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Abstract
Java-based multi-agent simulation (MAS) can be

offloaded to graphical processing units (GPU) and

other OpenCL accelerators to achieve many hundred-

fold speedups. However, the performance gain from

the accelerated code depends strongly on whether the

computation (kernels) have been scheduled to the

appropriate devices. Thus, accelerating Java MAS may

not lead to a sustainable speedup. This paper proposes

a method for a kernel classifier to specify suitable

devices to execute OpenCL kernels.  The classifier can

identify suitable OpenCL devices for kernels based on

the static and dynamic characteristics of the code of the

kernels. Kernels are grouped by their suitability for

particular devices using the multiclass support virtual

machine technique. After that, kernels are scheduled to

an appropriate task queue. Kernel scheduling based on

the proposed technique is compared against the

firstcome-first-serve (FCFS) technique and against

oracle scheduling when handling eight kernels. Our

results show that, using the proposed method, all

kernels finished execution 45 percent sooner than

using the FCFS technique. However, the overall exe-

cution time was 22.5 percent longer than with oracle

scheduling. Our results seem to confirm that kernel

classification techniques might contribute towards

sustainable high performance in accelerated Java-based

MAS models.

Keywords: GPGPU, OpenCL, multi-agent simulation,

performance, acceleration, SVM, MASON

1 Introduction

Java is a powerful platform for developing multi-agent

simulation (MAS) models due to its portability and the

huge amount of functionality available in development

kits. However, limitations in performance and

scalability make Java-based MAS a target for

performance acceleration on heterogeneous platforms

e.g., multicore CPUs, graphical processing units

(GPUs), accelerated processing units (APUs), or

coprocessors such as the Intel Xeon Phi (Aaby et al.,

2010; Hayashi et al., 2013; Ho et al., 2015; Li et al.,

2016). Offloading a cellular automata simulation, e.g.

the Conway’s Game of Life, to a cluster of GPUs could

gain a 100x speedup if proper latency hiding

techniques are used (Aaby et al., 2010). Well optimised 

MAS models based on the MASON library, a legacy 

Java-based MAS framework, could be accelerated 

from 100x up to 468x (Ho et al., 2015). Recent work 

proposing AgentPool and agent management 

techniques has shown that accelerated models can 

outperform CPU and GPU implementations based on 

the MASON and FLAME simulation frameworks (Li 

et al., 2016). 

The OpenCL language layer (Group, 2013) has been 

widely used to exploit data parallelism on 

heterogeneous systems because of its portability and 

acceptable performance (Sachetto Oliveira et al., 

2012). Research has shown that a single version of 

OpenCL code can be executed on three different 

platforms with less than a 12% performance loss, 

providing that parameters are well chosen (Dolbeau et 

al., 2013). Programmers can offload data-parallel 

fragments of Java code to heterogeneous platforms 

supporting standard OpenCL in two ways: by using an 

auto-parallelisation tool (AMD Developer Central, 

2011; Hayashi et al., 2013) or by manually specifying 

fragments of parallelisable code using Java to OpenCL 

bindings such as JOCL (JOCL, 2011). 

However, a well-known limitation of OpenCL is 

that the performance gain from accelerated code 

depends strongly on scheduling computation (kernels) 

to appropriate devices. This limitation also applies to 

accelerated Java MAS code. Hence, its speedup can be 

a hundredfold or zero. Several ways to predict 

performance of OpenCL kernels for different devices 

have been mentioned in three extensive surveys 

(Mokhtari and Stumm, 2014; Rossbach et al., 2013; 

Yan et al., 2009). Kernel profiling is a key technique 

used to get information about kernels to be classified, 

e.g. retrieving from history with profile data (Sato et 

al., 2011) or developing a framework for profiling a 

shared library (Matoga et al., 2013). A compiler 

framework to collect and classify kernels suitable for 

different devices was proposed in (Lopez-Novoa et al., 

2015; Wen et al., 2014). These reports have confirmed 

that by using classification techniques, a kernel 

speedup on different OpenCL device can be predicted 

in advance at up to 87 percent accuracy (Wen et al., 

2014) 
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    Table 1. Parallelisation Techniques for ABS. 

ABS Class Parallelisation Techniques 

Homogeneous Agent’s computation is implemented as 

kernel (Ho et al., 2015; Li et al., 2016). 

Heterogeneous Agent’s computation is implemented as 

kernel. Parallel task partition or 

computing pipeline can be used to speed 

up complex calculations (as surveyed in 

(Lopez-Novoa et al., 2015)). 

