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Abstract
This work presents the building of a nonlinear model of

an electro-hydraulic actuator in order to understand the

limit cycle phenomenon that appears when it is used in

a closed loop control system. Previously, a first

harmonic analysis had been used to identify that system,

but the results were unsatisfactory. Therefore, this work

aims to build on that model with the use of Fast Fourier

Transforms as a way to recognize previously unseen

nonlinearities. Hardware in the loop tests are then used

in order to find the proper parameters that create a

particular limit cycle. Simulation results show that such

approach is successful.

Keywords:  nonlinear model, FFT, hardware in the

loop, actuator model

1 Introduction

As part of the design of control systems of space

vehicles, it is important to achieve a thorough

understanding of each element modeled so that the

simulated results will correctly represent the real

scenario.

In particular, it is important to be able to reproduce

the effect that nonlinearities create on the final output of

the system, since strategies used to deal with bending

modes affect the limit cycle generated by those

nonlinearities.

In order to support such development, hardware in

the loop (HWIL) simulations were used in an attempt to

identify a proper model for the actuator, but the model

proposed at the time was incomplete (Bueno and Leite

Filho, 2003). A similar approach is used now in order to

obtain initial values for the nonlinearities, while analysis

of the Fast Fourier Transform of the signal is used to

infer the missing elements.

2 Initial Configuration

For the initial analysis, the model proposed for the

actuator has a similar configuration as the one presented

in (Bueno and Leite Filho, 2003). However, further

analysis of the step response indicates a slightly
different third order linear model, given by the transfer

function in Equation (1).

𝑇𝐹 =
305500

𝑠3 + 202.1𝑠2 + 14520𝑠 + 326800
 (1) 

 

Hence, the model becomes the one represented in 

Figure 1. 

The HWIL simulation used for the limit cycle 

analysis consisted of a simplified dynamics model of the 

system followed by a PD controller (Bueno and Leite 

Filho, 2003), as seen in Figure 2. Since both the dead-

zone and the backlash have known descriptive functions 

(Slotine and Li, 1991; Gelb and Vander Velde, 1968), 

the first harmonic analysis can be used to calculate the 

parameter values for those nonlinearities. Figure 3 

shows the HWIL output for a given combination of Kp, 

Kd and µb. 

Considering Kp=5.84, Kd=0.062 and µb=12.3 as the 

controller parameters, and assuming a time delay of 

Td=0.0056, one finds f=1.1625e-04 for the backlash and 

δ=0.0092 for the dead-zone. 

Those results correctly represent the limit cycle in 

both frequency and amplitude. However, as described 

by (Bueno and Leite Filho, 2003), this model has been 

unable to reproduce the shape of the signal encountered 

on the hardware-in-the-loop tests. 

               

Figure 1. Initial configuration for actuator model. 

               

Figure 2. HWIL configuration for limit cycle analysis. 
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Figure 3. Actuator output (HWIL) for Kp=5.84, Kd=0.062 

and µb=12.3. 

3 FFT Analysis 

It is possible to reconstruct a signal using a finite Fourier 

series. This can be done by using the discrete Fourier 

transform (DFT) - an interpolating method capable of 

calculating the unknown coefficients for the series given 

a finite sample (Chu, 2008).  

However, calculating the DFT directly is generally a 

procedure of order N2 and it is not advisable (Chu, 

2008). Instead, the most common approach is to use the 

Fast Fourier Transform (FFT), an algorithm capable of 

calculating the DFT of a sample of complex N data 

points with a speed proportional to Nlog2N (Cooley et 

al, 1967; Van Loan, 1992). 

In order to obtain a more accurate look at the 

phenomenon studied, this work uses the Fast Fourier 

Transform (FFT) of the simulation output signal to 

better understand its properties. Once the frequency 

range of interest is identified, the Inverse Fast Fourier 

Transform (IFFT) can be used to reconstruct the signal 

without the influence of higher frequency noise. 

