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Abstract
The paper focuses on the design of the module of

embedded simulations for real remote Internet School

Experimental System (ISES) experiments. The ISES

experimental platform is intended for educational

purpose laboratories at schools and universities

providing computer oriented measuring environment

for Engineering students and students of Natural

sciences. At present, the ISES remote laboratories do

not provide any provisions for concurrent interactive

simulations in the form of virtual experiments. This

drawback results in lesser attractiveness and

understanding of real world phenomena. The designed

solution uses the Easy JavaScript Simulations (EJS)

environment to calculate the data, using equations

provided by physics laws, and the ISES module for the

simulated data transfer and visualization.

Keywords: RLMS, ISES, measureserver, phenomena
simulation, remote laboratory, real experiment

1 Introduction

Traditional teaching methods for students at schools

and universities are outdated and not effective enough.

Students often expect faster and more understandable

teaching methods in the field of physics, chemistry and

electro-engineering, which can help them to better

perceive real world phenomena. The problem is also an

accessibility of the educational materials, especially for

distant students who nowadays prefer studying

scientific topics using their computers via the Internet.

These problematic points are effectively solved by the

remote laboratories (RLs) so called e-laboratories. The

RLs built on the ISES platform (Lustig, 2009) have

been developed for long time since 2002 by the RL

Consortium of three universities (Charles University in

Prague, Tomas Bata University in Zlín and Trnava

University in Trnava) for educational purposes. The

ISES is an advanced tool for real-time operation, data

acquisition and processing.

The platform is an open system consisting of the

ISES components for a hands-on experimentation

called ISES WIN. However, there is also an alternative

for using remote experiments (REs), the ISES WEB

Control Kit. Both types of the experiments are built as 

the burst (fast) and normal (slow) to offer students a 

wider spectrum of knowledge. The initial version of 

ISES RLs has been developed by Charles University in 

Prague. When the ISES RL became the time-proven 

educational tool, it was significantly improved to a 

higher level tool by Tomas Bata University in Zlín in 

cooperation with Charles University in Prague. They 

implemented features for the new user environment, 

EASY REMOTE-ISES, to build REs by laymen 

(Krbeček et al, 2013). 

Let us describe the ISES RL concept. It consists of 

five units as the HW components (signal convertor, 

control board, physical modules categorized as meters, 

sensors and devices), Measureserver, Imageserver, 

Webserver and Webclient. More details and deployed 

applications are available in (Zeman, 2011; Zeman, 

2012; Krbeček et al, 2014; Hamid, Modammed, 2010; 

Drigas et al, 2006). All the ISES RLs were integrated 

into a new system platform called Remote Laboratory 

Management System (RLMS) REMLABNET accessed 

on www.remlabnet.eu. It provides units as services to 

the ISES RL administrators and clients. The schematic 

arrangement of all the involved autonomous units and 

defined communication is presented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 State of the art 

The ISES RL units internally exploit monitoring, 

controlling, and communication functions to cooperate 

with other units to dispatch measured data. 

 
Figure 1. Scheme of the REMLABNET covering ISES 

remote laboratories with the experiments and clients. 
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2.1 Physical hardware 

There are two concepts in principle implemented for 

the ISES laboratories - local and remote, built on the 

same physical HW. The ISES is a modular platform 

based on three parts. As the first part used, it is the 

signal convertor installed as the PCI 1202 interface 

card inside a control computer. Further parts are the 

control board and the set of sensors for physics, 

chemistry and electro-engineering. The platform offers 

a possibility of the data measurement, data 

visualization and analysis. A complete set of the 

physical HW is illustrated in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Measureserver unit 

The Measureserver (MS) unit is a significant software 

part of the ISES RL concept. It is the processing and 

communicating server located between the physical 

HW and remote clients. The MS core is designed as an 

advanced finite-state machine to setup and process the 

logical instructions solving prescribed activities. Its 

functioning is drawn from the concise process script 

(PSC) file loaded to the MS before its startup. 

With respect to the physical HW, the MS in reality 

communicates with the PCI 1202 interface card. This is 

the entirely digital process based on the direct reading 

of data (real values) from particular pins and writing of 

data to respective pins, which are translated by the 

signal convertor. These data pins are inputs and outputs 

located on the control board allowing an access to the 

particular physical modules like meters, and devices. 

