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Abstract
The analysis of a simplified activated sludge process
(ASP) with one main dissolved substrate and one main
particulate biomass has been conducted in steady-state
conditions. The ASP is formed by a plug-flow reactor and
a settler tank. The biomass growth rate is described by a
Monod function. For this process, it is not possible to get
an explicit expression for the effluent substrate concen-
tration when the process is subject to a fixed sludge age.
However, when the substrate concentration of the influent
is much greater than that of the effluent, an approximate
and explicit relation between them is obtained. Numerical
examples with two models for the settler are presented.
One model is the ideal settler, which assumes a complete
thickening of the sludge. The other model includes hin-
dered settling and sludge compression. Numerical results
show the effectiveness and the limitations of the proposed
solution under these scenarios.
Keywords: bioreactor, clarifier, sludge blanket, sludge
age

1 Introduction
Steady-state modeling and analysis of ASPs have been ex-
tensively studied during the last 50 years. One important
reason is that the steady-state analysis of a dynamic model
can provide initial values for process operation and opti-
mization.

Generally, the mixing regime in an ASP reactor neither
behaves as a completely stirred tank reactor (CSTR) nor as
a plug-flow reactor (PFR), but in some sense in between
(Tsai and Chen, 2013). In a CSTR, the reactor content
is well stirred, so it is assumed that the concentration in
the effluent is the same as in the reactor. In a PFR, the
key assumption is that the fluid is perfectly mixed in the
radial direction and in the axial direction only the trans-
portation of the fluid is considered. Therefore, a PFR can
be seen as a series of infinitely thin CSTRs, each with a
uniform and different composition than the neighbouring
one (Schmidt, 1998). It is expected that a PFR with a vol-
ume smaller than several CSTRs in series will give the
same performance (Zambrano et al., 2015).

Compared to the classical ASP configuration, i.e. ASP

with one CSTR, an explicit (steady-state) solution for an
ASP formed by a PFR seems to not be possible to obtain
(Diehl et al., 2017). However, some attempts have been
made in the analysis of this process. For example, some
implicit and approximate expressions for the effluent sub-
strate were presented by San (1989), where the expres-
sions were compared with numerical solutions. Computer
techniques to solve the problem of a PFR in an ASP when
considering the PFR as a large number of bioreactors in
series are shown by Muslu (2000). Design graphs and nu-
merical examples were presented as guidelines to size the
process. On the other hand, a study of an ASP formed by
a PFR could be seen as an approximation of an ASP with
several CSTRs in series (Erickson and Fan, 1968; Zam-
brano and Carlsson, 2014).

A study of the relationship between the influent and ef-
fluent of an ASP formed by one and two CSTRs in se-
ries was presented in Zambrano and Carlsson (2014). The
study mentions that it does not seem possible to find ex-
plicit solutions for the effluent substrate concentration for
two or more bioreactors. That work was the motivation
that led to the development of Diehl et al. (2017) and the
current study.

A steady-state analysis of an ASP formed by using a
PFR and a settler was recently studied in Diehl et al.
(2017). The study considers and compares two different
settler models. One is the ideal settler, which assumes an
unlimited flux capacity, i.e. the settler is always consid-
ered to be overdimensioned. The other model, recently
published by Diehl et al. (2016), here referred to as DZC
settler model, includes hindered and compressive settling,
which means that a limited flux capacity is modelled. Both
numerical and, in some cases, analytical results are ob-
tained. A comparison with an ASP formed by a single
CSTR is also shown by Diehl et al. (2017).

In the present work, we continue the analysis of an ASP
consisting of a PFR and a settler. For the ideal settler
case, the steady-state solution is presented with explicit
approximate formulas when the influent substrate concen-
tration is much greater than the effluent substrate concen-
tration. Under the same assumption, we also present an
explicit formula for the effluent substrate concentration as
a function of the influent substrate concentration when the
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sludge age is fixed. This formula can be used for both
settler models.

