
Classification of OpenCL Kernels

for accelerating Java Multi-agent Simulation

Pitipat Penbharkkul and Worawan Marurngsith

Department of Computer Science, Thammasat University, Pathum Thani, Thailand,

Abstract
Java-based multi-agent simulation (MAS) can be

offloaded to graphical processing units (GPU) and

other OpenCL accelerators to achieve many hundred-

fold speedups. However, the performance gain from

the accelerated code depends strongly on whether the

computation (kernels) have been scheduled to the

appropriate devices. Thus, accelerating Java MAS may

not lead to a sustainable speedup. This paper proposes

a method for a kernel classifier to specify suitable

devices to execute OpenCL kernels. The classifier can

identify suitable OpenCL devices for kernels based on

the static and dynamic characteristics of the code of the

kernels. Kernels are grouped by their suitability for

particular devices using the multiclass support virtual

machine technique. After that, kernels are scheduled to

an appropriate task queue. Kernel scheduling based on

the proposed technique is compared against the

firstcome-first-serve (FCFS) technique and against

oracle scheduling when handling eight kernels. Our

results show that, using the proposed method, all

kernels finished execution 45 percent sooner than

using the FCFS technique. However, the overall exe-

cution time was 22.5 percent longer than with oracle

scheduling. Our results seem to confirm that kernel

classification techniques might contribute towards

sustainable high performance in accelerated Java-based

MAS models.

Keywords: GPGPU, OpenCL, multi-agent simulation,

performance, acceleration, SVM, MASON

1 Introduction

Java is a powerful platform for developing multi-agent

simulation (MAS) models due to its portability and the

huge amount of functionality available in development

kits. However, limitations in performance and

scalability make Java-based MAS a target for

performance acceleration on heterogeneous platforms

e.g., multicore CPUs, graphical processing units

(GPUs), accelerated processing units (APUs), or

coprocessors such as the Intel Xeon Phi (Aaby et al.,

2010; Hayashi et al., 2013; Ho et al., 2015; Li et al.,

2016). Offloading a cellular automata simulation, e.g.

the Conway’s Game of Life, to a cluster of GPUs could

gain a 100x speedup if proper latency hiding

techniques are used (Aaby et al., 2010). Well optimised

MAS models based on the MASON library, a legacy

Java-based MAS framework, could be accelerated

from 100x up to 468x (Ho et al., 2015). Recent work

proposing AgentPool and agent management

techniques has shown that accelerated models can

outperform CPU and GPU implementations based on

the MASON and FLAME simulation frameworks (Li

et al., 2016).

The OpenCL language layer (Group, 2013) has been

widely used to exploit data parallelism on

heterogeneous systems because of its portability and

acceptable performance (Sachetto Oliveira et al.,

2012). Research has shown that a single version of

OpenCL code can be executed on three different

platforms with less than a 12% performance loss,

providing that parameters are well chosen (Dolbeau et

al., 2013). Programmers can offload data-parallel

fragments of Java code to heterogeneous platforms

supporting standard OpenCL in two ways: by using an

auto-parallelisation tool (AMD Developer Central,

2011; Hayashi et al., 2013) or by manually specifying

fragments of parallelisable code using Java to OpenCL

bindings such as JOCL (JOCL, 2011).

However, a well-known limitation of OpenCL is

that the performance gain from accelerated code

depends strongly on scheduling computation (kernels)

to appropriate devices. This limitation also applies to

accelerated Java MAS code. Hence, its speedup can be

a hundredfold or zero. Several ways to predict

performance of OpenCL kernels for different devices

have been mentioned in three extensive surveys

(Mokhtari and Stumm, 2014; Rossbach et al., 2013;

Yan et al., 2009). Kernel profiling is a key technique

used to get information about kernels to be classified,

e.g. retrieving from history with profile data (Sato et

al., 2011) or developing a framework for profiling a

shared library (Matoga et al., 2013). A compiler

framework to collect and classify kernels suitable for

different devices was proposed in (Lopez-Novoa et al.,

2015; Wen et al., 2014). These reports have confirmed

that by using classification techniques, a kernel

speedup on different OpenCL device can be predicted

in advance at up to 87 percent accuracy (Wen et al.,

2014)

EUROSIM 2016 & SIMS 2016

805DOI: 10.3384/ecp17142805 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

 Table 1. Parallelisation Techniques for ABS.

