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Abstract
Welch's periodogram is widely used in frequency

domain model validation. However, Welch's analysis

results just reveals whether the time series passed the

consistency test in each discrete frequency point, which

is not a quantitative credibility evaluation result and

may not help the evaluation expert to grade credibility

level of simulation system. Based on Welch's

periodogram and consistency test approach, a novel

credibility quantification method using weight density

function is proposed. Furthermore, the frequency

analysis and credibility quantification process is

provided. Finally, the credibility quantification of

radiated noise in ship acoustic feature simulation

indicates the method proposed is effective for periodic

time series with complicated spectrum.

Keywords: Welch's periodogram, credibility

quantification, line spectrum, periodic time series,

model validation

1 Introduction

The M&S technology has the advantages of economy,

security, repeatability and nondestructive, which makes

it widely used in aerospace, nuclear, communication, et

al. Verification Validation and Accreditation (VV&A)

should be conducted to guarantee the validity of

complex simulation system (Oberkampf 2008; Sargent,

2013; Wang, 2000). Through behavior-similarity

analysis between simulation system and real-world

system, we can obtain the credibility of the simulation

system.

Frequency analysis method is usually used for the

validation of periodic time series. Fishman and Kiviat

firstly proposed frequency domain validation method

and applied it to queuing model validation (Fishman,

1967). Gallanteta1 put forward a data consistency

analysis approach based on Analysis of Variance

(ANOVA) and periodogram method. Montgomery

used spectral analysis to evaluate the credibility of

missile simulation system (Montgomery, 1980&1983).

To resolve the thermal challenge problem suggested

in reference (Roy, 2011), (Ferson, 2008) proposed an

area metric, which takes the integral over the area 

difference between the cumulative distribution 

function(CDF) of simulation data and the empirical 

CDF of the measured samples as the disagreement 

between the simulation model and real-world system 

(Li, 2014; Sankararaman, 2011). Mullins classified the 

data scenarios with aleatory and epistemic uncertainty 

and studied how different validation metrics may be 

appropriate for varies data samples (Mullins, 2015). 

Literature (Zhang, 2011) provided a group AHP 

method to evaluate the credibility of complex 

simulation system, in which Hadamard convex 

combination is used to aggregate the judgement 

matrices constructed by different assessment experts. 

In the frequency analysis, some spectrum of 

simulated data and observed data are extremely 

complicated. Consistency test result of spectrum just 

shows whether the data passed the examination in each 

discrete frequency point rather than a quantitative 

credibility evaluation result, which may not help the 

evaluation expert to grade the credibility level of 

simulation system. How to transform the consistency 

test result to credibility is the key problem to resolve in 

this paper. The credibility quantitative method is 

illustrated in detail and case study demonstrates the 

frequency analysis and credibility transform process of 

radiated noise comprehensively. 

2 Periodogram Method 

The frequency domain analysis method involves power 

spectrum density estimation and consistency test. 

Power spectral density estimation is a data transform 

approach to estimate the distribution of signal energy 

in each frequency points using limited data. Welch's 

periodogram is a typical method in frequency domain 

validation. 

2.1 Welch's Periodogram Method 

Periodogram method uses Fast Fourier Transform 

(FFT) algorithm to estimate spectrum of stationary 

random sequence and the estimated spectrum is 

sensitive to the length of time series. If the data length 

is beyond a threshold value, spectrum oscillated 
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intensely. On the contrary, if the data length is reduced 

to a certain extent, the resolution of spectral may 

decrease and the estimation error increase significantly.  

Welch's spectral estimation is an improvement of 

periodogram by dividing the time series into many data 

segments and using non-rectangular windows to handle 

each data segments (Welch, 1967). When using 

Welch's method, the time series   Nx n R  is divided 

into 
N

K
L

  pieces, as: 

     ,0 1,1
i

x n x n iL L n L i K            (1) 

Each data segments is including L  samples, and we 

can calculate K  modified  periodogram by: 

       
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where  
1
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0

1 L

n

U w n
L





 
 

denotes the mean power of 

window function. 