Communicate Use bitwise operations for checking 

communication and latency hiding 

technique for data transfer (Aaby et al., 

2010). 

Non-

communicate 

Data partitioning on agent’s address 

space (as surveyed in (Lopez-Novoa et 

al., 2015)). 

 

 
Figure 1. The architecture of the OpenCL execution  

                      model with Java code. 

 

 
Figure 2. OpenCL memory mapping architecture. 

 

 
Figure 3. Interaction of components to run OpenCL in  

                     MASON’s models. 

In this paper we propose a technique to classify 

multiple OpenCL kernels for heterogeneous devices to 

obtain sustainable overall speedup. Our main 

contributions are threefold. 

(1) We have developed an agent-parallelisation 

technique on the MASON framework (Luke, 

2015) to accelerate Java-based MAS models 

developed on multiple OpenCL devices. The 

technique allows modellers to execute the 

OpenCL computation side by side with an 

existing multicore computation. 

(2) We present a classification technique 

implemented in the agent scheduler to guide the 

scheduler as to which OpenCL device is most 

suitable for a kernel. Central to the classification 

is performing static and dynamic profiling on the 

kernel code and using the information obtained to 

feed the multiclass support vector machine (SVM) 

classifier. 

(3) We show that using the proposed classification 

technique in the scheduler, the overall speedup of 

eight kernels used in our experiment outperform 

the traditional first-come-first-serve (FCFS) 

scheduler. 

The rest of this paper is organised as follows. The 

next section introduces a new agent-parallelisation 

technique. Section 3 presents the proposed 

classification technique. Section 4 analyses the 

speedup gained from scheduling eight kernels with the 

proposed technique in comparison to the FCFS and 

oracle scheduling counterparts. Finally, Section 5 

brings this paper to a conclusion. 

2 Accelerating Java-Based MAS 

using OpenCL 

Agent-based simulations (ABS) can be grouped into 

four classes according to the heterogeneity of the 

agents and how agents interact with each other (Stone 

and Veloso, 2000). These classes are: (1) homogeneous 

non-communicating, (2) heterogeneous non-communi-

cating, (3) homogeneous communicating, and (4) 

heterogeneous communicating. As shown in Table 1, 

ABS classes can be parallelised on heterogeneous 

systems using different techniques. A key technique 

common to both homogeneous and heterogeneous 

ABS models is agent parallelisation. In agent 

parallelisation, agents’ behaviours are implemented in 

separate functions that are ready to be offloaded either 

to GPUs or other accelerators.  In OpenCL, these 

functions are called kernels. A kernel can be scheduled 

in parallel to be executed on any OpenCL supported 

device. 

Most existing MAS models are implemented on 

legacy simulation frameworks, e.g., MASON, Repast, 

FLAME, JADE or NetLogo (as reviewed in 

(Marurngsith, 2014; Parry and Bithell, 2012; Railsback 

et al., 2006)). Many of these frameworks have been 

developed in Java (MASON, Repast, JADE) or Scala 
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(NetLogo). (Ho et al., 2015) successfully modified the 

MASON library to support CUDA GPU computing. 

They achieved a speedup of 187x using the JCUDA 

binding. However, the target accelerator for CUDA 

computing is limited to the Nvidia GPUs. The next 

subsection presents an agent parallelisation alternative 

technique for OpenCL accelerators. 

 

2.1 The OpenCL Execution Model 

The architecture of the OpenCL execution model in 

Java using the JOCL binding (JOCL, 2011) is shown in 

Figure 1. An OpenCL project comprises a host 

application and kernel functions. The execution 

environment is set by the host application in four steps: 

(1) getting the number of OpenCL platforms available 

in a machine, (2) getting the number of available 

devices for each platform, (3) creating a work space 

(context) for each platform, and (4) creating a job 

submission queue (command queue) for each device.  

The host application also prepares tasks (kernels) ready 

to be offloaded to available devices. The latter process 

involves creating a program object, reading kernel files 

(.cl) and invoking the OpenCL compiler to create 

binaries for all the kernel functions. 

The host application allocates memory buffers in the 

machine’s main memory (called host memory), and 

also manages data transfers and memory-address 

mapping between the host memory and the devices’ 

memory (see Figure 2). The memory buffers are used 

to transfer data to/from a device.   