ABS Class Parallelisation Techniques

Homogeneous Agent’s computation is implemented as

kernel (Ho et al., 2015; Li et al., 2016).

Heterogeneous Agent’s computation is implemented as

kernel. Parallel task partition or

computing pipeline can be used to speed

up complex calculations (as surveyed in

(Lopez-Novoa et al., 2015)).

Communicate Use bitwise operations for checking

communication and latency hiding

technique for data transfer (Aaby et al.,

2010).

Non-

communicate

Data partitioning on agent’s address

space (as surveyed in (Lopez-Novoa et

al., 2015)).

Figure 1. The architecture of the OpenCL execution

 model with Java code.

Figure 2. OpenCL memory mapping architecture.

Figure 3. Interaction of components to run OpenCL in

 MASON’s models.

In this paper we propose a technique to classify

multiple OpenCL kernels for heterogeneous devices to

obtain sustainable overall speedup. Our main

contributions are threefold.

(1) We have developed an agent-parallelisation

technique on the MASON framework (Luke,

2015) to accelerate Java-based MAS models

developed on multiple OpenCL devices. The

technique allows modellers to execute the

OpenCL computation side by side with an

existing multicore computation.

(2) We present a classification technique

implemented in the agent scheduler to guide the

scheduler as to which OpenCL device is most

suitable for a kernel. Central to the classification

is performing static and dynamic profiling on the

kernel code and using the information obtained to

feed the multiclass support vector machine (SVM)

classifier.

(3) We show that using the proposed classification

technique in the scheduler, the overall speedup of

eight kernels used in our experiment outperform

the traditional first-come-first-serve (FCFS)

scheduler.

The rest of this paper is organised as follows. The

next section introduces a new agent-parallelisation

technique. Section 3 presents the proposed

classification technique. Section 4 analyses the

speedup gained from scheduling eight kernels with the

proposed technique in comparison to the FCFS and

oracle scheduling counterparts. Finally, Section 5

brings this paper to a conclusion.

2 Accelerating Java-Based MAS

using OpenCL

Agent-based simulations (ABS) can be grouped into

four classes according to the heterogeneity of the

agents and how agents interact with each other (Stone

and Veloso, 2000). These classes are: (1) homogeneous

non-communicating, (2) heterogeneous non-communi-

cating, (3) homogeneous communicating, and (4)

heterogeneous communicating. As shown in Table 1,

ABS classes can be parallelised on heterogeneous

systems using different techniques. A key technique

common to both homogeneous and heterogeneous

ABS models is agent parallelisation. In agent

parallelisation, agents’ behaviours are implemented in

separate functions that are ready to be offloaded either

to GPUs or other accelerators. In OpenCL, these

functions are called kernels. A kernel can be scheduled

in parallel to be executed on any OpenCL supported

device.

Most existing MAS models are implemented on

legacy simulation frameworks, e.g., MASON, Repast,

FLAME, JADE or NetLogo (as reviewed in

(Marurngsith, 2014; Parry and Bithell, 2012; Railsback

et al., 2006)). Many of these frameworks have been

developed in Java (MASON, Repast, JADE) or Scala

MASON: Scheduler Model: SimState

Agent’s Program

A

Platform 0
Dev 0

Platform 1
Dev 1

B

A

B

IterativeRepeat

:agentClassName

 Agent: Steppable

:ID

startOCL() H

stopOCL() H

InitKernels() H

parallelStep()
Groups agents by

type and execute.