The FFT analysis of the signal generated by the 

HWIL simulation has shown that frequencies above 

10Hz could be ignored. An IFFT was then created so 

that the shape of the actuator output could be studied 

without the influence of external noise, as shown by 

Figure 4. 

Figure 4 shows that the actual output presents 

periodic changes in its shape around the wave’s 

antinodes, something that was not reproduced by the 

previous model. This indicates the existence of a 

relevant nonlinear phenomenon occurring when the 

actuator output changes direction of motion.  

The physical model of the actuator guarantees the 

existence of an integral on the model, as shown on 

Figure 1  (Moreira and Leite Filho, 1988; Gibson, 1963). 
Therefore, it is reasonable to assume that this occurs 

when the derivative of the output crosses zero. 

               

Figure 4. Actuator output (HWIL) with f<10Hz. 

 

               

Figure 5. Reconstructed derivative. 

               

Figure 6. Derivative of actuator output including 

coulomb friction. 

Based on the IFFT generated for frequencies smaller 
than 10Hz, as presented on Figure 4 and assuming that 

as the actual actuator output, it is possible to reconstruct 

the signal before the integral block, as shown on Figure 
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5. This strategy emphasizes the nonlinearities that one 

wants to model. If this signal can be reproduced by the 

inclusion of new nonlinearities, the new model will be 

able to recreate the real tests. 

The spikes around zero on Figure 5 indicate the 

existence of an offset which sign opposes the direction 

of the derivative. This phenomenon can be reproduced 

with the inclusion of a new nonlinearity, modeled as a 

negative Coulomb friction, before the integral block. 

Figure 6 shows the effect of this element on the 

derivative signal simulated for a given set of parameters. 

Since the simulated results are still not able to 

reproduce completely the HWIL signal, further analysis 

of the derivative is necessary. In order to better 

understand the relevant frequencies acting on the 

derivative signal, the Fast Fourier Transform can be 

used. 

Figure 7 shows a graphic of the absolute value of the 

FFT result with respect to frequency. This graph shows 

that, while the simulated model presented proportional 

attenuation of the higher harmonics, the real actuator 

showed an increase in amplitude for frequencies 

between 9 Hz and 10Hz, especially around the seventh 

harmonic (9.57 Hz). 

Therefore, it is important to be able to represent this 

phenomenon in order to reproduce the real results. The 

presence of higher harmonics seems to indicate that 

those were being stimulated somewhere on the actuator. 

As a way to recreate this on the model, a feedback loop 

is proposed.  

The feedback loop must be able to affect only that 

specific frequency band, which must be amplified 

somewhere on the closed loop. Thus, a feedback loop 

with a bandpass filter is included on the model with an 

appropriate gain so that the results would match the 

HWIL tests. 

               

Figure 7. Absolute value of FFT – derivative of HWIL 

output (f<10Hz) 

 

The presence of the feedback loop, however, 

influences the step response of the model, creating an 

oscillating signal that does not exist in reality. As a way 

to attenuate this, a saturation block is added so that the 

feedback loop will not falsely stimulate the system when 

given a nonzero input. 

4 Model Structure 

The final model proposed is shown on Figure 8. The 

filter bandpass used was a 4th order Butterworth design, 

with frequencies between 9 and 10 Hz. 

               

Figure 8. Final configuration for actuator model. 

 

The presence of nonlinearities involving energy 

storage, such as friction, requires the use of a numerical 

approach in order to find the describing function (Duarte 

and Tenreiro Machado, 2006). Therefore, an analytical 

analysis no longer can be used to find the parameters 

that would recreate the limit cycle. 

However, once a proper structure is found, different 

parameter values can be simulated until the response 

matches the HWIL results. 

5 Simulation Results 

For Kp=5.84, Kd=0.062 and µb=12.3, the actuator 

parameters were tuned so that f=1.1625e-04, δ=0.0083, 

Td=0.0017, offset=-0.0054, G=48 and sat=0.015. 

