomotive domain to simulate the impact of Car-to-X sys-
tems. This requires coupling of the OMNeT++ simulator,
which provides a network simulation, and the road traffic
simulator SUMO. The coupling has to integrate the posi-
tion data for each vehicle as created by SUMO with the
OMNeT++ simulator, so that wireless networking char-
acteristics and the impact of car movements are correctly
simulated, including the effects of the Car-to-X applica-
tion under evaluation.

PicSim (Bjorkbom et al., 2011) is a tool for the inves-
tigation of networked and wireless control systems where
two tools, Simulink and ns-2, run on two different PCs,
which are connected via LAN. One of the PCs runs a
Simulink model in a MATLAB version either for Win-
dows or for Linux. The second PC runs the network sim-
ulation and needs to have a Linux operating system. The
two simulators are then started at the same time and are
synchronized to share their results. In this way, two impor-
tant parts of the system - functional and network behavior
- can be brought together and interdependencies can be
tested. The network behavior focuses on wireless com-
munication.

The approach described in (Zhang et al., 2013) cou-
ples the notations/tools CarSim, SystemC, and C-Code to
simulate and test the behavior of a cyber-physical system.
Such a CPS is made up of three parts: a physical layer, a
network/platform layer, and a software layer. CarSim is
used to simulate the physical layer, while SystemC han-
dles the network/platform layer and the software layer is
described by C code. The framework is enhanced by a
tool for model-based design to allow the creation of rapid
prototypes. The authors of (Eyisi et al., 2012) present the
Networked Control Systems Wind Tunnel (NCSWT), an
integrated modeling and simulation tool for the evaluation
of Networked Control Systems (NCS). NCSWT integrates
Matlab/Simulink and the network simulator ns-2 for mod-
eling and simulation of NCS using the High Level Archi-
tecture (HLA) (Kuhl et al., 1999) standard.

Existing fault injection approaches focus on the injec-
tion of specific faults or classes of faults at the system level
(Barton et al., 1990; Guthoff and Sieh, 1995) or at the soft-
ware level (Duraes and Madeira, 2006) in order to validate
the system’s functional behavior.

Related work shows that simulator coupling is a com-
monly applied technique for evaluating communicating
systems. Performance evaluation is a proven technique for
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predicting network performance. Safety-relevant systems
additionally need to be evaluated with respect to their re-
silience. Consequently, fault injection techniques should
be additionally used to evaluate network performance, ad-
ditional overhead due to safety measures, and the impact
of faults in one integrated simulation.

3 Virtual Testing of Open embedded
Systems

Figure 1 illustrates the functional structure of a remotely
controlled lift system, which will be used as an explana-
tory example for this paper. This system enables remote
control of a hydraulic lift with a smartphone. The develop-
ment of such a system starts with requirements and high-
level models for functional behavior and safety concepts.
Simulator coupling, as documented in (Kuhn et al., 2013),
enables the coupling of these models into one integrated
simulation, and therefore the rapid evaluation of concepts

and early feedback to developers.
Indication
device
Manual Lift Hydraulic
Control Controller) Lift
C] Safety relevant system component

Figure 1. Example Remote Lift Controller System.

Wireless

Smartphone :
[ o Receiver

For the evaluation of the safety concepts of the exam-
ple system, a functional structure as shown in 1 is not
sufficient. Networks are an integral part of this system,
and they affect its safe operation. Safety concepts need
to handle network errors reliably. Figure 3 illustrates a
revised version of 1 that includes network simulation for
the evaluation of safety concepts. Simulation of wireless
(LAN) networks is provided by the ns-3 network simula-
tor 0; other simulators are integrated to simulate CAN bus
networks and generic wired links. The coupled simulation
models split the system into three semantic domains that
execute discrete event and discrete time models.

Fault injection testing enables test-based evaluation of
safety concepts. To support the evaluation of safety con-
cepts for networked systems, fault injection testing needs
to be supported for all network simulation components.

In the context of the example system shown in Figure
3, this includes the ns-3 network simulator, the CAN bus
simulation, and the tailored models wired links.