H

OpenCL Params

exeOCLJob()

- Update buffer

- Submit kernel

- Update agents’
status

H

start(), stop() H

GUIState
Call parallelStep() Agent’s Kernel

files

JOCL Binding

G
lo

b
al M

em
o

ry

Host
memory

(RAM)

 Compute Device0

Local Memory

Private memory

Work Item
(Kernel Execution)

H

K K K K

K K K K

K
Device’s Memory

JOCL Binding
File.java

With host
methods

Kernel.cl

H

K Program
Object

K1

K2

Platform 0

Compute Device 0

Platform 1
Compute Device 1

Context 0

Context 1

EUROSIM 2016 & SIMS 2016

806DOI: 10.3384/ecp17142805 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

(NetLogo). (Ho et al., 2015) successfully modified the

MASON library to support CUDA GPU computing.

They achieved a speedup of 187x using the JCUDA

binding. However, the target accelerator for CUDA

computing is limited to the Nvidia GPUs. The next

subsection presents an agent parallelisation alternative

technique for OpenCL accelerators.

2.1 The OpenCL Execution Model

The architecture of the OpenCL execution model in

Java using the JOCL binding (JOCL, 2011) is shown in

Figure 1. An OpenCL project comprises a host

application and kernel functions. The execution

environment is set by the host application in four steps:

(1) getting the number of OpenCL platforms available

in a machine, (2) getting the number of available

devices for each platform, (3) creating a work space

(context) for each platform, and (4) creating a job

submission queue (command queue) for each device.

The host application also prepares tasks (kernels) ready

to be offloaded to available devices. The latter process

involves creating a program object, reading kernel files

(.cl) and invoking the OpenCL compiler to create

binaries for all the kernel functions.

The host application allocates memory buffers in the

machine’s main memory (called host memory), and

also manages data transfers and memory-address

mapping between the host memory and the devices’

memory (see Figure 2). The memory buffers are used

to transfer data to/from a device.

2.2 Implementing OpenCL-Enabled MAS

on MASON

The components used to implement the OpenCL-
enabled MAS on MASON are shown in Figure 3.
Three classes of the MASON simulation engine were
modified: Scheduler, GUIState and IterativeRepeat.
Four methods
were also added to the Scheduler class to perform the
tasks of the host application. The handlers of
OpenCL’s context, devices, command queues,
program, and kernels are all kept in the Scheduler.
These handlers can be accessed from the model. This
model is a Java class derived from the SimState class
which should be manually modified by the modeller.
The model accelerated in this work, the Student
Schoolyard Cliques model, has been taken from the
MASON tutorial. This model consists of student agents
and one anonymous agent. Users can enable OpenCL
support and select the OpenCL devices via parameters.
If the OpenCL flag is set, the start method will invoke
a method in the Schedule class to initialise the OpenCL
environment. The start method also allocates host
memory buffers and maps them to the memory of the
OpenCL devices. When a kernel is invoked, data in the
host memory buffers is transferred to the memory of
the device associated with the kernel.

We use an agent-parallelisation technique to
accelerate the execution of student’s behaviour at every
time step. Our technique consists of rewriting the
behaviour of a Student agent as kernel function in
OpenCL. Therefore, if the OpenCL flag is set, at every
simulation step, the kernel implementing the agents’
behaviour is scheduled to be executed on a suitable
OpenCL device. If the OpenCL flag is off, the original
scheduling method of the MASON framework, called
step, is invoked to perform multicore execution. To
facilitate the OpenCL scheduling process, we added a
method, called parallelStep, to the MASON scheduler.
Similar to the original step method, the parallelStep
method gathers objects based on their timestamp and
puts them into a list. However, the parallelStep method
differs from the step method in that the former method
splits objects into two lists, an execution list for CPUs
and another list for OpenCL devices. In this process,
the IterativeRepeat class is used to get objects’ class
names that are checked against the list of kernels’ class
names. When a match is found, the object is removed
from the CPU list and added to the list of objects for
OpenCL devices. Objects in the CPU list are executed
using traditional multicore execution. Simultaneously,
the objects for OpenCL devices are scheduled on the
OpenCL command queue handled by the model. We
implemented the method executeOpenCLJob in the
model to carry out kernel submission. The
executeOpenCLJob method updates memory buffers,
submits kernels to the command queue and reads
results back from OpenCL devices before updating the
status of all agents accordingly. This parallel
scheduling process is iterated until the end of the
simulation. It is important to note that the scheduler
uses the kernel classification to identify which
command queue (OpenCL device) is suitable to
execute a kernel (see Figure 4).