5.1 Limit Cycle Analysis 

Initially, the model was validated by simulating the limit 

cycle under a PD controller in a similar configuration as 

described by Figure 2. The simulation results were 

compared to the HWIL results, analyzing both the 

output signal, its derivative and, finally, the absolute 

value of its FFT result with respect to frequency. 

Figure 9 represents the derivative for both the HWIL 

signal and the simulation results, while Figure 10 

illustrates the actuator output in both cases. Figure 11 

and Figure 12 show, respectively, the absolute value 

Fast Fourier Transform of the derivative and the output 

for both the HWIL tests and the simulation results. 

These results show that the new model is indeed able 

to recreate the limit cycle desired in frequency, 

amplitude and shape, showing an improvement when 

compared to the previous model. 

However, there appears to be a periodic shift in phase 

that was not accounted for in this work. 
Finally, since there might be more than one set of 

parameters that would reproduce the same limit cycle, 

further validation is required. 
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Thus, the final configuration is used in simulations 

with different values of Kp, Kd and µb, in order to verify 

if those are able to recreate the HWIL results. Figure 13 

exemplifies the actuator output for one of those 

simulations. 

 

               

Figure 9. Derivative of actuator output for final 

configuration. 

 

               

Figure 10. Actuator output for final configuration. 

               

Figure 11. Absolute value of FFT of derivative of 

actuator output. 

               

Figure 12. Absolute value of FFT of actuator output. 

               

Figure 13. Actuator output for Kp=9.8, Kd=0.06 and 

µb=4.5. 

 

5.2 Input Response 

As a way to validate the model outside of the limit cycle 

conditions, different inputs were simulated and the 

outputs compared to results from tests on a real actuator. 

Simulations were made for both square and sine wave 

inputs. The results are shown, respectively, on Figure 14 

and Figure 15, respectively. 

Since the delay block was assumed to be positioned 

before the integral block and, therefore, inside the closed 

loop, the values of Td affected the shape of the output 

for a given square wave input. Thus, the acceptable 

values of transport delay are limited, which is why the 

final value used (Td=0.0017) is smaller than the value 

considered for the initial model (Td=0.0056). 

As seen on Figure 15, this limiting factor has 

consequences on the output for the sinusoidal wave, 

where the actual actuator presents a higher delay than 

this model can reproduce. 

A possible solution for this problem is to move the 

time delay block to after the feedback loop. This would 

solve the issue regarding the shape of the response to a 

square wave input and allow larger values for Td. 
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Figure 14. Actuator response for a square input. 

 

               

Figure 15. Actuator response for a sinusoidal input. 

 

However, when this was implemented, no

combination of parameters could be found where the

results would be reproduced for all the available sets of

Kd, Kp and µb. In most cases, when the results could be

reproduced for a given set of controller parameters, the

output for a different set would either generate wrong

amplitudes or create system instability.

6 Conclusions

This paper presents a successful scheme of inferring a

possible nonlinear configuration of a model based on the

analysis of the FFT response of a reference signal and a

complete simulation of the limit cycle. The validation of

the parameters chosen for the actuator model is made by

checking how the model’s limit cycle responded to

several HWIL parameters, as well as different inputs.

This study is based on data from a real actuator used

for thrust vector control as part of the Brazilian Satellite

Launcher (VLS) (Leite Filho, 1999; Leite Filho and

Bueno, 2003), and the model created can be used to

improve its control algorithms.

The new model was able to reproduce the HWIL 

results in both amplitude, frequency and shape, unlike 

the previous model proposed in (Bueno and Leite Filho, 

2003). However, it is important to note that there seems 

to be a periodic phase shift along the output that was not 

completely reproduced by the simulation results. It is 

possible that this occurs because of a misplacement of 

the time delay block, but the model, as it stands, can be 

used for control systems simulations, per the original 

goal. 
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