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Abstract

Dynamic process simulation is used to mitigate risks,
reduce costs and improve quality of design in plant
engineering. Traditionally, simulation models are
created manually from engineering source data. Benefits
of utilising simulation are recognised by the industry,
but simulation is not exploited to its full potential due to
its current laborious nature. Engineering software
interoperability improves efficiency in engineering
workflows. Required manual work is reduced, enabling
faster and more robust design to be conducted. In this
paper, work conducted by authors in integrating the
dynamic process simulation software Apros into the
engineering workflow by automatically creating
simulation models based on standard engineering data is
reported. A case study was conducted to demonstrate the
implemented features. Process engineering data in the
Proteus XML format was used as the source data for
simulation model generation. The case study shows that
the implemented features reduce manual work required,
lowering the threshold for utilising simulation.

Keywords: simulation, engineering workflow, interop-
erability, virtual plant

1 Introduction

Efficiency of engineering actions in plant design is
wanted to be improved in process industry and power
generation. Profitable and safe operations are wanted to
be achieved faster. Advanced computer aided
engineering (CAE) tools are utilised in the engineering
workflow, allowing engineers to conduct their work
efficiently. At the same time engineering projects
struggle with delays and costs related to correction of
design flaws recognised late in the engineering
workflow or during the operation of a plant.

Two alternatives for solving these issues are
discussed in this paper. First, a wider and earlier
utilisation of dynamic process simulation can help in
identifying engineering errors earlier, reducing or
avoiding costs of corrective actions. Second,
engineering software interoperability enables engineers
from different disciplines to work in a more integrated
manner, hence improving communication in the
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workflow. Thereby, time and costs required for
engineering are reduced and sources for engineering
errors are prevented. Additionally in this paper, it is
shown how engineering software interoperability lowers
the threshold for utilising dynamic process simulation
by enabling automatic generation of simulation models.

Plant engineering actions are typically organised as
an engineering workflow. Practices in the industry vary,
but in common practises the actions are organised into
design phases in which different engineering disciplines
conduct their design effort. The focus disciplines of this
paper are process, automation and simulation
engineering.

Process engineers conduct their design effort using
CAE software, resulting in piping and instrumentation
diagrams (P&ID) and 3D models describing the plant.
Typically, the basic design is delivered as P&IDs and
the detailed design is implemented with 3D models.
Typical engineering software use proprietary data
models and file formats for representing design data
instead of exploiting standards. This also applies to
offered interfaces available in software. This restricts
software interoperability and thereby both resource
intensive and error-prone manual information transfer is
taking place in the engineering workflow (Karhela et al,
2012; Estevez et al, 2012). However, an emerging trend
of utilising standard data models and formats is
emerging (Estevez et al, 2012), enabling engineering
software interoperability. The ISO 15926 standard
(International Organization for Standardization, 2004)
and the related Proteus XML specification (Fiatech and
POSC Caesar Association, 2016) are examples of
standardisation being adopted by the industry. Such data
formats serve as proper initial data also for extended use
cases, e.g. for generating simulation models as exploited
in this paper.

Simulation is utilised in the engineering workflow to
answer engineering and operational questions with
lower risks compared to traditional testing (Oppelt et al,
2015a). The dynamic behaviour of a plant can be
analysed using dynamic process simulation. Simulation
is not utilised to its full capability due to its laborious
modelling requirement, partly as a result of non-
interoperable engineering software (Karhela et al, 2012;
Oppelt et al, 2014). Modelling effort can be significantly
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reduced by automating simulation model generation
based on available design data (Karhela et al, 2012). In
practise this means that simulation software must be
made interoperable with plant engineering software.
This can be achieved by implementing customised
software interfaces, but committing to standards makes
the interfaces reusable. Highest efficiency can be
achieved if simulation models can be generated based
on the same standard engineering data as CAE software
use for standard engineering data transfer.

In this paper the effort made by the authors in
developing automatic simulation model generation
based on standard engineering data is reported. The
feature has been developed for dynamic process
simulation software Apros 6, which utilises the
Simantics platform. In the case study reported in this
paper, a simulation model is created based on P&ID
source data. The P&ID is drawn in Intergraph
SmartPlant PID and exported into the 1ISO 15926-based
Proteus XML format. An Apros model was generated
based on a predefined ruleset.