Instructions (specific commands), coming from a 

remote client, are processed by the listening MS. The 

communication is realized by standard protocols via 

the Internet. Certain commands go via the MS 

translator to the REMLABNET where clients can 

exploit additional services provided like the 

acquirement of measured data results from previously 

performed REs stored in the exposed database 

(warehouse) to analyze phenomena. 

All the commands are processed in a deterministic 

way by two different underlying parsers. The first is 

called the LR(1) parser that processes commands from 

the configuration file for the purpose of the graphical 

user interface settings. This parser is based on static 

state transition tables (parsing tables), which are able to 

codify a given language grammar. These parsing tables 

are parameterized together with a lookahead terminal. 

This lookahead establishes the maximum tokens, the 

parser can use to decide, which rule it should use. 

The second is the Recursive descent parser (RDP) 

that processes commands coming from the PSC source 

to create the defined data structures and logic schemes 

for the RE. It uses a general form of top-down parsing 

where backtracking may be involved. The parsing 

algorithm is based on the walking through a tree. 

2.3 Webserver unit 

The Webserver unit provides the Nginx services 

coming into the process when client enters a web page 

of the ISES RL via the REMLABNET platform. The 

Nginx is an open source reverse proxy server for 

HTTP, HTTPS, SMTP, POP3 and IMAP protocols. 

2.4 Webclient unit 

This unit is a graphical interface provided by web 

pages via the Internet allowing registered clients to 

simply control and observe a respective RE (either on 

the REMLABNET or EU RLMS Go-Lab platforms). 

3 Example of real remote experiment 

and its mathematical model 

Simulations play an increasingly important role in the 

way we teach or do science. This is especially true in 

education, where computers are being used more and 

more as a way to make lectures more attractive to 

students, and to effectively help them achieve a deeper 

understanding of the subject being taught. This section 

deals with the design and realization of the phenomena 

simulations module (PSM) that is able to run 

concurrently with a respective real RE on the client’s 

web page. The PSM is a part that does not need to be 

activated every time during the experimentation. 

The PSM is designed as the optional autonomous 

module integrated into the MS structures in 

cooperation with the Easy Java Simulations (EJS) core 

to solve the evolution by a preset numerical method. 

Mathematical expressions, e.g. constants, variables, 

algebraic equations and ordinary differential equations 

(ODE), are defined in the PSC. It is notable to mention, 

the PSC is a textual source having own syntax of 

programming language similar to the C language. It is 

parsed by the RDP inside the MS core during the RE 

 
Figure 2. ISES physical hardware including the PCI 

1202 interface card and a broad range of the  

involved meters, sensors and devices. 
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startup. The new objects and additional functions were 

implemented to identify, initialize and perform the 

simulation process. Simulated data, produced by the 

EJS solver, are being continuously transferred on the 

web page to either charts or tables. 

For the purpose of the demonstration how the 

simulation may be embedded in a RE we use the 

measurements of the response of the passive parallel 

RLC circuit to a voltage perturbation in a time domain 

as shown in Figure 3 showing C capacitor, L inductor 

(with internal resistance RL) and variable resistors 

R1D and R2D; ISES voltmeter and amperemeter serve 

for measuring voltage and current response in the time 

domain to the perturbation by a unit step voltage, 

produced by the DC source U(0) and the switch S at 

the time t = 0. Variable parameters are used two 

resistive components, artificially introducing the 

damping. The desired results are all three parameters of 

the RLC circuit examined. The corresponding initial 

client’s web page with all the preset widgets is 

illustrated in Figure 6. Let us next describe the problem 

in a more detailed way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Mathematical expressions definition 

The mathematical description of the circuit shown in 
Figure 3 is a form of Kirchhoff’s law for a parallel 
RLC circuit. For the numerical solution of the current 
I=I(t) and voltage U=U(t), both parameters of the 
circuit - C, L, RL and damping resistors R1D and R2D, 
together with the initial conditions should be adjusted 
and varied. The goal of the using along with the RE is 
to find the parameters of the circuit by varying both the 
damping resistors. 

There are defined two substitutive resistors induced 

from Figure 3 to use for further operations. 

