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Abstract
This paper describes a novel model based real time

simulation approach to test, validate and calibrate

electronic controllers for Hybrid Electric Vehicle

(HEV) applications. The performance of the Hybrid

Control Unit (HCU) needs to be evaluated on multiple

vehicle attributes such as fuel economy, acceleration

and drivability objectives. The multi attribute evaluation

requires a higher level of detail for the vehicle

simulation model where the energy flow and drivetrain

dynamics are represented accurately. Given the high

mechatronic content and the strong interactions among

the various controllers in HEVs, it becomes necessary to

simulate many of the vehicle controllers on the real time

platform. The higher fidelity vehicle model coupled

with the realistic behavior model of the controller

network poses challenges in setting up the real-time

Hardware In the Loop (HIL) test platform where the

vehicle level attributes can be studied. The real time

simulation setup process, its challenges and the methods

used to overcome these challenges are described in this

paper.

Keywords:  hardware in the loop, Amesim, hybrid
electric vehicle

1 Introduction

The expectations from the consumer has transformed

radically in the recent years from the advent of enhanced

driver support, better fuel efficiency and improved

powertrain technologies. Automotive manufacturers

and suppliers are confronted with ever greater

complexity as a result of increasing numbers of products

and options, shorter technology cycles and the

increasing pressure to innovate. At the same time they

need to balance the needs and demands of customers,

investors, regulators, non-governmental organizations

and even the general public (Pwc, 2014). The passenger

vehicles are being transformed to mechatronic machines

with high electronic and software contents. Companies

cannot afford to test such complexity in a hardware

prototype thoroughly because of the extremely high

costs associated with design changes far down the

development cycle (Boehm,2005) and the extraordinary

lead time associated with such a task.

Companies are using model-based simulation

approaches to design and test such high complexity

mechatronic systems. Testing the controller unit

comprehensively before testing in the prototype requires

real-time Hardware in the Loop (HIL) test platforms.

Most of the existing literature in the HIL area (Nabi,

2004; Ramaswamy, 2004; King, 2004; Allende, 2015;

Hafiz, 2015; Bovee, 2015; Isermann, 1999; Basrah,

2015; Wei, 2004) refers to the usage of HIL testing in

the context of controller logic validation and testing.

It is difficult to find a study that focuses on real time

HIL simulation of a complete closed loop vehicle model

that captures both fuel economy and drivability

phenomenon accurately. It is in this scenario, that the

process we have created (i.e. performing vehicle level

multi-attribute analysis with controller in the loop on

HIL) becomes unique.

The paper describes the process of real time closed

loop HIL validation of a hybrid electric vehicle model

with the objective of validating the supervisory hybrid

control algorithm on the basis of both fuel economy and

drivability characteristics of the vehicle.

The second section in this paper describes the hybrid

electric vehicle architecture, scope of the multi-attribute

analysis and the load cases used to study the multiple

attributes. The Amesim© model used to describe the

Hybrid Electric Vehicle (HEV) powertrain, the

controller model architecture and the process followed

for modeling and validating the system is described in

the third section. The real-time model generation

process and the partitioning of the model to execute on

the multi-core platform to optimize execution

performance are discussed after that. This is followed by

results discussion and conclusions.

2 Multi-attribute analysis of hybrid 

electric vehicles 

This section describes the architecture of the hybrid

electric vehicle under consideration, functionality of the

Hybrid Control Unit (HCU), other controllers and the
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test cases. Within the scope and context of this paper, 

multi-attribute analysis refers to the simultaneous 

analysis of fuel efficiency and drivability characteristics 

of the vehicle. The entire simulation setup has been 

created in order to study the impact of the HCU strategy 

on the drivability and fuel efficiency related aspects of 

the vehicle. 