The paper is structured in the following way. After
this introductory section, relevant related research is
presented in section 2. In section 3, the work conducted
by the authors for Apros simulation software and the
Simantics platform is reported. In section 4, a small case
study conducted for this paper to demonstrate the
implemented features is reported. Finally, the paper is
concluded in section 5.

2 Related work

In this section, previous research relevant for this paper
is reviewed and necessary terminology is defined. Major
topics are the plant engineering workflow, engineering
software interoperability and the role of simulation in
plant engineering with focus on simulation model
generation.

In this paper the concept plant engineering workflow
is used to describe the organisation of engineering
actions in a typical plant construction or retrofitting
project. The concept is simplified from actual
workflows in use since industry practises vary
significantly. Thereby, a generalised workflow is
formulated. Similar concepts used in literature are e.g.
the plant engineering process (Hoyer et al, 2005), the
design process (Towler et al, 2013) and the lifecycle of
a process plant (Oppelt et al, 2015a). In the workflow,
engineering actions are divided into design phases and
participating engineering disciplines. The generalised
workflow used in this paper is assumed to consist of five
phases. These phases are 1. Conceptual design, 2. Basic
design, 3. Detailed design, 4. Commissioning, 5.
Operation and maintenance. Most relevant phases for
this paper are the basic and detailed design phases.

The engineering workflow requires seamless co-
operation between engineering disciplines. Engineers
are accustomed to using best-in-class engineering

software and interoperability has been restricted by
lacking interfaces of software tools. Design data is
handed over both within and across disciplines as the
workflow proceeds. Design information is lost in the
transfers when non-interoperable engineering software
is used and significant manual action is required. The
emerging trend of engineering software interoperability
and utilisation of standards for representing design data
will improve work conducted in the workflow as
transferring design data can be automated. This requires
that engineering software tools are equipped with
standard interfaces to allow engineers to continue using
their preferred tools.

A few possible alternatives for standard engineering
data representation exist. The ISO 15926 standard
(International Organization for Standardization, 2004)
is being adopted by the process industry and in power
plant engineering as a neutral data format. Originally,
the standard did not define an actual data transfer format
and for this purpose the XMpLant (Nextspace, 2015)
Extensive Markup Language (XML)-based data format
was developed for 1SO 15926 data and was adopted
widely in the industry. The XMpLant schema was made
public and afterwards it has been developed by Fiatech
(Fiatech, 2009) under the Proteus name. Thereby, this
format is called Proteus XML. In a more recent part 8 of
the 1ISO 15926 standard, a Web Ontology language
(OWL)-based data format is defined, but it has not
gained wide acceptance in industry. The Proteus XML-
format allows representation of both P&ID and 3D data
and contains both the geometry and attribute
information in the same XML-file. Several commercial
CAE tools aimed for P&ID and 3D design support
Proteus or the related XMpLant format. Proteus is being
actively developed by Fiatech in its 1IMM project
(Fiatech, 2015) and in other standardisation initiatives
such as the DEXPI (DEXPI, 2016).

CAEX (Computer Aided Engineering Exchange)
defined in IEC 62424 (International Electrotechnical
Commission, 2008) is an engineering data exchange
format that can be used for vendor independent data
exchange, e.g. for P&IDs. CAEX has been used for
generating simulation models (Hoernicke et al, 2015;
Barth et al, 2009) and is also utilised by AutomationML.
(Holm et al, 2012) The format has not been adopted by
the industry as widely as 1SO 15926 and it lacks an
established industrial reference data library similar to
the one available for ISO 15926.

ISO 10303 (International Organization for
Standardization, 1994), or commonly known as STEP
(Standard for the Exchange of Product model data) has
been used to integrate manufacturing systems in several
industries (Tursi et al, 2009), but it has not been adopted
in process industry and power generation. 1ISO 15926
can be considered as a successor to STEP in process
industries (Wiesner et al, 2011).
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IFC (Industry Foundation Classes), also published as
ISO 16739 standard (International Organization for
Standardization, 2013), is a neutral data format
maintained by  buildingSMART International
(buildingSMART International, 2016). It has been
widely adopted in construction industry. IFC can be
used to represent e.g. technical systems in buildings,
such as heating and water piping, but it is not aimed for
representing industrial processes and lacks component
libraries for such processes. Therefore, 1SO 15926
currently outrules IFC when considering needs for
industrial simulation model generation. IFC is though
prominent and could possibly be used partly as source
data in 3D and future extensions might improve
usability for industrial processes.