                                                     (1) 

                                                              (2) 

From Kirchhoff’s voltage law (KVL), the following 

second order differential equation can be constructed 

                                    (3) 

 

where 

                                    (4) 

                                               (5) 

                   .                                    (6) 

The solution, when the essential condition ω0 > b is 

satisfied, follows in the form 

                                (7) 

                                               (8) 

where b is defined as the damping factor and δ is a 

logarithmic decrement. 

Quantity e
-b

 defines how the amplitude relatively 

makes smaller per unit of time. Equation (7) presents 

damped oscillations observed in Figure 4, when all the 

involved elements are set correctly. 
 

 

 

 

 

 

 

 

 

The simulation process of the parallel RLC circuit 

with the variable damping is constructed by (3) with 

the exploitation of (4) and (5), and using original 

resistors R1D and R2D shown in (1) and (2) as follows. 

  (9) 

Second order differential equation (9) must be 

rewritten to a form as shown in Figure 5 to pass it with 

other parameters to the EJS solver integrated into the 

PSM. The goal is to obtain and visualize data of the 

voltage in the given circuit illustrated in Figure 3. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 3. Schematic diagram of the parallel RLC  

circuit including three resistors. 

 
Figure 4. Demonstrative oscillations of the  

damped parallel RLC circuit. 

 

 
Figure 5. Rewriting (conversion) of the second order 

ordinary differential equation to a readable  

form used by the EJS solver. 
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When all the mathematical expressions are properly 

defined, the EJS parser then generates a respective 

XML simulation file. In the next phase, the XML is 

referenced in the PSC control program file where the 

control process of the simulation is constructed by new 

commands to set inputs and outputs, including the 

solver startup when the initialization is complete. 

Finally, the PSC is passed to the MS unit that 

performs all the commands to create and run the real 

RE together with the concurrent simulation process of 

the parallel RLC circuit with the variable damping. 

3.2 Simulation process script definition 

After the differential equation is rewritten into the 

readable form for EJS, the next step is saving of the 

transformed form of the simulation assignment into a 

respective XML file and its full path reference is then 

inserted into the PSC control file of the RE. 

There are generally two alternatives, how to build in 

the simulation into PSC file. The first one and more 

complicated, is its direct inclusion into PSC control 

file, i.e. to code all the definitions manually. The RE 

designer should individually decide to which steps to 

connect the simulation. This is a more complicated 

alternative, necessitating a good knowledge of the 

programming language, intended just for programmers. 

The second alternative, faster and more comfortable, 

suited to teachers, is the use of EASY REMOTE-ISES 

providing an intuitive graphical environment for the 

design and configuration of the RE and its simulation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PSM providing the phenomena simulation is an 

optional feature and must be first declared and enabled 

in the header of the PSC file. An example, illustrating 

the coded sequence of functions configuring the 

concurrent simulation process with the respective 

variable coefficients (for the resistor, inductor and 

capacitor), is shown in Figure 7. 

3.3 Measureserver core process 

The MS unit is an important component in the process 

chain of completion of all calculations to reach the 

phenomenon simulation and its time synchronization 

with the real RE running concurrently. 

There are five main activities the MS must pursue to 

provide all inevitable services as listed below: 

1. Parsing: The RE control program with the 

simulation process is parsed by the RDP at its 

startup from the PSC file. 

2. Controlling: The installed ISES devices are being 

controlled in specified time interval or scheme. 

3. Monitoring: The ISES meters and sensors are 

being monitored in specified time interval. 

4. Archiving: The measured data and metadata are 

being archived to the XML and LOG files and 

dispatched into the warehouse residing in the 

REMLABNET to fold and analyze. 

5. Simulating: The PSM calculates an evolution of 

the respective phenomenon and generates resultant 
data for the visualization and analysis. 

 

 
Figure 6. Web page of the ISES remote experiment “Transients in RLC”; the serial resistance R1D and parallel resistance 

R2D are allowed to set before running the voltage measurement. Resultant voltage progress is displayed in the  

chart and it can be also exported into two different data tables. 

EUROSIM 2016 & SIMS 2016

758DOI: 10.3384/ecp17142755       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MS activities, mentioned in the five above 

points, are shown in Figure 8. There are depicted 

relationships among the PSC control program file, MS 

unit, ISES physical experiment and REMLABNET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Easy Java Simulations core process 

Easy Java Simulations is a software tool designed for 

the creation of simulations. The EJS is a modeling and 

authoring tool expressly devoted to science teachers 

and students. It has been designed to let its user work at 

a high conceptual level, using a set of simplified tools, 

and concentrating most of the time on the scientific 

aspects of the demanded simulation, asking the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 computer to perform all the other necessary but easily 

automated tasks. 