2.2 Implementing OpenCL-Enabled MAS 

on MASON 

The components used to implement the OpenCL-
enabled MAS on MASON are shown in Figure 3. 
Three classes of the MASON simulation engine were 
modified: Scheduler, GUIState and IterativeRepeat. 
Four methods  
were also added to the Scheduler class to perform the 
tasks of the host application. The handlers of 
OpenCL’s context, devices, command queues, 
program, and kernels are all kept in the Scheduler. 
These handlers can be accessed from the model. This 
model is a Java class derived from the SimState class 
which should be manually modified by the modeller. 
The model accelerated in this work, the Student 
Schoolyard Cliques model, has been taken from the 
MASON tutorial. This model consists of student agents 
and one anonymous agent. Users can enable OpenCL 
support and select the OpenCL devices via parameters. 
If the OpenCL flag is set, the start method will invoke 
a method in the Schedule class to initialise the OpenCL 
environment. The start method also allocates host 
memory buffers and maps them to the memory of the 
OpenCL devices. When a kernel is invoked, data in the 
host memory buffers is transferred to the memory of 
the device associated with the kernel. 

We use an agent-parallelisation technique to 
accelerate the execution of student’s behaviour at every 
time step. Our technique consists of rewriting the 
behaviour of a Student agent as kernel function in 
OpenCL. Therefore, if the OpenCL flag is set, at every 
simulation step, the kernel implementing the agents’ 
behaviour is scheduled to be executed on a suitable 
OpenCL device. If the OpenCL flag is off, the original 
scheduling method of the MASON framework, called 
step, is invoked to perform multicore execution. To 
facilitate the OpenCL scheduling process, we added a 
method, called parallelStep, to the MASON scheduler. 
Similar to the original step method, the parallelStep 
method gathers objects based on their timestamp and 
puts them into a list. However, the parallelStep method 
differs from the step method in that the former method  
splits objects into two lists, an execution list for CPUs 
and another list for OpenCL devices. In this process, 
the IterativeRepeat class is used to get objects’ class 
names that are checked against the list of kernels’ class 
names. When a match is found, the object is removed 
from the CPU list and added to the list of objects for 
OpenCL devices. Objects in the CPU list are executed 
using traditional multicore execution. Simultaneously, 
the objects for OpenCL devices are scheduled on the 
OpenCL command queue handled by the model. We 
implemented the method executeOpenCLJob in the 
model to carry out kernel submission.  The 
executeOpenCLJob method updates memory buffers, 
submits kernels to the command queue and reads 
results back from OpenCL devices before updating the 
status of all agents accordingly. This parallel 
scheduling process is iterated until the end of the 
simulation. It is important to note that the scheduler 
uses the kernel classification to identify which 
command queue (OpenCL device) is suitable to 
execute a kernel (see Figure 4). 

3 OpenCL kernel classification 

The technique for kernel classification has been 

modified from (Wen et al., 2014) to identify which 

device is suitable for executing a kernel. In (Wen et al., 

2014) the binary SVM classifier gives a more accurate 

prediction than that of the neuron network technique. 

The binary SVM classifier was used to classify kernels 

into low and high speedup groups to identify as a 

suitable device either a CPU or a GPU. Nevertheless, 

after collecting the execution time of 21 workloads for 

training the classifier, we noticed that the execution 

time obtained from two different GPUs could be 

significantly different.  Thus, in this work, we adopted 

the multiclass SVM classification technique (Chih-Wei 

and Chih-Jen, 2002) to support selection from more 

than two OpenCL devices. Kernels are classified into k 

groups, where k is the number of available OpenCL 

devices so that guided results can be used not only with 

a GPU or CPU, but also with specific devices. The 

connection of the proposed SVM kernel classifier with 

the MASON framework is shown in Figure 4. 
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Figure 4. Overall connection of the proposed SVM kernel classifier with the MASON agent-based simulations    

                to offload agents to OpenCL devices. 

 

 

 

3.1 Workload Characteristics Profiling 

We captured fifteen features of host and kernel code 
from both a static profiling tool and by inserting 
profiling functions into the original code. The features 
collected are shown in Table 2. Twenty-one workloads 
(available on the Nvidia and Intel websites) were used 
for training the classifier (see Table 3). The features of 
kernels from these workloads were collected and 
passed to the SVM module for training. 

3.2 Support Vector Machine Multiclass 

The SVM is a well-known supervised binary classifier. 

The characteristics of the workloads were used to 

supervised the classifier. Trained workloads were 

executed on OpenCL devices available in our target 

machine (see Table 4) to collect the execution times of 

the workloads. Each workload was labelled to the 

device with the fastest execution time. 

To allow the classifier to work with more than two 

classes, the well-known One-against-ALL or One 

Versus the Rest method (Chih-Wei and Chih-Jen, 

2002) was used. First, the number of classes was 

defined as the number of OpenCL devices available in 

the system i.e., k classes. Second, the binary classifier 

was constructed by separating one class from the rest. 

