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Abstract
Global trends in higher education including e-learning,

massive open online courses, and new teaching methods

have positively affected control education. Control

course content has evolved due to changes in industrial

practices and the increasing availability of affordable

computer hardware and software. Continuous

developments in virtual remote and real laboratories

have made hands-on tasks more accessible and

affordable. In this article, we share our experiences of

undergraduate and graduate control education at the

University College of Southeast Norway (USN), and

Oslo and Akershus University College of Applied

Sciences (HiOA). First, we present an overview of the

course content at our institutions, and then, we give

examples of the development of real and virtual

laboratories, online course materials, new learning

platforms, and teaching methods.

Keywords: control education, control laboratories,

virtual laboratories, simulation, learning management

systems, active learning methods

1 Educational trends

1.1 Trends in higher education

Massive open online courses (MOOCs), e-learning,

electronic learning management systems, and student

active learning methods have become major trends in

higher education in Science, Technology, Engineering,

and Mathematics (STEM).

During the past decade, the variety of massive open

online courses (MOOC) has expanded and many top

universities are offering a wide spectrum of courses

(Hansen and Reich, 2015). MOOCs combine teaching

from the best academics, modern pedagogy, interactive

content, virtual laboratories, and online group

discussions delivered through non-profit platforms such

as edX, Coursera, and Udacity (Waldrop, 2013).

However, the academic content should be supplemented

with hands-on experiments supervised by experienced

teachers in order to build practical skills (Bartholet, 

2013). 

For on-campus STEM education, student active 

learning methods have been proven to increase students’ 

learning outcomes and to decrease drop-out rates (Fraser 

et al., 2014; Freeman et al., 2014; Hake, 1998). 

Examples of the successful implementation of student 

active learning methods in groups in technology-rich 

rooms are SCALE-UP (Student-Centered Active 

Learning Environment for Undergraduate Programs) at 

North Carolina State University (Beichner et al., 2007) 

and TEAL (Technology-Enabled Active Learning) at 

the Massachusetts Institute of Technology (Dori and 

Belcher, 2005). The pedagogy is typically based on 

Flipped Classroom (FC) methodology, where students 

are required to have their first exposure to the subject 

material at home prior to class, and where class time is 

spent working with the material (Bergmann and Sams, 

2012). 

1.2 Trends in teaching aids for control 

education 

Based on the 62 papers presented at the 10th IFAC 

Symposium on Advances in Control Education 

(Rossiter, 2013), course development is most active in 

the following topics: remote laboratories (21%), real 

laboratories (19%), teaching aids (19%), virtual 

laboratories (11%), e-learning (11%), robotics (10%), 

and course content (8%). Many educators aim to make 

part of the resource and time demanding real 

laboratories more easily accessible through the internet. 

However, real laboratories are needed in order to ensure 

practical hands-on skills for the students. 

1.3 Trends in the content of control education 

Taking well-known text-books, e.g. (Dorf and Bishop, 

2016; Franklin et al., 2014; Nise, 2015; Seborg et al., 

2011), as indicators of the course content, it seems that 

the theoretical content of control courses has not 

changed much over the last decades. Differential 
equations, transfer functions, state-space models, and 

frequency response – in the continuous-time and in the 
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discrete-time domain, comprise the basis, as they did 

decades ago. Mathworks MATLAB seems to be the 

default computing tool upon which exercises in 

textbooks are based, but National Instruments 

MathScript and LabVIEW are also used as tools.  

We find it somewhat surprising to observe that most 

textbooks apparently aiming to present a good basis for 

control theory, do not include model-based predictive 

control (MPC), with (Seborg et al., 2011) as the 

exception, despite the fact that MPC theory and 

applications are frequent topics in journals and 

conferences, as well as there being many commercial 

software packages for MPC. One reason for the lack of 

focus on MPC may be that its theoretical basis is 

optimization theory – a topic not usually taught at 

undergraduate level. 

2 Control education at HiOA and 

USN 

In this article, we share our experiences of 

undergraduate and graduate control education at the 

University College of Southeast Norway (USN), and 

Oslo and Akershus University College of Applied 

Sciences (HiOA). First, we present an overview of the 

course content at our institutions, and then, we give 

examples of the development of real and virtual 

laboratories, online course materials, new learning 

platforms, and teaching methods. 

2.1 Control education at USN/Porsgrunn 

Subsections are numbered and style "Heading 2" should 

be used. 

The University of Southeast Norway (USN) has 

approximately 16,000 students. Control is taught in 

various courses at three different campuses. The courses 

covered here are introductory courses in the bachelor 

and master programs at the Porsgrunn campus. 

The control courses have developed over the years. 

The main driving forces behind the developments are: 

 A desire to increase the students’ ability to handle 

practical control challenges. This requires 

developing both the pedagogics and the content of 

the courses. 