3 OpenCL kernel classification

The technique for kernel classification has been

modified from (Wen et al., 2014) to identify which

device is suitable for executing a kernel. In (Wen et al.,

2014) the binary SVM classifier gives a more accurate

prediction than that of the neuron network technique.

The binary SVM classifier was used to classify kernels

into low and high speedup groups to identify as a

suitable device either a CPU or a GPU. Nevertheless,

after collecting the execution time of 21 workloads for

training the classifier, we noticed that the execution

time obtained from two different GPUs could be

significantly different. Thus, in this work, we adopted

the multiclass SVM classification technique (Chih-Wei

and Chih-Jen, 2002) to support selection from more

than two OpenCL devices. Kernels are classified into k

groups, where k is the number of available OpenCL

devices so that guided results can be used not only with

a GPU or CPU, but also with specific devices. The

connection of the proposed SVM kernel classifier with

the MASON framework is shown in Figure 4.

EUROSIM 2016 & SIMS 2016

807DOI: 10.3384/ecp17142805 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 4. Overall connection of the proposed SVM kernel classifier with the MASON agent-based simulations

 to offload agents to OpenCL devices.

3.1 Workload Characteristics Profiling

We captured fifteen features of host and kernel code
from both a static profiling tool and by inserting
profiling functions into the original code. The features
collected are shown in Table 2. Twenty-one workloads
(available on the Nvidia and Intel websites) were used
for training the classifier (see Table 3). The features of
kernels from these workloads were collected and
passed to the SVM module for training.

3.2 Support Vector Machine Multiclass

The SVM is a well-known supervised binary classifier.

The characteristics of the workloads were used to

supervised the classifier. Trained workloads were

executed on OpenCL devices available in our target

machine (see Table 4) to collect the execution times of

the workloads. Each workload was labelled to the

device with the fastest execution time.

To allow the classifier to work with more than two

classes, the well-known One-against-ALL or One

Versus the Rest method (Chih-Wei and Chih-Jen,

2002) was used. First, the number of classes was

defined as the number of OpenCL devices available in

the system i.e., k classes. Second, the binary classifier

was constructed by separating one class from the rest.

For example, if k=3, the pair wise of binary classifiers

are 0 with (1, 2), 1 with (0, 2) and 2 with (0, 1). After

that, training data for the classifier were re-labelled and

trained for each possible pair of classes. The results

were combined to get a multi-class classification

according to the maximum output. Note that the SVM

classifier from the Intel Data Analytics Acceleration

Library was used in this work.

Table 2. Features used in the classification.

At Collected Features (# = number of)

Host #iteration, workgroup dimension, global

size, local size, input buffer size, output

buffer size

Kernel #parameters, #barriers, #math functions,

#int and float scalar operations, #int and

float vector operations, #atomic, #control

Table 3. List of workloads used in the experiment.

Workload Input

size

#KNa Dimb

BlackScholes

N
v

id
ia

1.1M 2 1

ConvolutionSeparable 150M 4 2

DCT8x8 50M 2 2

DotProduct 25M 1 1

FDTD3d 452M 1 2

HiddenMarkovModel 404 2 2, 1

MatrixMul 128K 1 2

MatVecMul 440M 6 1

MersenneTwister 96M 2 1

Reduction 67M 2 1

Scan 54M 4 1

Transpose 33M 5 2

VectorAdd 137M 1 1

BitonicSort

In
te

l

134M 1 1

GEMM 188M 1 2

GodRays 61M 1 1

MedianFilter 134M 1 2

ProcGraphicsOpt 8M 3 2

SimpleOptimizations 134M 1 1

ToneMapping 61M 1 2

ToneMappingMultiDevice 122M 1 1

Table 4. Experimental Platform Information.

