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Abstract
The paper discusses the changes and challenges in the
current teaching of Automatic Control systems. Mod-
ern society has developed into a phase where the tradi-
tional process industry is not at all the only area where
dynamic modelling, understanding the feedback, control
engineering, autonomous systems and generally the dis-
cipline of Automatic control have to be mastered. That
gives a huge challenge to the teaching of automatic con-
trol in general, especially when fewer and fewer students
are entering engineering schools and as the basic skills
in mathematics and physics seem to be decreasing every-
where. On the other hand, automation (to be understood
broadly including automatic control and control engineer-
ing, autonomous systems etc.) as a discipline is in a state
of change: it seems to be hidden in other engineering
fields, and there seems to be opinions that it should ac-
tually be taught within specific application areas, e.g. in
electrical engineering, machine design, chemical process
engineering etc. In the old school of control engineering
the idea is actually vice versa: automatic control is seen
as a general, mathematically and physically well-defined
discipline, which can the be applied in various application
areas and engineering fields. The societal and industrial
viewpoints must both be considered, when looking at the
future of control education. These aspects are discussed
in the paper.
Keywords: education, automatic control, autonomous sys-
tems, control engineering, curriculum

1 Introduction
Control engineering, control theory or system theory are
the cornerstones of automatic control or autonomous sys-
tems in general. The interdisciplinary nature of control
and applications is shown as an example case in Figure 1,
where the classical idea of control theory serving a multi-
tude of application areas is demonstrated, (Zenger, 2007).

The above age old idea has been good and well-serving
for a long period of time, but today in the modern soci-
ety there are aspects that suggest a change. Firstly, control
has always been considered a difficult topic for the stu-
dents to learn, and this attitude is getting stronger as the
mathematical skills of students are generally considered
weaker than before (Rasila et al., 2007). Secondly, the sta-
tus of automation is perceived weaker, as there is a trend
to consider it a part of other well-established engineering
fields only, and not a research field of its own right. In

Figure 1. Application fields of control engineering.

addition, the application of dynamic modelling, optimiza-
tion and feedback control for example, has been extended
to a much broader field than before. Cyberphysical sys-
tems, Information theoretical systems including commu-
nication and the Internet, Big Data, Cloud Computing, In-
ternet of Things produce totally new applications, which
need control theory and signal processing. In this respect,
the ideas and "new" curriculum for control education (see
e.g. (Kheir et al., 1996; Murray, 2003)) are already some-
what out of date.

The relevant contemporary questions from the educa-
tion viewpoint are:

• Is automation losing its position as an independent
research field and is it going to be combined with
other research disciplines?

• The elegant combination of signal processing, con-
trol, mechanics etc. is actually hidden in products. Is
the value of control not seen anymore?

• The level of teaching automatic control has in gen-
eral been of high quality. In the industry the gradu-
ated students have obtained good positions. How is
the situation now and in the future? How can these
kinds of issues be "controlled"?

• Should the universities and universities of applied
sciences specialize in teaching only some application
areas of automation or keep the wide view?

• How is the financing of teaching automation going to
develop in the near future?

• What must a graduating student from the automation
field know and master now and in the future?
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• What about the connections and networking by
teachers, students and industrial representatives on a
regular basis.

In the paper it is not possible to discuss and solve all the
above questions. However, it is important to pose these
problems for general awareness and for discussion. That
is one target of the paper.

The contents of the paper can briefly be stated as fol-
lows. The pedagogical issues, teachers’ challenges and
comparison to teaching of mathematics are discussed in
Section 2. What practical changes and new ideas in con-
trol engineering education would be useful to introduce in
the modern curriculum in universities and universities of
applied sciences is discussed in Section 3. A look into the
future is shown in Section 4 and Conclusions are given in
Section 5.

2 Control Engineering: The Teacher’s
Challenge

Control engineering is considered to be a difficult topic
to teach. The formalism (given originally by system the-
ory) is based on a firm understanding of basic sciences like
mathematics and physics. The background and basic skills
in natural sciences of the students vary a lot. It seems that
there is a tendency that basic mathematics skills of the stu-
dents has decreased (Rasila et al., 2007). There are a lot of
reports indicating this, but maybe equally valuable is the
"touch" of university teachers. According to their opin-
ion the general level of the students in mathematics has
decreased considerably in over the past 10-20 years. In
engineering schools the attitude of the students in respect
to this is usually something like "I have come here to study
engineering, not mathematics". Indeed, that is somewhat
of a strong argument. Today it seems difficult to persuade
the students to accept mathematical rigor by sayting that
"the laws of nature have been written in the language of
mathematics" or something alike. The youth of today have
so much other interests and things to do that they do not
want to spend their time in learning mathematics.