 Feedback from students, in particular from those 

who have industrial experience in automation and 

control. 

 Teachers’ experience in research and development, 

in particular the relationship between theory and 

practice. 

 Technological changes entailing increasing 

availability of affordable computer hardware and 

software. 

In the following, firstly the development of course 

content is described, and secondly, pedagogical 
development is described. 

 

Content development 

 

Highlights of the content development are: 

 Only experimental PID controller tuning methods 

are presented, both open loop tuning and closed 

loop tuning, are taught. Open loop tuning focuses 

on a process of step-response interpretation of the 

Skogestad PI tuning rules assuming integrator + 

transport delay process dynamics (Skogestad, 

2003), but also tuning double integrator process 

dynamics is covered (the double integrator can 

represent bodies to be position controlled, e.g. 

ships). Closed loop tuning focuses on the Ziegler-

Nichols Ultimate Gain method, both the original 

tuning rules (Ziegler and Nichols, 1942) and 

modified tuning rules. Frequency response based 

tuning methods are not covered. 

 Feedforward control with possibly nonlinear 

differential equation models where the feedforward 

controller is obtained by substituting the process 

output variable by its set point and then solving the 

model for the control variable. 

 The Laplace transform, transfer functions, and 

frequency response analysis are very briefly 

covered. Down-toning frequency response is in 

agreement with the low priority given to this topic 

as indicated by the industrial perspective in the 

reports (Edgar et al., 2006) and (Haugen, 2009). 

 Leaving out theoretical stability analysis in the 

frequency domain. However, the gain margin and 

phase margin of control loops are introduced using 

an experimental loop stability analysis approach 

(Haugen, 2012). 

 Discrete-time algorithms of the PID controller, a 

time-constant measurement filter, and process 

simulators. 

 Principles and applications of model-based 

predictive control (MPC) are introduced as the most 

important model-based controller. 

 In one of the introductory courses, an industrial 

process and control system simulator is introduced 

(the Kongsberg Oil & Gas Technologies K-Spice 

simulator). 

 Programming skills, making the students able to 

actually implement control, filter, and simulation 

algorithms. To this end, National Instruments 

LabVIEW is introduced as the programming tool. 

 

Pedagogical development 

 

Highlights of the pedagogical developments are: 

 Interactive real-time simulators from the SimView 

library (Haugen, 2012) are used extensively in the 

theoretical exercises. 

 Instructional videos supplementing the lectures 
(Haugen, 2011). 
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 During 2016 and 2017, two introductory control 

courses will be offered both as online courses and 

traditional campus-based courses. Instructional 

videos will substitute traditional lectures in the 

online courses. However, laboratory exercises will, 

to the extent practical, still be a part of the course, 

requiring the online students to come to the campus 

to carry out the experimental work over two or three 

days. 

 A relatively large number of laboratory exercises 

based on the air heater (Figure 1) are closely 

integrated with the lectures. 

2.2 Control education at HiOA/Oslo 

HiOA has approximately 18,000 students, 1,900 study 

engineering and 310 are undergraduate students in 

electronics engineering. At the undergraduate level 

HiOA offers courses in Dynamic Systems, Control 

Systems I, Control Systems II and Instrumentation. The 

courses cover the following topics:  

Dynamic Systems: Basic introductory course on 

mathematical modeling and dynamic systems analysis. 

Differential equations, transfer functions, block 

diagrams, state-space models, frequency analysis, and 

time response.  

Control Systems I: Basic introductory course on 

control. PID regulator, process simulation, frequency 

domain control design, Introduction to multivariable 

control.  

Control Systems II: More advanced topics in control. 

Noise filtering, System identification, Kalman filtering, 

LQR/LQG control, MPC control. Introduction to 

nonlinear control. 

Instrumentation: Instrumentation for control system 

engineers, sensor and actuator specifications, 

instrumentation diagrams, regulations and safety, PLC 

architecture and PLC programming. 

Industrial hardware and software such as ABB’s 

800xA control system and Kongsberg’s K-Spice 

simulator, are used in the laboratories for all our control 

courses. 

2.3 Accessible Laboratory Exercises 

At USN, a number of laboratory exercises are based on 

the air heater (Haugen, 2010) shown in Figure 1. 

Together with LabVIEW on students’ laptops and the 

NI USB-6008 IO device, laboratory exercises are run 

throughout the course, with students working in groups 

of two or three, see Figure 2. Twenty-six identical rigs 

have been constructed in-house. 

 

 

The laboratory assignments cover: 

1. Manual temperature control, monitoring, and data 
logging to file. 

2. Implementation of a dynamic process simulator 

from a time-constant and time-delay model with 

default model parameter values. 

3. Adaptation of the mathematical model, i.e. 

parameter estimation, using a straightforward, 

“brute force” least squares method implemented in 

nested for-loops. 