The configuration of the vehicle in this paper is 

referred to as a Transmission Mounted Electric Device 

Hybrid Electric Vehicle (TMED HEV). As seen in 

Figure 1, the architecture is composed of a Hybrid 

Starter and Generator (HSG), an engine, an engine 

clutch, an electric motor and a transmission. The HSG 

is connected to the engine by a pulley and the main role 

of the HSG is to start the engine, control the engine 

speed to engage the engine clutch and charge the battery 

by using engine power. The engine clutch plays an 

important role in the mode of the vehicle such that when 

the clutch is disengaged, the engine power is not 

transferred to the driving wheels and only motor power 

drives the vehicle. This setting is  

 
Figure 1. HEV Architecture 

 

known as the Electric Vehicle (EV) mode. When the 

clutch is engaged, the engine power and the motor 

power drive the vehicle in HEV mode. During the HEV 

mode, the assistance by the electric motor ensures that 

the operating point of the engine is maintained to have 

optimum fuel efficiency. The 6-speed automatic 

transmission is similar to a conventional transmission 

except for the fact that it does not have a torque 

converter to reduce energy loss. 

The optimal control of the operation of the vehicle is 

managed by an array of control units. Out of these, the 

HCU is the supervisory controller that computes the 

torque demanded by the driver and optimally distributes 

it among the engine, electric motor and the HSG. The 

torque demand from the driver is estimated by the HCU 

by considering multiple factors such as the accelerator 

pedal position, the brake pedal position, vehicle speed, 

gear ratio and torque interventions by other controllers. 

For example, if the battery state of charge is sufficiently 

high and the torque demand is less than the maximum 

motor torque at the current motor speed, then the HCU 
generally opts for the EV mode of operation in which all 

of the demanded torque is supplied by the electric motor. 

On the other hand, in the case of HEV mode, the HCU

distributes the demanded torque between the electric

motor and the engine by considering the brake specific

fuel consumption of the engine and the efficiency of the

electric motor at that particular operating point. Hence

it can be seen that the HCU plays a critical role by

ensuring the driver demands are met and simultaneously

ensuring optimal fuel efficiency.

In addition to the supervisory HCU, there are other

subsystem level controllers (explained in the next

sections) that also have to be modeled to an appropriate

level of detail to ensure the simulation results are

realistic and comparable to vehicle test data. For

instance, the Engine Management System (EMS)

controls fuel, air and spark in order to produce the

commanded torque from HCU. If this feature is not

modeled correctly, it can lead to significant deviations

in the prediction of fuel economy and battery state of

charge.

In order to validate the performance of the model

across the two attributes of drivability and fuel

economy, the following test cases are utilized:

 For fuel economy analysis:

o FTP drive cycle

o US06 drive cycle

o NEDC drive cycle

 For drivability analysis:

o Fixed gear HEV mode tip & creep

o HEV/EV mode change

3 System modeling for multi-attribute 

analysis 

This section highlights the modeling aspects of the plant

model using Amesim© software and the controller

models using

MATLAB®/SIMULINK®/STATEFLOW®. A brief

description of the process followed to validate the

models is also provided.

Since the HCU is to be tested against Fuel Economy

and Drivability requirements, a dynamic model of the

vehicle using Amesim© is developed with the physics

needed to capture the energy flows and conversion from

fuel to mechanical and electrical energy. In order to also

address drivability requirements, the level of details for

the description of the elements involved is chosen to

capture natural frequencies in the 0 to 20Hz range which

corresponds to the frequencies that can be felt by the

driver as seen in Figure 2

 Initially, the vehicle model is developed focusing on

these considerations, the real-time capabilities not being

part of the requirements considered at the time. In order

to capture the targeted frequency content, all the

mechanical elements, whose modes are known to fall

within that range, are included in the model (i.e.

drivetrain, engine 3D block and mounts, suspension and
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chassis). The 6DOF engine block on its mounting 

system and the corresponding rigid body modes are 

shown in Figure 3. 

In order to use the vehicle model for predicting Fuel 

Economy, the efficiencies and energy losses of the main 

components should be modeled. Being able to track and 

account for the power flows is key to understanding how 

the fuel energy is converted to the mechanical energy 

delivered to the wheels. Once this torque/energy balance 

is achieved, the engine brake torque and speed are used 

to calculate the corresponding fuel consumption. The 

BSFC map used to predict the engine fuel consumption  

 

 
Figure 2. Frequency range of model 

 

 

  
 

Figure 3. Modal energy distribution 

Figure 4. Model captures drivability and fuel economy 

 

from engine torque and speed is shown in Figure 4. 