Finally the power spectrum of time series  x n  can 

be calculated by: 

     
1

1 K
iw

x L

i

S J
K

 


                        (3) 

2.2 Consistency Test 

Suppose that  xS   and  yS   are spectrum of 

simulation model output time series  x n  and real-

world system output time series  y n . The estimated 

spectrum are  xS   and  yS  . As is proved 

2( )

( )
r

rS

S





 

(Chen, 1988), we can make the null 

hypothesis and alternative hypothesis as: 

0 : ( ) ( )x yH S S   

1 : ( ) ( )x yH S S   

Statistics of hypothesis test is: 

( ) / ( ) /
( , )

( ) / ( ) /

x x

y y

rS S r
F F r r

rS S r

 

 
             (4) 

where 
M

22 / ( )
k M

r N w k



  .  

If the original hypothesis is accepted under the 

confidence level , we can draw: 

0
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On the contrary, if
, , 1 , ,
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, we 

should accept the alternative hypothesis. Finally, the F 

test can be made in every frequency point i .  

3 Credibility Quantification Method 

3.1 Credibility Quantification Method 

Since the complexity of computational systems, we 

may not take the validation result under single input 

condition as the final credibility of the simulation 

system. Literature (Mullins, 2015) provides an 

approach to integrate the model validation results from 

multiple simulation scenarios, which is defined by 

equation (6). 

( ) ( )overallv v x x dx                      (6) 

where x  is a n-dimensional vector of input conditions 

and ( )v x is the validation result under input condition 

x ; ( )x is the joint probability density of the point x . 

Mullins et al. propose that ( )x  is a weighting function 

for the importance of multiple validation results which 

can be estimated according to the relevance of each 

experiment conditions to the overall intended use of 

the computational model. 

Provided that limited data samples are obtained, 

( )v x is available at finite points. Therefore, equation (6) 

is reformulated as 

1 1
( )

m m

overall i ii i
v v x w w

 
               (7) 

Literature (Zhang, 2010) studied transform 

algorithm of several commonly used validation 

methods. A direct transform approach for periodogram 

is provided, which takes the percentage of frequency 

range passed consistency check accounting for the 

whole frequency range as credibility. This conversion 

method is based on the hypothesis that statistic 

characteristic consistency of power spectrum in each 

frequency point has same effect on the overall 

credibility. Actually, since the power spectrum density 

is higher in one or several frequency bands, the effect 

on the similarity of the consistency test in each 

frequency points is not equal. Therefore, an inaccurate 

result may be calculated using direct transform 

approach. 

Power spectrum density curves can be divided into 

three categories, broadband spectrum (Figure 1), line 

spectrum (Figure 2), and mixed spectrum (Figure 3) 

which is composed of broadband spectrum and several 

line spectrum. In general, the frequency bands with 

higher energy often reflect the periodic characteristics 

of the system. 

The power difference of line spectrum between 

predicted time series and observed time series is 

usually the main reason for failing to pass the 

consistency check. Thus, the transform of line 

spectrum should be given high priority in the process 

of credibility quantification.  

Based on the above analysis, the credibility 

quantification process should focus on the key 

frequency band with higher power. Therefore, we may 

use the normal weight density function to realize the 
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conversion. The integral of normal weight density 

function ( )f   among the whole frequency band is 1 

and the multiple of weight function ( )f   and 

consistency test result is the credibility. 
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Figure 1. Broadband spectrum. 
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Figure 2. Line spectrum. 
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Figure 3. Mixed spectrum, 

The normal weight density function is defined as: 
2

2

1 ( )
( ) exp( ), [0,+

22
f ）

 
 




       (8) 

where   is the center position of weight density 

function and   is the dispersion parameter.  

Let 0( )F   be the weight integration of ( )f  in [0,

0 ], as: 

0

0
0

( ) ( )F f d


                         (9) 

then the weight integration of ( )f   among [ , ]q a b

can be expressed as ( ) ( )F b F a . 

Suppose the frequency points passed the consistency 

test as 1, otherwise as 0. The whole frequency band is 

divided into two sections, the band M  passed the 

check and the band N failed to pass the check. The two 

sections are defined as: 

1 1

[ , ]
p p

i ka kb

k k

M m m m
 

                   (10) 

1 1

[ , ]
q q

i ka kb

k k

N n n n
 

                     (11) 

Then choose appropriate parameters for each weight 

functions and the integral of band M is the final 

credibility. 