4. Implementation of a discrete-time PI controller and 

an on/off controller. 

5. Implementation of a discrete-time time-constant 

lowpass filter. 

6. Controller tuning using Skogestad’s tuning rules 

and the Ziegler-Nichols Ultimate Gain method, see 

above. 

7. The stability of the control loop. Hitherto, a 

qualitative analysis is included, including the 

stability impact of controller gain (both absolute 

value and sign), integral time, and filter time-

constant. In the future, an experimental estimation 

of gain margin and phase margin [20] will be 

included. 

8. Experimental, table-lookup feedforward control 

with air flow (disturbance) measurement as input 

signal and heater control signal as output signal. 

9. Temperature control with an industrial PID 

controller (Fuji PGX5), instead of the LabVIEW-

based control system. 

  

 

Figure 1: Air heater laboratory rig for temperature 

control. The voltage control signal manipulates the power 

delivered by the electrical heater. The outlet temperature is 

measured by a Pt100 element. The air flow through the 

pipe can be manually adjusted, representing a (measured) 

process disturbance. 
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Figure 2: Students working on laboratory assignments 

in groups. 

 

2.4 Virtual laboratories / Commercial Large-

Scale Simulators 

In order to familiarize our students with industrial tools, 

and to give them insight into chemical processes, 

commercial large-scale dynamic process simulators 

have been utilized at HiOA (Komulainen and Løvmo, 

2014; Komulainen, 2013; Komulainen et al., 2012). The 

simulation modules have been developed using the 

didactic model and the simulator training structure: 

briefing (lecture) – simulation (guided virtual 

laboratory) – debriefing (workshop). The simulation 

software K-Spice is provided by Kongsberg Oil and Gas 

Technologies Figure 3. 

In the following, an example is given of the Dynamic 

Systems course which is taught to about 60 second year 

undergraduate electronics engineering students. Two of 

the learning outcomes of the course are “Student can 

characterize responses of first and second order systems 

in time and frequency domain” and “Student can carry 

out simulation of dynamic systems and interpret the 

results”. The goal of the simulation module is to give the 

students hands-on skills to use an industrial simulator, 

to make a step change and identify the process response. 

The parameters of the process response will be used 

further for control tuning purposes. 

The experiences from the simulator module are 

positive, the students and the teacher were very positive 

in their evaluation, 97% of students agreed that 

simulation exercises increase their understanding of 

process dynamics. However, the final exam results for 

the identification tasks were lower than the average final 

exam mark for both 2013 and and 2014 (Komulainen 

and Løvmo, 2014). In order to enhance learning through 

simulation training, we are currently working on 

developing an automatic assessment system (Marcano 

and Komulainen, 2016). 

 

 

Figure 3: K-Spice® generic oil and gas production 

simulator. 

2.5 Jupyter notebooks and interactive code 

Numerical simulation tools have a crucial role in 

increasing the understanding of control theoretical 

concepts as well as providing insight and promoting the 

curiosity and engagement of students (Dormido et al., 

2005; Grega, 1999). Typically, MATLAB/Simulink is 

the numerical simulation software tool of choice in most 

current control systems courses. Alternatives exist that 

are gradually providing similar functionalities, which 

are also open source and free. These include GNU 

Octave (Eaton, 2016) and Python.  

Automatic control is a highly multidisciplinary 

subject, which has been referred to as the “hidden 

technology”(Åström, 1999). It involves, among others, 

the fields of mathematics, physics, electrical and 

mechanical engineering. In practice, all modern control 

systems are eventually implemented using some sort of 

software and programming language. Software 

development is therefore becoming an increasingly 

important and required skill, and its importance has 

naturally gradually increased in control engineering 

course curriculums (Bencomo, 2004; Åström and 

Kumar, 2014). 

A relatively recent technology enables interactive 

code to be integrated with rich text in so-called 

notebooks (Shen, 2014). Notebooks can be viewed and 

executed using a simple internet browser. This provides 

an excellent way of distributing educational content and 

providing students with an initial executable code with 

which to experiment and develop new ideas. Jupyter is 

at the forefront of this technology and provides support 

for a great number of programming languages including 

Julia, Python, and R (Project Jupyter, 2016). Notebooks 

can be viewed in an internet browser using a notebook 

viewer (nbviewer) which does not require any special 

software. Additionally, the students can chose to 

download the notebooks to their computers where they 

have the possibility to interact and modify the initial 

code.  