A natural extension to the above is to state that teaching
control engineering generally as a self-contained theory
to serve different applications areas later may not be well
understood by the students. Teaching control theory this
way is seen as some kind of a new course of mathematics
again. Questions and comments like "Why teach every-
thing to everybody?", "Why teach theoretical issues that
an engineer does not need in his/her daily work? and "You
see - some people do not need these things - ever!" have
been asked by the students in numerous occasions where
the courses have been evaluated (Zenger, 2007). These
questions and the related pedagogical challenge can be
analysed using e.g. Ausubel’s taxonomy (Ausubel, 1968),
which makes a distinction between mechanical, meaning-
ful, assimilative and inventive learning.

It seems logical to assume that this taxonomy is still
valid in analyzing the learning process in general. The

modern society demands meaningful and inventive learn-
ing methods to be used, in order to speed up the studies
and get the students to graduate as fast as possible. The
old-fashioned teaching methods might be assimilated to
more mechanical learning style, which, under the new hy-
pothesis might not be so effective. However, the different
students with totally different learning styles are not re-
ally consided by this kind of thinking. It is the experience
of the author, based on several decades of experience in
teaching control systems, that good students learn in spite
of teaching, bad students do not learn because they are
not motivated, the other students can really be helped by
innovative and good teaching practises.

There has been some discussion and doubts about the
effectiveness of traditional lectures. The general trend in
university level pedagogy researchers seems to be that lec-
tures are not a good teaching method, because they only
call for passive learning. It must be admitted that student
activation really seems to be (also in Ausubel’s taxonomy)
the critical point here. Learning by doing seems an effec-
tive learning method, if carried out in a good way. But
it is not a trivial thing to see, how teaching in this way
should really be carried out. If it is done in every course it
gives a high work load to the students, who very fast turn
critical towards it. Also, there are students who simply
like the lectures / exercise hours mechanism. The con-
cept of Problem-based learning (Boud and Feletti, 1977)
has not been widely used in engineering schools. Surely,
applications using the ideas of PBL have been developed
and used on laboratory exercises and web courses, see e.g.
(Riihimäki et al., 2003; Pohjola et al., 2005).

However, it must always be borne in mind that lectures
for a large audience (say, 100–300 students) are really a
cheap way to teach. The financiation of teaching is nowa-
days a very difficult issue.

Comparison of the teaching of control and mathematics
is indeed fruitful, because they seem to somehow share
similar problems. In basic university level mathemat-
ics courses the web-based interactive study material has
been tried with success. For example the STACK sys-
tem has been used (Rasila et al., 2007) to make varying
drill problems to the students, who can solve them when
and whereever they are, and the results evaluation is really
used partly in grading the course. A similar course mate-
rial was also used in Control education in Helsinki Uni-
versity of Technology (now Aalto University), although in
a much smaller scale. It can be concluded that for drill
problems the system is effective, but not for real design
problems of engineering. On the other hand, computer-
based examinations have been discussed a lot lately. The
conclusion has so far been that for examinations where
only essay kind of answers or very simple drill problems
are required, the existing solutions are usable. However,
for examinations of more advanced courses with problem
solving the existing software is not good enough. For the
time being there is a good reason to seek alternative solu-
tions in order to develop teaching.
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3 New Curriculum For Teaching Au-
tomatic Control

Based on the above there is a good reason to develop new
ideas and methods to be used in teaching automation. In
the modern era the application areas range from traditional
process control to control of electric drives, applications
in power electronics and electrical networks, smart grids,
mobile networks and systems, digital systems, robotics,
sensor networks, social networks etc. Especially com-
munication in all levels is much more important than it
used to be in traditional control engineering. The con-
nection between signal processing and control engineer-
ing becomes even more important as it has usually been
regarded. Similarly, information technology in general
is very relevant in modern control applications. Conse-
quently, there have been ideas to combine the two fields.
For example, in Aalto University it is possible to apply to
the bachelor level program Automation and Information
technology. The studies are similar during the first year,
after which the students will choose, whether they want to
concentrate on information systems or automation.