For example, if k=3, the pair wise of binary classifiers 

are 0 with (1, 2), 1 with (0, 2) and 2 with (0, 1). After 

that, training data for the classifier were re-labelled and 

trained for each possible pair of classes. The results 

were combined to get a multi-class classification 

according to the maximum output. Note that the SVM 

classifier from the Intel Data Analytics Acceleration 

Library was used in this work. 

Table 2. Features used in the classification. 

At Collected Features (# = number of) 

Host #iteration, workgroup dimension, global 

size, local size, input buffer size, output 

buffer size 

Kernel  #parameters, #barriers, #math functions, 

#int and float scalar operations, #int and 

float vector operations, #atomic, #control 

 

Table 3. List of workloads used in the experiment. 

Workload Input 

size 

#KNa Dimb 

BlackScholes 

N
v

id
ia

 

1.1M 2 1 

ConvolutionSeparable 150M 4 2 

DCT8x8 50M 2 2 

DotProduct 25M 1 1 

FDTD3d 452M 1 2 

HiddenMarkovModel 404 2 2, 1 

MatrixMul 128K 1 2 

MatVecMul 440M 6 1 

MersenneTwister 96M 2 1 

Reduction 67M 2 1 

Scan 54M 4 1 

Transpose 33M 5 2 

VectorAdd 137M 1 1 

BitonicSort 

In
te

l 

134M 1 1 

GEMM 188M 1 2 

GodRays 61M 1 1 

MedianFilter 134M 1 2 

ProcGraphicsOpt 8M 3 2 

SimpleOptimizations 134M 1 1 

ToneMapping 61M 1 2 

ToneMappingMultiDevice 122M 1 1 

Table 4. Experimental Platform Information. 

Detail OpenCL Platform 

Host 

Machine 

Dev 0 Intel Core i7-4710HQ (2.50 

GHz, 6 MB L3 Cache, up 

to 3.50 GHz), 8GB RAM 

Accelerator Dev 1 

 

 

Dev 2 

NVIDIA GeForce GTX 

850M (4GB GDDR3), 640 

cores, 902MHz, Memory 

of 4096MB, OpenCL1.2 

Intel(R) HD Graphics 4600 

(No dedicated Memory, 

using max of 1.7 GB 

RAM), 100 Effective SPUs 

Count, 400MHz, 

OpenCL1.2 

OS  Windows 10 Pro 

MASON Multiagent 

Simulation Model 
Accelerating Code  

using JOCL Binding 

Static Kernel Characteristic 

Collector (SKCC) 

OpenCL Kernel  

Scheduler 

(Implemented in  

MASON Scheduler) 

Multiclass SVM  

Kernel Classifier  

MASON Multiagent 

Simulation Model  

(Java + OpenCL) 

  

CPU 

GPU/Accelerator Kernels 

Kernels 

Before Execution 
 

During Execution 

GPU/Accelerator Kernels 
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4 Experimental results and discussion 

Two experiments, using three OpenCL devices, were 

carried out on a Windows-based machine to confirm 

the performance of the accelerated MASON MAS 

model and the proposed kernel classification technique. 

The specification of the experimental platform is listed 

in Table 4. 

4.1 Performance of the Accelerated MAS 

Model 

In our first experiment, we analysed the performance 

of the accelerated Student Schoolyard Cliques by 

comparing the OpenCL execution time against the 

original multicore execution time as baseline. The 

baseline execution of the model using one thousand to 

a quarter of a million students is shown in Figure 5. 

The execution time shows a linear growth in agents.  

The OpenCL-enable model was executed on the 

Nvidia GPU (Dev1) and on the host CPU (Dev0). We 

collected the execution time and calculated the speedup 

relative with the baseline performance (see Figure 6). 

The results show a similar speedup obtained from two 

computing devices. However, when the number of 

agents (students) is small, the OpenCL execution is 

slower than the multicore execution (1,000 to less than 

5,000 agents). Furthermore, the accelerated model 

outperforms the original model when there are more 

than 5,000 agents. The highest speedup obtained is 

27.6x faster with a constraint of 250,000 agents. 

 

Figure 5. Baseline execution time (in sec.) of the  

                 Students model on CPU. 

 

Figure 6. Speedup of the OpenCL execution over the  

                  baseline. 