To assure safety, the system behavior needs to be tested
in holistic simulations. Faults are injected at the level of
simulation components, while behavior needs to be ob-
served both at the component and at the system level. To
enable fault injection testing for system designs with dif-
ferent levels of abstraction, fault injection needs to be de-
coupled from the network simulation.
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Figure 2. Internal structure of an ns-3 Wi-Fi simulation.

4 Simulator Coupling for Network
Simulation

Network simulators offer their simulation models with
proprietary interfaces. Development of simulated proto-
col stacks is possible by combining these interfaces. Fig-
ure 4 illustrates the structure of a CAN bus simulation. It
consists of the CAN medium, which simulates the CAN
bus medium and signal propagation, the CAN bus con-
trollers (CANCtrl), and interface components (CanlF). In-
terface components aggregate raw data into CAN frames
and add offsets, if necessary. On top of the CAN interface
components, applications and higher-level protocols like
ISOBUS may be implemented.

Developing a generic approach for the coupling of net-
work simulation models and fault injection testing re-
quires an understanding of the inner structure of network
simulators, and development of a high-level architecture
that encapsulates the components that are specific for each
network simulation. Figure 2 and Figure 5 illustrate the ar-
chitecture of simulated communication stacks for the ns-3
and OMNeT++ simulators.

The example structure shown in Figure 2 illustrates the
component instances that create a simulated Wi-Fi net-
work in the ns-3 simulator. Four types of layers can be
identified: The Application layer consists of the simulated
application behavior. The Protocol layers implement the
UDP and IP protocols. The Network Interface layer simu-
lates the medium access control of the Wi-Fi network; its
simulation is split into different components. The Physi-
cal layer is simulated by components that simulate phys-
ical layer encoding and the physical channel. Since ns-3

is a discrete event simulator, frame propagation is based

on discrete events as well. Every frame is marked by an
event that indicates the transmission of its first bit as well
as the frame length. When receiving a physical transmis-
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sion, every frame is represented by the time that its first
bit is received and by the time when its last bit is received.
This information is used together with the received signal
strength, which is calculated by the propagation model of
the physical channel model for the simulation of frame
collisions. Upper layers represent frames transmitted and
received by one event only. The internal structure of an
OMNeT++ simulation is similar. Figure 5 illustrates the
component instances that create an Ethernet simulation. It
consists of the same basic layers as the ns-3 network sim-
ulation. And similar to ns-3, the simulation of the phys-
ical channel (EtherBus or YansWiFiChan) is instantiated
once; the other components in the Physical layer, the Net-
work Interface layer, and the Protocol layers are instan-
tiated once per simulated network node. Components on
the application level may be instantiated multiple times.

The coupling of simulators should yield a protocol
stack structure as shown in Figure 4. Applications and
application-level protocols should be able to connect to
simulated networks. The type of simulated network
should be easily replaceable, enabling the simulation of
a scenario with both an idealistic network for functional
evaluation and its evaluation with a realistic network sim-
ulation for performance evaluation.

Figure 6 illustrates our common structure for the inte-
gration of network simulation models and functional mod-
els. It also shows the types of layers from integrated net-
work simulators that are encapsulated and integrated as
simulation components (Kuhn et al., 2013). White-box
network simulation models that define all relevant com-
ponents like queue, medium access control, and applica-
tion interfaces can be integrated in the same way as black-
box components that hide their internal structure. This
enables both the rapid integration of existing simulators
with low effort as a black-box simulation and the more
effort-consuming integration of simulators as white-box
components. White-box components require the devel-
opment of more and additional components, but also en-
able much finer-grained customization of simulated net-
works.The component named Application Interface real-
izes the interface between higher-level protocols and ap-
plications, and the network simulation. Its structure is
documented in Figure 7.

Applications create PDUs that transmit serialized infor-
mation through communication networks. In addition to
the transmitted data, addressing information might be pro-
vided to the simulation components. This addressing in-
formation may contain, for example, a CAN bus message
ID, or a UDP address including a receiver port number.
Adapters may use and change this information to simulate
mappings that are realized by the protocol under develop-
ment. As shown in Figure 7, PDUs additionally contain
a list of key/value pairs that store data that is specific to
the simulation models and a list of failure modes for this
frame.
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S Network Fault Injection Testing

The integration of network simulators as simulation com-
ponents enables accurate simulation of networked embed-
ded system components. FERAL enables the rapid de-
velopment of simulation components and their coupling.
Fault injection testing, however, requires a generic ap-
proach that is independent of the simulation components
that provide the network simulation. Figure 8 lists the rel-
evant failure modes, which were derived from ISO 26262
(ISO 2011) for communication in road vehicles.