Nevertheless, the final results, which are generated 

by the EJS from a user description, can be taken, in 

terms of efficiency and sophistication, as the 

implementation of programmer (Esquembre, 2015). 

Since the EJS is Open Source under a GNU GPL 

license, we decided to exploit its optimized solver to 

perform phenomena simulations integrated into the 

PSM as a component part of the MS unit. 

The EJS solver computes a numerical approximation 

to the solution of an ODE or, more precisely, of an 

initial value problem. That is, given the system of 

ODEs and the state of the system at a given time. The 

solver is able to approximate the solution of the ODE 

in a future time. Solver algorithms are all one-step 

methods, mostly based on Runge-Kutta (RK) schemes, 

can be explicit or implicit, fixed-step or adaptive, and 

all use an interpolation to provide a dense output. It 

means these algorithms produce solution points at any 

instant of time. 

The PSM mostly uses two EJS solvers only. The 

first solver is the Runge-Kutta 4. It refers to the 

classical RK method which started it all. It is a fixed 

step, 4th-order algorithm that works well in most 

situations. This solver interpolates using one step of the 

bootstrapping algorithm applied to the Hermite 

interpolation (this gives order 4 interpolation). The 

second one is the Cash-Karp 5(4) that is an adaptive 

4th order method. It is based on two embedded RK 

schemes of order 5 and 4. We use a local extrapolation  

 
Figure 7. Coded sequence of implemented functions of PSM to enable, configure and  

run the simulation process stored in the PSC file. 

 
Figure 8. Communication relationships and the activities 

of the MS unit to realize the real ISES RE and  

concurrent phenomenon simulation. 
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and accept the 5th order approximation as the solution. 

This is the default solver for ODEs because it provides 

excellent performance in most situations. The solver 

interpolates using two steps of the bootstrapping 

algorithm applied to the Hermite interpolation (this 

gives order 5 interpolation). The interpolation scheme 

is very convenient because it significantly optimizes 

the number of evaluations of the ODE rate. The 

computational load is largely determined only by the 

tolerances and not by the reading step (Gonze, 2013). 

These solvers generate data, which are passed to the 

PSM output interface. 

3.5 Concurrent data visualization 

When the simulated data are received from the EJS 

solver to the PSM, the MS unit performs the 

synchronization with the concurrent real RE. Finally, 

the measured and simulated data are sent to the client’s 

web page to the chart. Differences should be obvious, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that is when we compare interlaced curves of the real 

and calculated voltage in the circuit. The web page 

visualizing both voltage representations is shown in 

Figure 9. This example simulation process allows 

setting of the damping resistors R1D and R2D both 

separately and by the buttons too for serial and parallel 

resistances. The optional values of the capacitance and 

inductance can be entered to modify the process. The 

real curve indicates R1D = 10Ω, R2D = Infinity and L = 

1H, whereas the simulated curve indicates R1D = 50Ω, 

R2D = 500KΩ and L = 1.01H to observe obvious 

differences between the physical experiment and its 

defined mathematical model. 

4 Conclusions 

The paper introduced a new module designed for the 

phenomena simulation. Its advantage is perceivable in 

a creation of the simulation running concurrently with 

a real experiment in the ISES remote laboratory. 

 
Figure 9. Web page of the ISES remote experiment “Transients in RLC” running together with the simulation process 

represented by the dotted black curve interlaced with a real measurement of the voltage in the parallel circuit. 
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This module was integrated into the Measureserver

unit. It allows clients its activation when the simulation

process is demanded to complement the ISES remote

experiment for the purpose of providing an alternative

to observe differences between the mathematical and

physical model of a studied phenomenon.

The simulation module should notably help students

to improve their learning procedure concerning a better

understanding of a given taught subject.

We formulated the following conclusions.

 The experimenting provided by the ISES remote

laboratory is a new method of teaching and

learning in comparison with traditional forms.

 The Measureserver unit is a core part used for

measurement, data processing and communicating

among clients and the ISES physical modules.

 The phenomena simulations module is a feature

providing means to realize simulation process

running together with the real experiment.
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