In order to study, what has to be taught let us see the
bachelor level curriculum (basic studies).

• Mathematics (25 cr.)

• Physics (10 cr.)

• Python-programming (5 cr.)

• C-programming (5 cr.)

• Hands-on course (8 cr.)

• Signals and systems (5 cr.)

• Mathematics software (2 cr.)

• Languages (5 cr.)

• Other (5 cr.)

The curriculum is more or less traditional with a few
noticeable points. The amount of mathematics is consid-
erable less than it used to be. Programming skills are con-
sidered important. Also, the Hands-on course is manda-
tory to all 1st year students. In that course the students
work in groups with small introductory projects. For ex-
ample, Arduino equipment and small robots are used to
construct small devices. Electrical measurements and de-
sign, mechanical construction and design, programming
and control are used in relatively simple settings. The idea
is that the students get interested to appreciate the need to
learn later more on the theoretical aspects, after first hav-
ing done practical examples. (There remains a lot of un-
clear issues in the examples, e.g. in programming, signal
processing and control, which should wake the students’
interest to study more).

Still in bachelor level studies the major in automation
and information technology looks like this.

• Bachelor seminar and thesis (10 cr.)

• Introduction to information technology (5 cr.)

• Introduction to Automation and systems technology
(5 cr.)

• Automation 1 (5 cr.)

• Automation 2 (5 cr.)

• Laboratory course in automation (5 cr.)

• Control Engineering (5 cr.)

• Robotics (5 cr.)

• Basics of chemistry (5 cr.)

• Machine design (5 cr.)

• Electrical engineering and electronics (5 cr.)

Here the main issue to note is that both information
technology and automation and systems technology are
mandatory courses. After completing them the students
will choose, which major of the two they will take.

The curriculum gets even more interesting in the major
level. All teaching there is in English. In the Automation
major the following seven courses are mandatory

• Embedded real-time systems (5 cr.)

• Product development (5 cr.)

• Project work course (10 cr.)

• Distributed and intelligent automation systems (5 cr.)

• Dynamical systems and identification (5 cr.)

• Stochastics and estimation (5 cr.)

• Advanced control (5 cr.)

In addition to this a broad selection of optional courses
is available in a course bank from which the students can
choose whatever courses they please to complete the ma-
jor. There are certain paths which are suggested to take
for certain specialization, but these are only suggestions.
Like stated, the student is free to choose the courses.

The amount of product development oriented courses
has been increased in the current program, and that is a
clear plan in bringing the new teaching methods into play.
Embedded real-time systems, product development and
project work courses demonstrate this. Especially inter-
esting is the project work course, which is a one-year-long
course, where the students work in groups to carry out a
projects given by research groups of the school. The prob-
lems are such that they are related to real research work,
whenever this is possible (and usually it is). The instruc-
tors come from the research groups, and several sessions
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and schooling to the instructors are given. The course in-
cludes lectures where project management, project plan-
ning, IPR rigts, group dynamics, business plan planning
etc. are considered. The students choose a project man-
ager from their group and there are project meetings on
regular intervals (usually once in one or two weeks). Both
agendas and minutes are written by the group members
and that and other relevant material is managed in a suit-
able electronic project management system. In addition
to that the course arranges mid-term presentations to the
whole course where poster walks are arranged and each
project is presented. A final gala is arranged in the end
of the course. There the results are presented, including
comments on how the project work felt and succeeded.

Peer evaluation is used as a part of determining the
grade for each student. Here the students evaluate not only
themselves but each other also. It is then the instructor
who puts all information together and proposes the grades
to the students. Usually that is the final grade, even though
the responsible teacher of the course can intervene (usu-
ally not).

Although the project work course seems at a first glance
a bit formal, it is actually a very good modern course.
The students can use their imagination and talent to do
new things, in a way that is supported by the methods and
procedures of the work in start-ups and other companies.
Some parts come near to the concept on peer instruction
(Mazur, 1997), but as a whole the course goes even further
in modern ideas of innovative, practical, yet theoretically
challenging, engineering work.