 It is noteworthy that the plant model architecture 

mirrors that of the physical hardware so as to capture the 

functions and physics needed to address the 

requirements of interest and capture the corresponding 

physical phenomena. The complete model being 

sizeable, it is not presented in this paper but it shall be 

introduced during the conference. 

 Now moving on the controller modelling aspects, a 

summarized version of the overall vehicle controller 

network architecture is outlined in Figure 5. The figure 
corresponds to the system that is modeled within the 

scope of this particular project. It can be seen that the 

HCU is linked to the rest of the controllers through 

Controller Area Network (CAN) and these controllers in 

turn are connected to each other and to the plant 

hardware. 

As stated previously, HCU is the high level 

supervisory control unit that manages the torque split 

between the internal combustion engine and the electric 

motor according to the operating conditions. The HCU 

computes and sends the main signal of each controller 

such as the engine torque command, the motor torque 

command, the battery charge and so on. The other 

controllers carry out the command from the HCU. The 

Engine Management System (EMS) controls the fuel 

quantity, air quantity and ignition timing in order to 

realize the torque command from the HCU. The EMS 

also estimates the amount of fuel consumption. The 

Motor Control Unit (MCU) controls the electric motor 

by controlling the current. The MCU also ensures a 

reduction in driveline oscillations by appropriately 

controlling the motor torque and also shifts the 

operation point of the engine to achieve better fuel 

efficiency. The HSG, which controls the engine speed 

for engine clutch engagement and which is used to 

charge the battery, is also controlled by the MCU. The 

Transmission Control Unit (TCU) determines the shift 

point and provides the commands to actuate the clutches 

and the brakes within the automatic transmission. The  

 

 

 

Battery Management System (BMS) monitors the state 

of the battery at all times and decides the 

charging/discharging limits based on the operating 

point. The BMS also computes an estimate of the state 

of charge (SOC) of the battery. The Anti-lock Braking 

System (ABS), within the context of this project, 

computes the total braking torque required based on the 

driver input and then splits them appropriately so that a 

certain percentage of the total braking requirement is 

supplied using the hydraulic brakes and the rest is 

produced by the motor as regenerative torque. The 

above controller network structure (excluding the 

HCU), along  
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Figure 5. Model Architecture 

 

 
Figure 6. Plant-Controls Interface 

Figure 7. Controller modeling approach 

 

with a simplified implementation of the algorithm which 

includes the main function of each controller, is 

modeled in Simulink.  

Since the vehicle plant model is developed using the 

Amesim© software and controller models are developed 

using the MATLAB®/SIMULINK®/STATEFLOW® 

suite, it is very important to define the interface between 

these two entities early on in the development process. 

Effort is taken to ensure that the virtual interface is 

similar to the actual interface implemented on the real 

vehicle, to the extent possible. The signal interface 

between Amesim© (plant model) and MATLAB® 

(controller model) is shown in Figure 6. 

Modeling and validation of the plant model and 
controls are done following a systematic procedure with 

confirmation and validation ensured at each stage. The 

Amesim© plant modeling is carried out at the 

component level first, which is then assembled to obtain 

the complete vehicle model. Validation is also ensured 

at both the component and system level of the plant. The 

controller models are also built and validated in a 

systematic way, from unit level to system level The 

process of controller model building – from unit level 

logic, to complete ‘X’CU, to the entire controller is 

highlighted in Figure 7. 

The validation process also follows the development 

process – open-loop unit level validation is followed by 

open-loop system level validation. Once this is 

completed for both the plant and control model, closed-

loop validation is performed on the desktop. The final 

validation step is performed on the HIL bench using the 

HCU hardware. The entire validation process is 

concisely represented in Figure 8. 

4 Real-Time Model Generation and 

Setup 

Initially developed to capture drivability phenomena 

like clutch Judder or Shift surge, the Amesim© model 

contains excessively high natural frequencies and very 

small time-constants that cannot be handled by a fixed  

 

time-step solver. In order to use in an HIL setup several 

steps have to be taken for the model to get rid of the 

unnecessary high frequency while keeping the lower 

frequency content used to capture drivability 

phenomena. The first step is to identify the largest 

frequency or mode and the main contributing states. Fig. 