1

( ) ( )
p

k

k

C F M F m


                  (12) 

Finally, the parameters of normal weight density 

function can be chosen as follows. 

1) The mean of the normal distribution should be the 

middle of the line spectrum. 

2) 3 Rule may be followed in the selection of the 

variance.  

According to the parameter selection approach, the 

line spectrum will cover the frequency interval

[ 3 , 3 ]     . Although 
0

lim ( ) ( )F f d



  


 

1 1   , the weight loss 0.15%   and it may be 

ignored. For example, actuator works periodically in 

control system. Figure 4 is the power spectrum of 

actuator output time series. The work frequency of the 

actuator is between 8 Hz and 10Hz. Thus, we may 

choose 9  , 0.67  as the parameters of weight 

function (Figure 5). 

 

Figure 4. Sperctem of actuator output time series. 

 

Figure 5. Normal weight density function. 
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Figure 6. Frequency analysis and credibility quantification  process. 

3.2 Frequency Analysis and Credibility 

Quantification Process 

Based on the above method, including welch analysis 

method and transform approach, the specific transform 

steps (Figure 6) are provided as follows. 

Step 1. Preprocessing the predicted time series and 

observed time series, including data interception and 

smoothing filtering.  

Step 2. Choose appropriate transformation points 

and estimate the frequency spectrum of predicted time 

series and observed time series. 

Step 3. Select a significance level and make the 

consistency test. 

Step 4. Extract line spectrums in power spectrum, 

and analysis the reasons for the bands failed to pass the 

consistency test. Based on the test result, separate the 

whole band into two sections (band M  passed the 

consistency test and band N failed to passé the 

consistency test). 

Step 5. Select appropriate weight functions for each 

line spectrums and calculate the final credibility using 

equation (12). 

Actually, the overall simulation credibility of 

computational model should integrals multiple 

validation results of simulation data and measured 

samples under varies input conditions. This paper focus 

on the credibility quantification of frequency-domain 

validation result under single data scenario. 

4 Case study 

The task of ship acoustic feature simulation is not 

only to study and analyze the acoustic characteristics of 

the ship, but also to realistically simulate the 

characteristics of the ship and applied it to the sonar 

system testing and ship type identification. In the 

research of ship acoustic feature simulation, to 

guarantee the characteristics similarity of radiated 

noise between reconstruction model and real ship, 

frequency domain validation can be conducted to 

evaluate the credibility of the ship radiated noise 

reconstruction model. 

Radiated noise is mainly composed of mechanical 

noise, propeller noise and hydrodynamic noise. In 

general, radiated noise power spectrum is a typical 

representative of mixed spectrum. In the radiated noise 

spectrum, line spectrum reflects the periodic part of the 

energy distribution of the noise in the signal, which 

primary covers low frequency band. The line spectrum 

is the main feature to recognize ship types. 

According to the frequency analysis and credibility 

quantification procedure, radiated noise data is 

processed as the following. 

i) Data preprocessing 

Radiated noise data preprocessing includes data 

interception and normalization. Figure 7 reveals the 

simulation data and reference data in time domain.  

ii) Welch's spectrum estimation 

Using Welch's method to estimate the power 

spectrum and draw the spectrum graphics. In Figure 8, 

since the spectrum power between 1 Hz~1000Hz is 

above 0dB, the band 1Hz~1000Hz is the key band in 

the following analysis. There emerge seven line 

spectrums in the Welch spectrum between 

1Hz~1000Hz, including 10Hz~54Hz, 82Hz~180Hz, 

200 Hz ~240Hz, 320~360HZ, 460Hz~510Hz, 

722Hz~785Hz and 850~935Hz.  

 

Figure 7. Comparison between predicted and observed 

data in time domain. 
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Figure 8. Power spectrum estimated by Welch's method. 