Python is a popular object-oriented scientific 
programming language that is becoming increasingly 

used in research and industry. Several Python libraries 

exist that are of interest to control engineering students. 
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For instance numpy and matplotlib provide numerical 

and data visualization tools that are quite similar to 

MATLAB. The python control systems library (Murray 

and Livingston, 2009) is particularly interesting. It 

implements basic operations for analysis and design of 

feedback control systems including block diagram 

algebra, Bode and Nyquist plots, time response, etc. By 

installing a Python scientific distribution, such as 

continuum analytics anaconda, the student can easily 

experiment with these open source tools at no cost. An 

example of notebook using python, numpy, and 

matplotlib to easily visualize simulation results 

(Alcocer, 2016). 

 

Figure 4: Example of interactive code using a browser, 

Jupyter notebook, and Python-Control toolbox. 

 

Figure 5: Example of Jupyter notebook using an Octave 

kernel. 

Another interesting possibility is the use of Octave 

kernel together with Jupyter notebooks. GNU Octave is 

an open source scientific programming language with a 

syntax very similar to MATLAB. This provides the 

possibility of distributing educational notebooks with 

text, mathematical equations, and code. See Figure 5 for 

an example of a Jupyter notebook using Octave. 

2.6 Learning Management Systems and 

OpenEdx 

OpenEdx is currently one of the most popular open 

source MOOC platforms. The introductory 

undergraduate dynamic systems course at HiOA is 

going to experiment with the use of OpenEdx, see 

Figure 6. One of the most appealing functionalities is its 

ability to provide quizzes for the students for each of the 

units, which provides feedback on and interactivity with 

the learning experience. With OpenEdx, it is simple to 

include LaTeX style mathematical expressions 

integrated in quizzes, which provides a great level of 

flexibility. 

 

 

Figure 6: Example of OpenEdx course with quizzes 

containing mathematical expressions. 

2.7 Student Active Learning Methods 

At HiOA we have tested Flipped Classroom inspired 

teaching methods in a technology-rich group room 

(Komulainen et al., 2015). The experiment was 

conducted in a dynamic systems course with about 60 

students during fall semester 2014. The main goal of the 

research was to find out if students’ learning outcome 

would increase as a result of the use of student active 

learning methods. The data collection included students’ 

course evaluation, students’ attendance, students’ pre 

and post scores from the Control Systems Concept 

Inventory (Bristow et al., 2012), teachers’ classroom-

activity log, five in-class mini-tests, and final exam 

grades. 

The students were given reading assignments with 

theory quizzes prior to the classroom sessions. During 

the classes, the students worked in small groups of three 

to four students and used a small screen at the end of 

each table to present the work of their group. Short tasks 

(5-20 min) were given on concepts, theory and basic 

calculations, long exercises (20-45 min) on modeling of 

dynamic systems and simulation of these models with 

Matlab/Simulink. After each task, the teacher chose one 

of the groups to present its results to the whole class. 
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These plenary presentations were facilitated with large 

screens using AirMedia software. Every other week, the 

students took a 20-minute mini-test on theory and 

modeling. The mini-test was graded by the peer students 

immediately afterwards based on the solution presented 

by the teacher on the SmartBoard. 

The students’ course evaluation indicated that 70% of 

the students preferred the active learning classroom to 

traditional lecturing. Students valued the mini-tests as a 

tool to monitor their own progress in the course and they 

emphasized the good learning outcome of the group 

work. The students gave the course a final average mark 

of B.  

Student attendance of 72% was considered good and 

above average for this student cohort. However, only 

42% of the students answered the quizzes prior to the 

classes. Students’ conceptual understanding increased 

during the course, the normalized gain was 20% 

measured by the Control Systems Concept Inventory. 

The average final grade for the course in dynamic 

systems was compared to the average final grade for the 

course in electrical circuits between cohort 2013 

(traditional lecturing) and cohort 2014 (active learning 

methods). The average grade in electric circuits was 

3.94 for cohort 2013 and 3.35 for cohort 2014, 

indicating that cohort 2013 was academically stronger 

than cohort 2014. However, the difference between the 

cohorts had become non-significant after the dynamic 

systems course; the final grade was 2.64 for cohort 2013 

and 2.63 for cohort 2014. Although the results were not 

conclusive, the results indicate that active learning 

methods applied in 2014 were more valuable to student 

learning than traditional lecturing. 

3 Discussion and conclusions 

Global trends in higher education, online course 

materials and affordable hardware and software have 

provided great possibilities for making control 

education more accessible, efficient, and interesting to 

students, teachers and universities. In this article we 

have provided examples of experiences at USN and 

HiOA, and have shown how some of these teaching 

tools have been applied in control systems courses. 

Special attention is given to an experiment involving 

Flipped Classrom methodology together with a 

technology-rich group room. This teaching 

methodology was tested with positive results during an 

undergraduate dynamic systems course. The paper also 

discusses, among other things, the use of accessible 

laboratories, industrially relevant virtual laboratories, 

open source simulation tools, open learning 

management systems, and new teaching methods that 

are promising or have been successfully implemented in 

control systems courses at USN and HiOA. 
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