Dynamic process simulation is utilised in the
engineering workflow to answer questions related to the
dynamic behaviour of a plant. Conditions too costly or
dangerous to test with traditional testing methods can be
tested. In industry, despite recognised benefits of
utilising simulation, it is commonly exploited only at
certain times when needed and usually very late in the
engineering workflow (Karhela et al, 2012). Corrective
actions are more expensive and cause more disturbances
to project schedules compared to if errors would have
been discovered and corrected in an earlier phase
(Oppelt et al, 2015b; Barth et al, 2013). Therefore, ways
to support utilisation of simulation more extensively and
earlier in the engineering workflow are needed to
promote utilisation of simulation and gaining
corresponding benefits.

Simulation models have traditionally been modelled
manually based on process design data such as P&IDs
and isometric drawings as printouts and by manually
inspecting data from 3D models. Automation
functionalities are added to the model based on
automation diagrams. Simulation modelling therefore
consists of combining heterogeneous data (Barth et al,
2013). Modelling work required for creating simulation
models is considered laborious (Karhela et al, 2012) and
research related to automating simulation model
generation is actively conducted. See e.g. (Hoyer et al,
2005), (Hoernicke et al, 2015), (Barth et al, 2009),
(Barth et al, 2013) and (Laakso et al, 2013) for previous
work in automatic simulation model generation. P&IDs
and other design documents are nowadays intelligent
since CAE tools exploit object oriented features.
Therefore every component on a P&ID has both its
graphical appearance and attribute data defined (Barth
et al, 2013), serving as a proper source for simulation
model generation. By utilising automatic simulation
model generation the models can be created faster, more
accurate and the method is also less error-prone than
manual modelling. These benefits should be enough to
improve the profitability of simulation and thereby
lowering the threshold for utilising simulation. This can
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enable simulation to be become a more integrated part
of every phase of the engineering workflow.

Many previous proposals and implementations for
automatic simulation model generation have been
created by interfacing two specific software resulting in
a custom integration. Tool specific approaches have also
been implemented for Apros previously (Laakso et al,
2013; Paljakka et al, 2009). Standard interfaces allow
implementation of reusable features. Standards being
adopted in plant design should also be utilised when
creating simulation models. The ISO 15926-based
Proteus XML-format is promising as source data for
automatic simulation model generation since it allows
representation of both P&ID and 3D data, describes both
the geometry and attribute information and is supported
by major CAE software.

3 Implementation

The authors have implemented features for automatic
simulation model generation based on Proteus XML
data in Apros and Simantics software environment.
First, the software environment is presented followed by
the description of the implemented features.

Apros (Fortum and VTT Technical Research Centre
of Finland, 2016) is a simulation software for modelling
and simulation of dynamic processes developed and
offered by Fortum and VTT Technical Research Centre
of Finland since 1986. Apros has mostly been utilised in
modelling and simulation of nuclear and combustion
power plants with new application areas emerging. The
core feature of Apros is the thermal hydraulic solver for
one-dimensional two-phase flow (Porkholm et al,
2016). Apros offers an extensive library of process,
automation and electrical components for modelling
industrial processes. Recently, Apros has been
integrated with automation engineering by introducing
features for transferring automation design data in
standard format to detailed design from Apros (Paganus
et al, 2016). The newest version, Apros 6, is based on
the Simantics platform.

Simantics (Simantics, 2016) is an open ontology-
based integration platform for modelling and simulation
(Karhela et al, 2012). It is managed by the THTH
Association of Decentralized Information Management
for Industry (THTH Association of Decentralized
Information Management for Industry, 2016). Simantics
offers a semantic triplestore database and a user
interface based on Eclipse (The Eclipse Foundation,
2016) technology for its products. In the Apros case, the
Apros solver is connected to Simantics, creating a
modelling and simulation environment. A dedicated
language for manipulating the Simantics database and
its plug-ins has been developed, named Simantics
Constraint Language (SCL) (Karhela et al, 2012). SCL
can be used to perform model transformations, which
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has been utilised by the authors for generating Apros
simulation models.

The main objective of the work conducted by the
authors was to achieve process simulation integration by
exploiting standards for maximising usability in
industrial projects, were a wide range of different
software and practises are present. As the main source
data for automatic generation of Apros models, P&IDs
and 3D models were used. 3D undoubtedly gives more
accurate description of the process than P&IDs and is
the source for detailed accuracy in a simulation model.
However, as simulation is wanted to be utilised in an
earlier design phase, authors have designed a workflow
where the initial simulation model is generated based on
P&IDs. The initial model is made more detailed from
3D data when the source data is available.