 

Certainly, the available memory space was an issue 

for the accelerated MAS models on the MASON 

framework. This is because, in the framework, many 

key data are defined as double e.g., the coordinate 

representing agent’s position. In our accelerated model, 

agents resided on a 2D continuous space. Each agent 

requires 128 bits to store the x, y coordinate. Therefore, 

the size of the input and output buffers grows with the 

number of agents. The memory available on our 

experimental platform reached its limit of devices at 

250,000 agents (students). It is also important to note 

that the double data type is not supported in some 

OpenCL devices. Consequently, compatibility of the 

available devices must be verified before executing 

OpenCL code. 

4.2 Performance of the Classifier 

The aim of our second experiment was to quantify the 

effectiveness and accuracy of the classifier. We used 

the classifier with accelerated MAS kernels. However, 

MAS models can only generate a limited number of 

kernels that might not be representative of the key 

computation load of general kernels. Consequently, 

only eight kernels and twenty-one scientific workloads 

were used to test the SVM classifier. The list of kernels 

used in this experiment and their execution times (in 

millisecond) measured on the OpenCL devices of the 

target platform are shown in Table 5. The BitonicSort 

workload shows the longest execution time, and the 

most aggressive acceleration on Dev1 (the Nvidia 

GPU). Note that the execution time obtained from two 

different GPUs (Dev1 and 2) are very different. 

A classification of kernel features is shown in Table 

5. The output prediction is used for scheduling the 

kernels combining the FCFS technique with the results 

of the classification. The results of all four scheduling 

techniques, oracle scheduling, the proposed method 

(FCFS + Classification), all kernels scheduled on the 

fastest device, and FCFS, are shown in Figure 7 – 

Figure 10, respectively. The obtained results show that 

in terms of overall execution time (in milliseconds), the 

proposed method performs similarly to the fastest 

device technique, but is 25% slower than oracle 

scheduling. Scheduling based on the proposed method 

outperforms the FCFS-only technique by over 45%. In 

this experiment, suitable devices for seven kernels 

were correctly identified but one failed. The classifier 

identified an incorrect device for kernel B (Median 

Filter) i.e., Dev2 was selected instead of Dev0. Thus, 

the prediction accuracy of our proposed classifier is 

87.5%. However, this accuracy rate cannot be 

generalised yet as the number of tested kernels was 

small. 

 The classifier was also used with the kernels 

created in the accelerated Student Schoolyard Clique 

model. In this case, the classifier identified the correct 

device. However, as the model has only one type of 
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kernel, a very small speedup is observed when using 

the FCFS + Classification method. Moreover, the 

kernel execution time on CPU and GPU is very similar 

(see Figure 6). Thus, more accelerated MAS models 

should be used to confirmed the effectiveness of the 

classifier on the MAS acceleration. 

 

Table 5. Kernel Execution Time (in Milliseconds).

Kernels Classify Dev0 Dev1 Dev2

A VectorAdd Dev2 0.04 4.33 0.02

B MedianFilter Dev2 14.29 34.39 35.91

C BitonicSort Dev1 4,641.23 2,709.99 4,834.55

D SobelGraphic Dev1 3.42 1.26 1.98

E MT Naïve Dev1 483.36 198.31 602.09

F MT Simple Copy Dev1 377.40 135.43 215.87

G MT Shared Copy Dev1 483.48 135.43 305.85

H Matrix Transpose Dev1 575.98 138.60 319.77

5 Conclusions and future work

In this paper, an OpenCL-kernel classification

technique to identify a suitable OpenCL device for a

kernel, has been proposed. An agent-parallelisation

technique for multiple OpenCL devices to accelerate a

JAVA-based MAS model on the MASON framework

has been discussed. A modified SVM for multiclass

classification has been used to guide the scheduler to

offload kernels to suitable devices. The proposed

classification could achieve 87.5 percent of accuracy

on tested workloads.

The accelerated Java MAS achieved a 27x speedup

in comparison to the original multicore execution using

a maximum of 250K agents. The proposed classifying

kernel technique arranged the MAS kernel correctly as

is demonstrated by scheduling eight different

computational kernels. The results show that our

classification technique is slower than oracle

scheduling, but outperforms FCFS scheduling. The

latter suggests that kernel classification can be an

alternative option for sustainable speedup in

accelerated Java-based MAS models. However, in

order to achieve an effective scheduler in the MAS

engine, future work must focus on classifying kernels

that has been generated from a wider variety of MAS

models.
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Figure 7. Oracle Scheduling. 

 

Figure 8. FCFS + Classification Scheduling. 

 

Figure 9. All kernels scheduled on the fastest device. 

 

Figure 10. FCFS Scheduling. 
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