Detail OpenCL Platform

Host

Machine

Dev 0 Intel Core i7-4710HQ (2.50

GHz, 6 MB L3 Cache, up

to 3.50 GHz), 8GB RAM

Accelerator Dev 1

Dev 2

NVIDIA GeForce GTX

850M (4GB GDDR3), 640

cores, 902MHz, Memory

of 4096MB, OpenCL1.2

Intel(R) HD Graphics 4600

(No dedicated Memory,

using max of 1.7 GB

RAM), 100 Effective SPUs

Count, 400MHz,

OpenCL1.2

OS Windows 10 Pro

MASON Multiagent

Simulation Model
Accelerating Code

using JOCL Binding

Static Kernel Characteristic

Collector (SKCC)

OpenCL Kernel

Scheduler

(Implemented in

MASON Scheduler)

Multiclass SVM

Kernel Classifier

MASON Multiagent

Simulation Model

(Java + OpenCL)

CPU

GPU/Accelerator Kernels

Kernels

Before Execution

During Execution

GPU/Accelerator Kernels

EUROSIM 2016 & SIMS 2016

808DOI: 10.3384/ecp17142805 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

4 Experimental results and discussion

Two experiments, using three OpenCL devices, were

carried out on a Windows-based machine to confirm

the performance of the accelerated MASON MAS

model and the proposed kernel classification technique.

The specification of the experimental platform is listed

in Table 4.

4.1 Performance of the Accelerated MAS

Model

In our first experiment, we analysed the performance

of the accelerated Student Schoolyard Cliques by

comparing the OpenCL execution time against the

original multicore execution time as baseline. The

baseline execution of the model using one thousand to

a quarter of a million students is shown in Figure 5.

The execution time shows a linear growth in agents.

The OpenCL-enable model was executed on the

Nvidia GPU (Dev1) and on the host CPU (Dev0). We

collected the execution time and calculated the speedup

relative with the baseline performance (see Figure 6).

The results show a similar speedup obtained from two

computing devices. However, when the number of

agents (students) is small, the OpenCL execution is

slower than the multicore execution (1,000 to less than

5,000 agents). Furthermore, the accelerated model

outperforms the original model when there are more

than 5,000 agents. The highest speedup obtained is

27.6x faster with a constraint of 250,000 agents.

Figure 5. Baseline execution time (in sec.) of the

 Students model on CPU.

Figure 6. Speedup of the OpenCL execution over the

 baseline.

Certainly, the available memory space was an issue

for the accelerated MAS models on the MASON

framework. This is because, in the framework, many

key data are defined as double e.g., the coordinate

representing agent’s position. In our accelerated model,

agents resided on a 2D continuous space. Each agent

requires 128 bits to store the x, y coordinate. Therefore,

the size of the input and output buffers grows with the

number of agents. The memory available on our

experimental platform reached its limit of devices at

250,000 agents (students). It is also important to note

that the double data type is not supported in some

OpenCL devices. Consequently, compatibility of the

available devices must be verified before executing

OpenCL code.

4.2 Performance of the Classifier

The aim of our second experiment was to quantify the

effectiveness and accuracy of the classifier. We used

the classifier with accelerated MAS kernels. However,

MAS models can only generate a limited number of

kernels that might not be representative of the key

computation load of general kernels. Consequently,

only eight kernels and twenty-one scientific workloads

were used to test the SVM classifier. The list of kernels

used in this experiment and their execution times (in

millisecond) measured on the OpenCL devices of the

target platform are shown in Table 5. The BitonicSort

workload shows the longest execution time, and the

most aggressive acceleration on Dev1 (the Nvidia

GPU). Note that the execution time obtained from two

different GPUs (Dev1 and 2) are very different.

A classification of kernel features is shown in Table

5. The output prediction is used for scheduling the

kernels combining the FCFS technique with the results

of the classification. The results of all four scheduling

techniques, oracle scheduling, the proposed method

(FCFS + Classification), all kernels scheduled on the

fastest device, and FCFS, are shown in Figure 7 –

Figure 10, respectively. The obtained results show that

in terms of overall execution time (in milliseconds), the

proposed method performs similarly to the fastest

device technique, but is 25% slower than oracle

scheduling. Scheduling based on the proposed method

outperforms the FCFS-only technique by over 45%. In

this experiment, suitable devices for seven kernels

were correctly identified but one failed. The classifier

identified an incorrect device for kernel B (Median

Filter) i.e., Dev2 was selected instead of Dev0. Thus,

the prediction accuracy of our proposed classifier is

87.5%. However, this accuracy rate cannot be

generalised yet as the number of tested kernels was

small.