Analytic hierarchy process (AHP) is used to obtain 

the weights of every line spectrum. According to the 

power and band length of each line spectrum, the 

judgment matrix is defined as: 

1 1 2 1 1 2 1 2 2 2

2 1 1 2 2 3 3

1 1 1 1 1 2 2
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2 1 2 1 1 1 2 2
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DJ

 
 
 
 
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  
 
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 
 
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The weight vector of line spectrum is: 

 0.122,  0.248,  0.164,  0.150,  0.150,  0.086,  0.080   

The coincidence index is 1.32 and the ratio is: 

/ 0.0158 0.1CR CI RI    

Therefore the weight vector calculated is valid. 

iii) Consistency test 

We can use F test to check the behavioral 

consistency between simulation data and reference data 

in frequency domain. The consistency analysis result is 

shown in Figure 9. Under log-log coordinate system, 

for a frequency point, if the confidence interval 

contains 0dB, then the radiated noise data passed the 

consistency analysis on this point. 

 

Figure 9. Consistency test result of Welch's power 

spectrum. 

Obviously, there are two frequency bands failed to 

pass the check, band 736 Hz ~760 Hz and band 866 Hz 

~915 Hz. 

In figure 8, the power difference of line spectrum 

722 Hz ~785Hz excess 5dB. This is the reason for 

band 736 Hz ~760 Hz failed to pass the consistency 

test. Meanwhile, there exists a line spectrum in 858Hz~ 

931Hz for the simulated time series and another in 

850Hz~935Hz for the observed time series. The 

frequency band difference leads to the test failure in 

band 866 Hz~915 Hz. 

iv) Credibility quantification  

According to the rule choosing weight function 

parameters, the parameters of seven line spectrums are 

defined as Table 1. 

Table 1. Parameters of Normal Weight Density Function. 

Function Line spectrum     

1F  10Hz~54Hz 38 7.33 

2F  95Hz~180Hz 137.5 28.33 

3F  200 Hz ~240Hz 220 6.67 

4F  320~360HZ 340 6.67 

5F  462Hz~512Hz, 487 15.00 

6F  722Hz~785Hz 753.5 10.50 

7F  850~935Hz 892.5 14.17 

 
Based on the weight of each line spectrum  and 

parameters of normal weight density function, the 

weight on the whole frequency band is shown in Figure 

10. 

 

Figure 10. Weight on the whole frequency band. 

Since most part of the line spectrum passed the 

consistency test, we can calculate the credibility loss 

k

k

L


  and the credibility is 1 k

k

L


 . 

The credibility loss 
1L  in band 736 Hz ~760Hz is: 

1 6 6(760) (736) 0.086 0.059L F F       

The credibility loss 2L  in band 866 Hz ~915Hz is: 

2 7 7(915) (866) 0.080 0.073L F F       

Then, the final credibility is: 

1 21 0.868C L L     

As a comparison, we use direct transform approach 

(Zhang J. Y, 2010) to calculate the credibility: 

 (736 760) (915 866) 1000 0.927dtC       

From the Welch's spectrum estimated result and 

consistency test result, the behavior of simulated time 

series and observed time series are similar to each 

other in most parts of the frequency band except two. 

The credibility quantification result confirms this 
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conclusion. The credibility calculated by direct

transform approach is about 0.927, which is lack of

factual basis. To summarize, the credibility

quantification approach should focus on key line

spectrums and the case study proves the quantification

method proposed is effective for time series with

complicated spectrum.

5 Conclusions

Based on Welch's periodogram and consistency test

approach, a novel credibility quantification method

using weight density function is proposed. Compared

to the direct transform approach, which assume all the

point have same effect on the final credibility, the

credibility quantification method proposed based on

normal weight density function focus on the transform

of Welch's analysis result on key frequency band. The

credibility quantification of ship radiated noise data

proves the transform approach is reasonable.

Meanwhile, the credibility quantification process

indicates the method provided is effective for periodic

time series with complicated spectrum.

Frequency-domain analysis in model validation is a

kind of consistency test method based on pattern. Even

though there exists uncertainty in simulation model

input, frequency-domain approach, including Welch's

analysis, Maximum Entropy Spectral Estimation

(MESE) et al, can still be utilized to analyze the

periodic time series. For the time series with

sophisticated spectrum, extraction of line spectrum

highly depends on the evaluation expert, which is time-

consuming and boring for the analyst. In the future,

method will be studied to obtain the accurate

information of each line spectrum automatically.

Furthermore, a frequency-domain validation and

credibility quantification tool will be developed to

improve the efficiency of model validation.
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