9 shows the Modal Projection Tool that is used to that 

effect. 

In a second step the part of the model contributing to 

this mode is simplified. Then the new results are 

compared to that of the original model to validate that 

differences in time-domain and frequency-domain are 

acceptable while the model is being significantly 

reduced.  In the present case, the inertia of the HSG, 

connected to the engine flywheel inertia via a very stiff 

and over-damped shaft, generates the 47MHz mode 

shown in Figure 9. This may not be a problem for a 
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variable time step solver but that will be a problem for a 

fairly typical fixed time-step. In this example the two 

inertias can be lumped together and the very high mode 

disappears. This process is then repeated until all the 

unnecessary high frequencies have been removed. 

Figure 10 shows natural frequencies of the system after 

model reduction and the drivability results after vehicle 

model reduction is plotted in Figure 11. The frequency, 

magnitude, vehicle speed, and acceleration are very 

similar to vehicle test data, and the results are 

sufficiently accurate to predict the behavior of the 

powertrain. 

The following subsection highlights certain aspects 

on the controller side that needs to be taken care of 

before deploying on a real-time bench.  

The different controllers are to be executed at various 

sample periods and also the communication intervals 

among the different controllers vary. All of these factors 

have been taken into consideration for controller 

modeling. For the purpose of desktop Model in Loop 

(MIL) simulation, the controller models and the plant 

model (Amesim© S-function) are within the same 

Simulink .mdl file. However, for the HIL simulation, the 

plant model (Amesim© S-function) is simulated in a 

separate mdl file. The structure of HIL model is shown 

in Figure 12. 

 

 
Figure 8. Validation Approach 

 

 
Figure 9. Natural frequencies before Transmission model 

reduction 

 

 
Figure 10. Natural frequencies after Transmission model 

reduction 

 

 

 
Figure 11. Drivability Results 

 

 
Figure 12. HIL model structure 

 

Here, mdl file 1 contains the controller blocks. This 

model is executed using a fixed time step solver. Internal 

clocks within this model take care of the separate trigger 

rates required for the different control systems. The 

second mdl file contains the plant model S function and 

this file is executed at a fixed time step which is smaller 

than the controller models. Since the system model is 

split into two separate mdl files for  

 

 
Figure 13. Closed loop MIL model structure 
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Figure 14. MIL Results 

 

controller models and plant model, it is possible to 

simulate them on two separate cores on the HIL bench. 

Once the real time plant model and controller models 

are ready, the closed loop setup is validated against test 

data on desktop. For this purpose, an S function of the 

HCU is utilized. 

The overall model structure used to test the system 

closed loop on the desktop is outlined in Figure 13. It 

can be seen that the entire controller model components 

are in the Simulink environment and the plant model is 

implemented as a MATLAB® S function. The entire 

system is simulated in fixed time step using the 

Simulink solver. The HCU is also implemented as a 

MATLAB® S function. This setup enables a closed 

loop fixed step simulation on the desktop before it is 

deployed on the HIL bench. 

Figure 14 shows the result of the MIL simulation 

using the HCU s function. The engine speed error 

between test and simulation is extremely small. This 

close behavior between model and test data on desktop 

ensures the accuracy of the model before deployment on 

HIL. 

5 HIL Test Bench Results 

The novel simulation model on the HIL bench is used to 

analyze the impact of HCU algorithm change or 

calibration change on the fuel efficiency and drivability 

aspects of the HEV. The HIL bench enables evaluation 

of the performance of the HEV without real vehicles 

thereby reducing the development time significantly. 

The HIL bench used for the multi-attribute analysis 

and the verification/validation of HCU is shown in 

Figure 15. The HIL bench is composed of the real-time 

PC, the operating PC, I/O board and HCU. Using 

LABCAR© software, the vehicle model and controller 

model suggested in this paper are built and the INCA© 

software is used for measurement of signals and 

calibration. 