 The classifier was also used with the kernels

created in the accelerated Student Schoolyard Clique

model. In this case, the classifier identified the correct

device. However, as the model has only one type of

EUROSIM 2016 & SIMS 2016

809DOI: 10.3384/ecp17142805 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

kernel, a very small speedup is observed when using

the FCFS + Classification method. Moreover, the

kernel execution time on CPU and GPU is very similar

(see Figure 6). Thus, more accelerated MAS models

should be used to confirmed the effectiveness of the

classifier on the MAS acceleration.

Table 5. Kernel Execution Time (in Milliseconds).

Kernels Classify Dev0 Dev1 Dev2

A VectorAdd Dev2 0.04 4.33 0.02

B MedianFilter Dev2 14.29 34.39 35.91

C BitonicSort Dev1 4,641.23 2,709.99 4,834.55

D SobelGraphic Dev1 3.42 1.26 1.98

E MT Naïve Dev1 483.36 198.31 602.09

F MT Simple Copy Dev1 377.40 135.43 215.87

G MT Shared Copy Dev1 483.48 135.43 305.85

H Matrix Transpose Dev1 575.98 138.60 319.77

5 Conclusions and future work

In this paper, an OpenCL-kernel classification

technique to identify a suitable OpenCL device for a

kernel, has been proposed. An agent-parallelisation

technique for multiple OpenCL devices to accelerate a

JAVA-based MAS model on the MASON framework

has been discussed. A modified SVM for multiclass

classification has been used to guide the scheduler to

offload kernels to suitable devices. The proposed

classification could achieve 87.5 percent of accuracy

on tested workloads.

The accelerated Java MAS achieved a 27x speedup

in comparison to the original multicore execution using

a maximum of 250K agents. The proposed classifying

kernel technique arranged the MAS kernel correctly as

is demonstrated by scheduling eight different

computational kernels. The results show that our

classification technique is slower than oracle

scheduling, but outperforms FCFS scheduling. The

latter suggests that kernel classification can be an

alternative option for sustainable speedup in

accelerated Java-based MAS models. However, in

order to achieve an effective scheduler in the MAS

engine, future work must focus on classifying kernels

that has been generated from a wider variety of MAS

models.

Acknowledgements

We thank the reviewers for their valuable comments.

We thank contributors to the MASON, JOCL and

OpenCL community website for discussion and lesson

learned. We thank Professor Roland Ibbett and JC Diaz

Carballo for improving the readability of this paper.

Figure 7. Oracle Scheduling.

Figure 8. FCFS + Classification Scheduling.

Figure 9. All kernels scheduled on the fastest device.

Figure 10. FCFS Scheduling.

References

 Brandon G. Agby, Kalyan S. Perumalla, and Sudip K. Seal.

Efficient simulation of agent-based models on multi-

GPU and multi-core clusters. In the 3rd International

ICST Conference on Simulation Tools and Techniques,

SimuTools, 2010.

 AMD Developer Central. APARAPI: An Opensource API

for Expressing Parallel Workloads in Java. Available

2,709.99

3,319.02

3,319.02

4,834.55

EUROSIM 2016 & SIMS 2016

810DOI: 10.3384/ecp17142805 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

via http://developer.amd.com/tools-and-sdks/opencl-

zone/aparapi/, 2011.

R. Dolbeau, F. Bodin and G. C. de Verdiere. One OpenCL to

rule them all? In Proceedings of Multi-/Many-core

Computing Systems (MuCoCoS), 2013 IEEE 6th

International Workshop on, 2013.

 Khronos Group. OpenCL - The open standard for parallel

programming of heterogeneous systems. Available via

http://www.khronos.org, 2013.