In short, the new ideas implemented in the university
level study curriculum in automation and control can be
summarized as follows. A hands-on course is arranged al-
ready in the beginning of studies to give some practical
work to the students and to wake their interest, motivation
and need to study also theoretical courses. In theoreti-
cal courses more exercises and design problems are given,
to be done alone or in a group in a time that is best suit-
able to the student(s). The amound of lectures is decreased
and more weight in evaluation is given to the homeworks
and design problems. Examination still exists, but it is
more like a check that everybody in the courses masters
the key material. In the examination there is not enough
time to solve but rather simple exercises. It is much bet-
ter to give time to the students, to work individually or
in groups when they please. Usually, there is about two
weeks time to solve one design problem.

The relatively large project work course was already ex-
plained above. It is a cornerstone in the new study pro-
gram. It is not arranged only to the students of automatic
control, but also to other students in different disciplines
in the School of Electrical Engineering.

In addition to the courses where group work has a ma-
jor role it is important to hear the voices of the "clients",
that is industrial partners who will then hire the students
for work. "Stakeholders’ events" are arranged regularly to
hear ideas and experiences on how the former students are

doing and what aspects should be considered more in con-
temporary education. Similar idea is used by having con-
tacts to the other universities, where automation is taught,
in domestic level as well as abroad. Also, good contacts
are formed to schools. That is a look into the future and is
discussed in the next section.

4 Luma Activity
The future is not with us, it is in the young people. Even
in the university level, the connections to schools are con-
sidered important. In Finland that is now organized in the
Luma activity (Luma Centre Finland). "Luma" is actually
very close to STEM education (Science, Technology, En-
gineering, Mathematics), the idea being to organize spe-
cial courses and laboratory exercises to high school stu-
dents and even to younger children. The purpose is to
wake their interest in natural sciences and engineering,
and later perhaps making the decision to start to study
these disciplines. In the Luma centre Finland there are
13 different Luma units attached with universities across
Finland. They all have different ways to operate: some
have special Luma classes, where teachers can bring their
students to do laboratory exercises; some arrange spe-
cial courses and lectures to the students; some arrange
student demonstrations and competitions e.g. in robotics
etc. For example, in Luma centre Aalto there is a class
(LUMARTS) with laboratory exercises in fields of bio-
chemistry, chemistry, electrical engineering, meachanical
engineering, and automation. Last year there were more
than 2000 student visits in the class. Moreover, special
courses on different topics are arranged regularly to high
school students. Examples of such courses are micro- and
nanosystems, robotics, space systems and mathematics.

In the LUMARTS class one class of problems is done
with the Arduino platform, to get the students used to sim-
ple electronics applications and basic programming. Spe-
cial courses in programming are also arranged, not only to
the students but also to their teachers. The Luma activity
is now pretty active in Finland and high interest and ex-
pectations are shown towards it, also in the political level.

To combine the ideas of the project work course de-
scribed in the previous section and the Luma activity the
following example can be given. In Figure 2 a laboratory
example vessel has been presented. The exercise was con-
structed by a group of students in automation. The idea
is to demonstrate the basic ideas of feedback control by
using a liquid level control in a vessel as an example.

In the example the students can try tuning the liquid
level manually, and they find it much more difficult than
by an automatic PID-controller. It is clear that control
mathematics (like the PID algorithm) cannot be taught at
this level. However, the idea is again to wake an inter-
est. Also, here the process represents something that also
occurs in real process control and is then related to real
work. (It is not an inverse double pendulum, which makes
a nice demo, but is hardly related to most practical ap-
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Figure 2. A simple process control system.

plications). Another example process constructed by the
same project group is shown in Figure 3. It is a kind of a
conveyor system, where a wooden ball is moved from one
position to another by using a lift mechanism. The opera-
tion is controlled by a programmable logic controller, and
one of the key targets in the exercise is to teach this kind
of programming basics (ladder diagrams) to the students.

Figure 3. Autobygg system.

5 Conclusions
In the paper some modern concepts and ideas of control
engineering education have been motivated and presented.
The "new" methods are actually not very new and not very
radical either. However, they are realistic and believed to
meet the challenges that society sets to education in this
field. It is also believed that the students in general like the
more practical training they can get through the new kinds

of courses. There is not yet enough student feedback to
confirm or reject this hypothesis. Near future gives light
to that issue also.
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