While all communication networks basically introduce
the possibility of all types of communication failures, the
concrete probability of a particular failure depends on the
type of communication system to be used. Tailored fault
detection and containment mechanisms need to reduce the
probability and/or the impact of faults and at the same time
conserve resources of the communication system. They
add, for example, additional checksums and drop faulty
frames instead of passing them to higher protocol lay-
ers, preventing the processing of corrupted data by safety-
relevant applications.

To effectively simulate failure propagation in embed-
ded systems, the simulation of faults happening and their
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Figure 5. OMNeT++ detailed structure.

consequences need to be split from each other. A possible
fault on a communication medium is the flipping of mul-
tiple bits. A consequence of this fault could be either the
dropping of the frame if the bit flip is detected, or a wrong
value that is passed to the application.

Our fault injection framework realizes this separation
by defining explicit fault injectors and fault processors.
Fault injectors create faults in the system. Fault processors
simulate consequences of faults. Both fault injectors and
fault processors may operate statistically in performance
evaluation scenarios to determine performance impacts, or
deterministically to evaluate the suitability of a safety con-
cept for the virtual certification of a system.

Figure 9 illustrates fault injection testing with one
black-box network simulation component. Fault injec-
tors and fault processors are placed in the communica-
tion paths of the network simulation. Both fault injec-
tors and fault processors are added to inbound commu-
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Figure 7. Interface for applications and protocols and PDU
structure.

nication paths, whereas only fault processors are added
to outbound communication paths. Fault processors in in-
bound communication paths therefore can control whether
adapters will process the faults for the native simulation
model or not. Faults that are created by fault injector com-
ponents are added to the failure-modes list of transmitted
PDUs (cf. Figure 7). Fault processors scan the list of faults
for each PDU and modify the PDU based on their imple-
mentation.

Fault processors and fault injectors enable fault injec-
tion testing independent of network simulation compo-
nents, and consequently their independent development.
Therefore, it is best if network simulation models do not
realize fault processing at all, but leave the simulation of
faults to explicit fault injector and fault processor compo-
nents.

Figure 10 illustrates fault injection testing with our
common structure for the coupling of functional and net-
work simulation models. Fault injectors on medium in-
puts inject faults that affect all receivers, e.g. interferences
from other transmissions or a broken cable. Injected faults
are stored in the failure-modes field of transmitted PDUs,
as shown in Figure 7. Fault processors on medium in-

Defined failures in E2E communication (according to 1SO 26262)

= Repetition of information

= Loss of information

= Delay of information

= [nsertion of information

=  Masquerading of information

=  [ncorrect addressing of information

= |ncorrect sequence of information

= Corruption of information

= Asymmetric information sent from sender to multiple receivers
= |nformation from one sender received by subset of receivers only
=  Blocking access to communication channel

Figure 8. Failures in end-to-end communication.
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puts convert injected faults into failures that affect all re-
ceivers. Interferences may, for example, lead to shifted
bits or dropped frames, or may have no consequence at
all if the interference was not sufficiently strong. Fault
injectors and processors with medium outputs model ef-
fects that only one or a subset of all receivers suffer from.
Application-level fault processors enable developers to
convert network faults into application-specific faults. For
example, they turn undetected bit shifts into application-
specific changed inputs. This enables worst-case analysis
with critical inputs for application components.

Currently, the fault injectors and processors are avail-
able for use at the medium, device, and application level,
as in Table 1.