 A. Hayashi, M. Grossman, J. Zhao, J. Shirako and V. Sarkar

V. Accelerating Habanero-Java programs with OpenCL

generation. In Proceedings of ACM International

Conference Proceeding Series, 2013.

 N. M. Ho, N. Thoai and W. F. Wong. Multi-agent

simulation on multiple GPUs. Simulation Modelling

Practice and Theory, 57: 118-132, 2015.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods

for multiclass support vector machines. IEEE

Transactions on Neural Networks, 13(2): 415-425, 2002.

 JOCL. jocl.org: Java bindings for OpenCL. Available via

http://www.jocl.org/, 2011.

 X. Li, W. Cai and S. J. Turner. Supporting efficient

execution of continuous space agent-based simulation on

GPU. Concurrency Computation, 2016.

 U. Lopez-Novoa, A. Mendiburu and J. Miguel-Alonso.

Survey of performance modeling and simula-

tion techniques for accelerator-based computing.

IEEE Transactions on Parallel and Distributed Systems,

26(1): 272-281, 2015.

 Sean Luke. Multiagent Simulation and the MASON Library.

Available via https://cs.gmu.edu/~eclab/projects/mason

 Worawan Marurngsith. Computing platforms for large-scale

multi-agent simulations: The niche for heterogeneous

systems. Vol. 8669 LNCS. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), pages

424-432, 2014.

 A. Matoga, R. Chaves, P. Tom and N. Roma. A flexible

shared library profiler for early estimation of

performance gains in heterogeneous systems. In

Proceedings of High Performance Computing and

Simulation, HPCS, 2013.

 R. Mokhtari and M. Stumm. BigKernel - High performance

CPU-GPU communication pipelining for big data-style

applications. In Proceedings of The International

Parallel and Distributed Processing Symposium, IPDPS,

2014.

 Hazel R. Parry and Mike Bithell. Large Scale Agent-Based

Modelling: A Review and Guidelines for Model Scaling.

In Agent-Based Models of Geographical Systems, pages

271-308, 2012.

 Steven F. Railsback, Steven L. Lytinen and Stephen K.

Jackson. Agent-based Simulation Platforms: Review and

Development Recommendations. SIMULATION, 82(9):

609-623, 2006.

 C. J. Rossbach, Y. Yu, J. Currey, J. P. Martin and D.

Fetterly. Dandelion: A compiler and runtime for

heterogeneous systems. In Proceedings of the 24th ACM

Symposium on Operating Systems Principles, SOSP,

2013.

 Rafael Sachetto Oliveira, Bernardo Martins Rocha, Ronan

Mendonça Amorim, Fernando Otaviano Campos,

Wagner Meira, Jr., Elson Magalhães Toledo and Rodrigo

Weber Santos. Comparing CUDA, OpenCL and OpenGL

Implementations of the Cardiac Monodomain Equations.

In Parallel Processing and Applied Mathematics, Vol.

7204, pages 111-120, 2012.

 K. Sato, K. Komatsu, H. Takizawa and H. Kobayashi. A

History-Based Performance Prediction Model with

Profile Data Classification for Automatic Task

Allocation in Heterogeneous Computing Systems. In

Proceedings of Parallel and Distributed Processing with

Applications, ISPA, 2011.

 Peter Stone and Manuela Veloso. Multiagent systems: A

survey from a machine learning perspective. Autonomous

Robots, 8(3): 345-383, 2000.

 Y. Wen, Z. Wang and M. F. P. O'Boyle. Smart multi-task

scheduling for Open CL programs on CPU/GPU

heterogeneous platforms. In Proceedings of 2014 21st

International Conference on High Performance

Computing, HiPC, 2014.

 Y. Yan, M. Grossman and V. Sarkar. JCUDA: A

programmer-friendly interface for accelerating java

programs with CUDA. Vol. 5704 LNCS. Lecture Notes in

Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), pages 887-899, 2009.

EUROSIM 2016 & SIMS 2016

811DOI: 10.3384/ecp17142805 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