The authors have developed a toolset for the
Simantics platform for handling Proteus P&ID and 3D
data in XML-format. The data import is based on
automatic conversion of XML schemas to Simantics
LayerO-based ontologies. Layer0 is the ontology
description language used by Simantics (Karhela et al,
2012). Schema conversion tool converts XML element,
complex type, and simple type definitions to LayerO
types and creates type specific relations based on XML
indicators. For file import purposes, we automatically
generate Java classes for SAX-based (SAX, 2004) XML
parser, which processes Proteus XML files and creates
respective instances into Simantics database.

We developed both P&ID and 3D visualisations of
Proteus data. Proteus format uses STEP (ISO 10303)
(International Organization for Standardization, 1994)
standard’s graphical definitions and Proteus files
contain full graphical representation of the original
design. Proteus P&IDs use only few graphical
primitives; lines, circles, ellipses, arcs of the latter two,
and text fields, making visualising P&IDs
straightforward ~ using  Simantics  diagramming
component and Java2D (Oracle, 2016) graphics layer.
3D visualisation uses the Visualization Toolkit (VTK,
2016) and OpenCASCADE (Open CASCADE
Technology, 2016). The P&ID visualisation is also used
for defining the scope of the data to be transformed into
Apros models. The selection is done by painting parts of
the diagram, similarly to any raster graphics editor
software including freehand drawing tool.

From the P&ID or 3D data imported into Simantics,
Apros simulation models can be generated based on a
predefined mapping ruleset from the selections made in
the Proteus visualisation. The ruleset was implemented
using SCL transformations, since the process is a model
transformation were the Proteus data model is
transformed into the Apros data model. Mappings can
be of one to one, one to many or many to one type. The
SCL transformation framework supports all of these
mapping options. The basic feature is that equipment
and components available in the Proteus data are
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mapped to Apros components. Attribute data available
in the source data is utilised when the simulation model
is parametrised. Also, different attributes needed for
Apros can be calculated from the process data.
Calculations are particularly relevant when an accurate
3D model is available and e.g. piping geometry can be
used for calculating parameters necessary for a detailed
simulation model. For attributes, the units used are also
mapped to be suitable for Apros. The mappings can be
altered by the user for specific needs.

The ruleset for generating Apros models has been
implemented in a two-level architecture. The base of the
ruleset is the reusable general features that handle the
common features in Proteus, e.g. connections between
components. In each separate project, an additional
ruleset is defined according to the needs of the
engineering project. This additional ruleset is designed
to be very easy and fast to implement: it only requires
definition of the corresponding component or attribute
type in Proteus and Apros. By implementing this
solution, the effort for taking automatic simulation
model generation into use is minimised while still
allowing project specific modifications. After the initial
definition, the ruleset is reusable within the project.

When design and P&IDs are updated, the changes
must be reflected to the simulation model. The challenge
is that the user is usually required to make manual
changes to the automatically generated model because
of missing data and simulator specific needs. Those
changes shall not be overridden. Our initial
implementation used two way comparison,
automatically generated simulation model with user
made changes, and simulation model generated from
updated P&IDs. This model does not allow automatic
detection of user made changes, so to fix the situation,
we have decided to use three-way comparison of the
simulation model, one version as the originally
generated model, one with user made changes, and one
generated from updated P&IDs. Simantics database
versioning capabilities (Karhela et al, 2012) allows for
detecting changes that the user has made to the
simulation model after it has been generated for the first
time. Hence we do not need to store the original model
and the model with user made changes separately. This
reduces amount of data needed to be stored in the
database.

Achievable accuracy of automatically generated
simulation models depends heavily on the quality of the
source data. During implementation it was concluded
that the quality of the Proteus XML data produced by
different software varies significantly. This partly
relates to the constant development of the Proteus
schema, creating a challenge for software vendors to
keep up the pace. One example of this is the support for
instrumentation. It is evident that the instrumentation
support is not yet mature for full-scale industrial
projects in most software tools, although basic features
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are covered. The instrumentation model is being revised
by Fiatech and DEXPI, which will also require revisions
by software vendors.