Some of the issues related to HIL deployment is 

outlined in this paragraph. The main issue that can cause 

problems during HIL execution is model overrun. This 

means that all of the computations associated with the 

system model are not being completed within the 

allocated fixed time step. When this is encountered, the 

model can be split and run on multiple cores. This would 

entail having two separate mdl files with LABCAR© 

ports for communication between them. Simulation 

debugging can also be a challenge in this case because 

of the number of constituents in the system – plant, 

controller models, HCU hardware, interfaces, different 

cores etc. 

The results presented in this section reflect the Sonata 

HEV vehicle. Various versions of the prototype HCU 

are used to correlate the test result and the simulation 

result. In the figures, red line corresponds to the test data 

from the real vehicle and the blue line corresponds to the 

simulation data. 

Figures 16, 17 and 18 show the full closed loop 

simulation results obtained from HIL simulation with 

HCU hardware connected. The HCU, vehicle and the 

controller models have the same calibration values. A 

subsection of the result from FTP drive cycle is shown 

in Figure 16. For reasons of security, the result for the 

entire time range is not provided. The vehicle speed 

error between the test data and simulation is below 2 

km/hr. Since the error is less than the acceptable 

maximum speed error value of 3.2 km/hr, other 

variables of the simulation is expected to match the 

performance of the Sonata HEV for the FTP drive cycle. 

The engine torque error between the test and simulation 

is below 3%. The difference in the timing of engine 

on/off point is less than one second which is very small 

considering the whole range of the FTP drive cycle 

(1300s). The small difference in the engine on/off signal 

arises from the error in vehicle speed, SOC, and so on. 

The errors for SOC and the fuel consumption are also 

below 3%. Since all errors are within acceptable limits, 

the prediction of the fuel economy is possible for the 

FTP drive cycle. Figure 17 shows a subsection of the 

results of the Highway drive cycle. The errors for 

vehicle speed, engine torque, battery SOC and the fuel 

economy is below 3%. It is to be noted that the 

simulation model used for validating the highway drive 

cycle is exactly the same as the one used for FTP. The 

characteristics of the FTP and the highway drive cycles 

are vastly different. The FTP drive cycle can be 

considered to be somewhat mild in terms of the rates of 

acceleration and braking. The highway drive cycle, on 

the other hand is aggressive. Since the simulation model 

is able to match the vehicle performance for both of 

these cycles, any other cycle’s fuel economy can be 

predicted. Finally, the result of NEDC drive cycle is 

shown in Figure 18. The results are sufficiently similar 

to the test data of the real vehicle and therefore the fuel 

economy for the NEDC is predicted by the developed 

model. 
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Figure 15. HIL bench for HCU 

 

 
Figure 16. HIL FTP cycle results 

 

 
Figure 17. HIL Highway cycle results 

 

 
Figure 18. HIL NEDC cycle results 

 

6 Conclusions 

The results of the HIL simulation show a very close 

correlation between the real vehicle and the model. This 

confirms that closed loop vehicle simulation on an HIL 

bench can be used to validate multiple attributes like 

drivability and fuel economy. This process opens up 

new opportunities for similar multi-attribute studies on 

the HIL bench. This approach is novel when compared 

to existing studies that tend to focus on a single attribute 

using lower fidelity plant models for controls logic 

validation. 

 This setup enables Hyundai Motor Company (HMC) 

to quickly test the impact of different HCU algorithms 

and calibration values on the vehicle drivability and fuel 

economy. The overall development time for the HEV 

has been reduced and the performance of the HEV has 

been improved. 

The vehicle model presented in this paper does not 

include thermal effects on the powertrain and also has 

limited predictive capabilities of the accessory loads. 

As a next step, HMC and Siemens would like to 

include the effects of the temperature on the engine, 

electric motor and the battery. An improved model 

which includes the electrical energy consumption by the 

air conditioner, electric oil pump and the electric power 

steering will provide a better estimate of the energy 

consumption. In addition, if the road geometry and the 

vehicle lateral dynamics are added to the model, a 

variety of other test scenarios can be simulated 

accurately. 
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