Injectors Processors
Interference (once) | (Multi) bit change
Interference burts | Frame drop
Signal fading Frame creation
Cable break Retransmission
Collision Delay
Logic error Sequence change
Value change

Table 1. Fault Injectors and Processors

Fault injectors and processors support different activa-
tion patterns. They can be activated once at a given point
in time, in intervals, or sporadically. Fault processors rep-
resent both high-level effects caused by protocols, e.g.,
duplication or the change of frame sequences due to re-
transmission, and low-level effects like bit changes. At
the application level, remaining (uncaught) faults of the
interference type may yield a value change that changes
frame contents at the logic level.
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6 Case Study

The lift remote control example from Section 3 is an
anonymized case study based on an industry cooperation
project. Horizontal movements of a lift are controlled with
a smartphone by at most two operators. Safety measures
are applied to ensure that the received user input fully re-
flects the intention of both users. If contradictory com-
mands are received, movement stops. Periodic heartbeats
ensure that communication with both operators is possi-
ble. Both the smartphone and the wireless network are
considered to be untrusted for system design. Therefore,
potential errors in smartphones and networks need to be
handled. All safety-relevant processing is performed on
the wireless LAN receiver. The case study presented here
implements a simulation model that reflects the system
model illustrated in Figure 3 with additional fault injec-
tion as illustrated in Figure 10. The Wi-Fi network was
simulated by the ns-3 simulator; the CAN bus simulation
model was developed at Fraunhofer IESE. Corrective ac-
tions defined by the safety concept were integrated into
the wireless receiver.

Deviation from the expected behavior
caused by network failure Blocking
access to communication channel

825
820
815
810

805

800

795

4000 5000 6000

7000

8000 9000

Figure 11. Fault injectors and fault processors.

In this case study, the response of the system to injected
faults was evaluated. Once a fault had been injected, it
was observed how the system reacted and how well the
corrective actions were applied to avoid potential hazards.
Figure 11 illustrates one simulated scenario: Due to a sim-
ulated network failure, the wireless receiver stops receiv-
ing heartbeat messages from the smartphone. As a safety
measure, the hydraulic lift stops moving. This is realized
by the wireless receiver implementation which, as soon
as the heartbeat is not being received anymore, sends stop
movement commands to the hydraulic lift. The dotted line
represents the user’s intended behavior, while the continu-
ous line shows the safe system behavior in the case of the
injected fault.
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Figure 12. Fault injectors and fault processors.

The second scenario validates another safety function.
According to the safety concept, if the two remote opera-
tors issue different commands, the lift needs to stop mov-
ing immediately. This way, every operator can prevent fur-
ther movements of the lift if he detects a hazard. Valida-
tion of this function requires the integration of a physical
network simulation model. As shown in Figure 12, two
remote operators are placed at different locations. Due
to the topology of the environment, transmissions from
the two users to each other are shielded. Therefore, the
CSMA mechanism of wireless networks cannot prevent
collisions from happening at the wireless receiver. Conse-
quently, control commands collide, which cause the com-
mands with stronger signal strength from operator 2 to be
received.

Movement of the hydraulic lift

825
820
815
810
805
800
795

4000

5000 6000

7000

8000 9000

Figure 13. Fault injectors and fault processors.

Frame collisions prevent the more distant operator from
communicating with the lift. Due to a sufficient number
of heartbeats being properly received, this situation is not
detected by the wireless receiver, which is a flaw in the
safety concept. As shown in Figure 13, the lift does not
stop moving at time 6000, but continues its movement up-
wards, shown by the solid line. The dotted line represents
the expected behavior when two contradictory commands
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are issued. The simulation results show that this case was
not properly handled by the safety concept

7 Conclusions and future work

In this paper, we presented our work regarding simulator
coupling for network and functional simulation, as well
as simulator-independent fault injection testing. We ana-
lyzed existing simulators and devised a reference structure
that represents the most important components of commu-
nication stacks. Fault injector and fault processor com-
ponents enable fault injection testing that is independent
of the simulators used. Therefore, failure models are in-
dependent of functional models and can be used in both
functional and performance evaluation simulations.

This enables the rapid development of virtual commu-
nication stacks. Integration of fault injection testing using
fault injectors and fault processors enables both statistical
injection of faults that resemble the error distribution of a
real network.

Future work in this area includes the extension of fault
injection testing with platform models. Research needs
to be done to evaluate whether memory and processor
failures as well as failures in different application mod-
els can be integrated into simulations using fault injectors
and fault processors in a similar manner as that used for
integrating communication failures.
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