4 Case study

A case study was conducted for this paper to test and
validate the Proteus features developed for Apros and
Simantics described in section 3. The scope of the study
was to generate an Apros simulation model based on a
simple P&ID. The P&ID was drawn in Intergraph
SmartPlant PID software and then exported into the
Proteus XML format. After importing the Proteus data
into Simantics, an Apros simulation model was
generated.

The example process in this paper is a simple pump-
tank model. It consists of a water filled tank, TA-113,
which is fed with water by activating the pump PU-112.
The liquid level in the tank is controlled by adjusting the
outward flow with a control valve in the outflow
pipeline from the tank. This control requirement has also
been drawn into the P&ID. The P&ID is illustrated in
Figure 1.

The P&ID in Proteus XML format was imported into
Simantics for inspection. The diagram was visualised
correctly and the structure and attributes of the diagram
can be reviewed by the user. By using the Proteus
selection tool in Simantics, the scope intended for Apros
model generation was chosen. In this case, the whole
diagram is of interest and therefore the full content of
the diagram was selected for model generation.

Mapping rules were defined to describe the
correspondence between the source P&ID and Apros
model. The general Proteus rule set, described in section
3, was used as a base and extended according to the
specific needs of the case. The specific rules map
components, attributes and specify how the unique
identifiers are defined in the source data. Some
simplifications were made, e.g. the impulse line and its

valves have been modelled with a single level
measurement component.

Apros model generation is automatic after the
mapping rules have been defined. The generated
simulation model is illustrated in Figure 2. Both the
layout of the diagram and the data was kept consistent
and attributes were transformed correctly. After model
creation and setting necessary additional parameters for
the model, dynamic simulation with initial values can be
started. The model generated behaved as expected and
controller tuning was successfully conducted. Thereby,
the model was equivalent to a manually modelled
model, but modelling effort was reduced. The benefit is
that the model structure and initial parametrisation can
be achieved faster and with fewer errors compared to
manual modelling. Drawbacks of the method are that
occasionally component and pipeline placements taken
from the process data might not be optimal for the
simulation model and some components might need to
be moved after model generation. Also, many detailed
modelling tasks are hard to automate and the degree of
automation in model generation should be properly
decided.

5 Conclusions

Benefits of utilising simulation are recognised by the
industry but due to its laborious modelling effort
required, dynamic process simulation is not utilised to
its full potential in the engineering workflow. Laborious
and error-prone manual work can be effectively reduced
by automating creation of simulation models. This
lowers the threshold for utilising simulation, making it

PU-112

pas

s
() (D)
® —0
—be—— _ ;
YR
_ =/

Figure 1. P&ID of the case study.
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Figure 2. Apros model generated based on P&ID illustrated in Figure 1.

more profitable in plant engineering by helping in
discovering design flaws in an earlier phase.

Enhanced interoperability of engineering software
based on standards enable additional use cases in
addition to transferring data between corresponding
design tools for continued design. In this paper, one such
additional usage was exploited when the work
conducted by the authors in generating dynamic
simulation models based on ISO 15926-based P&ID and
3D data in Proteus XML-format was reported. The
features were implemented in dynamic process
simulation software Apros and the Simantics platform.

The case study of the paper demonstrates successful
utilisation of Proteus XML data for generating dynamic
simulation models based on P&ID data. Proteus is also
capable of representing 3D data, enabling creation of
more accurate simulation models, which has also been
tried by the authors. Quality of the source data
determines the accuracy achievable for the
automatically generated simulation models. Therefore,
the standard interfaces in engineering software used and
the engineering practises applied in the engineering
workflow shall support production of high quality data.
The authors have tested CAE software from different
vendors and concluded that the quality of standard
interfaces varies and the interfaces need to become more
mature to be effectively applicable in major industrial
projects.

Utilising standard engineering data in engineering
workflows is promising and a wider utilisation is
demanded by the industry. One risk for a wider
utilisation is whether the industry and software vendors
can agree on a common standard since many promising
alternatives currently exist. Therefore, co-operation
between standardisation organisations, the industry and
software vendors is required. Currently, availability and
quality of interfaces vary but work conducted by e.g.
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DEXPI show the interest for interoperability based on
standards by industry, software vendors and academia.

Further validation is required for the implemented
methods for automatic simulation model generation.
The authors are going to validate the features in an
extensive industrial use case to analyse the benefits and
drawbacks more detailed. Simplification of simulation
models by altering the nodalisation should also be
handled in the automatic model generation.
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