Nomenclature
A vertical cross-sectional of PFR [m2]

AS horizontal cross-sectional of settler [m2]

B depth of thickening zone [m]

H height of clarification zone [m]

Ks half-saturation constant [kg/m3]

Q influent volumetric flow rate [m3/s]
S dissolved substrate concentration [kg/m3]

Uzsb function defined in (12) [kg/m3]

VR volume of PFR [m3]

X particulate biomass concentration [kg/m3]

X∞
zsb

parameter in (12) [kg/m3]

Y yield constant [−]
h length of PFR [m]

q bulk velocity in the thickening zone [m/s]
q̂zsb parameter in (12) [m/s]
q̌zsb parameter in (12) [m/s]
r recycle ratio [−]
w wastage ratio [−]
x horizontal distance from feed in PFR [m]

z depth from feed level in settler [m]

Greek letters
µ Monod function [1/s]
µmax maximum specific growth rate [1/s]
θ sludge age [s]
Subscripts
�0 defined constant value
�e effluent
�in influent
�r recycle
�sb sludge blanket
Superscripts
�∗ PFR steady-state concentration
� PFR influent concentration

The paper is organized as follows. A description of the
ASP with a PFR and a settler is presented in Section 2,
including the steady-state mass balances and the defini-
tions for the ideal and DZC settler models. In Sections 3
and 4, we review from Diehl et al. (2017) the equations
describing the steady-state conditions of the ASP for both
settler models. Section 5 contains an approximate explicit
expression for the effluent substrate concentration. Nu-
merical examples are shown in Section 6 and conclusions
are drawn in Section 7.
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S∗

S∗

S∗

Q

rQ wQ

(1 + r)Q

(1− w)Q

(r + w)Q

X∗

Xe

Xr

plug-flow bioreactor
settler

xh0

Figure 1. The activated sludge process consisting of a PFR and
a settler. The steady-state variables are shown as well as the
horizontal x-axis of the PFR.

2 The Activated Sludge Process

For the ASP we consider using a PFR coupled with a set-
tler, see Figure 1, where the recycling flows to the reac-
tor. The PFR has a constant vertical cross-sectional area A
and length h, so the volume is VR = Ah. The variable x is
used to denote the horizontal axis in the PFR from the in-
let (x = 0) to the outlet (x = h). Where the concentrations
at location x can be denoted as S(x) and X(x) in the PFR.

We assume two constituents, namely one particulate
biomass X and one dissolved substrate S. The influent vol-
umetric flow rate and substrate concentration are denoted
by Q and Sin, respectively. It is assumed that no biomass is
present in the influent (Xin = 0). The PFR input concentra-
tions are denoted by Sin and Xin, and the PFR outputs by S∗

and X∗. It is assumed that no reactions are taking place in
the settler, so that only particulate biomass is influenced.
The substrate concentration is thus unchanged and there-
fore equal to S∗ throughout the settler. The effluent at the
top of the settler is Xe and the recycle concentration is Xr.
The recycle flow rate is rQ and the waste flow rate is wQ,
where r > 0 and 0 < w ≤ 1. The kinetics in the PFR are
described by using the Monod function (Monod, 1949)

µ(S) = µmax
S

Ks +S
, (1)

where µmax is the maximum specific growth rate and Ks is
the half-saturation constant. It is assumed that the biomass
death is negligible.

The sludge age θ of the process is defined as the
amount of biomass in the bioreactor divided by the re-
moved biomass per unit time, and is expressed as

θ =
A
∫ h

0 X(x)dx
wQXr

. (2)
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2.1 Mass balances and expression for the
sludge age

The three mass balances of the process in steady state with
Xe = 0 are

Q(1+ r)Sin = QSin + rQS∗, (3)

Q(1+ r)Xin = rQXr, (4)
Q(1+ r)X∗ = (r+w)QXr. (5)

Applying the conservation of mass in the PFR we get

Q(1+ r)
A

dS
dx

=−µ[S(x)]
X(x)

Y
, (6)

Q(1+ r)
A

dX
dx

= µ[S(x)]X(x), (7)

where Y refers to the yield constant. The following bound-
ary conditions hold: X(0) = Xin, S(0) = Sin, X(h) = X∗

and S(h) = S∗. Combining Equations (6) and (7) together
with the boundary conditions, one gets

Q(1+ r)
A

d(Y S+X)

dx
= 0

=⇒ Y Sin +Xin = Y S(x)+X(x) = Y S∗+X∗. (8)

By solving for X(x) in Equation (8) and substituting it
into (6), using VR = Ah and integrating, we get the follow-
ing equation for the PFR:

−Q(1+ r)Y
∫ S∗

Sin

dσ

µ(σ)
[
Xin +Y (Sin−σ)

] =VR

⇐⇒ f (S∗,r,w) =VR, (9)

where

f (S∗,r,w) =
Q(1+ r)

µmax

[
P ln

(
a(Sin + rS∗)

S∗(1+ r)

)
+ ln(a)

]
,

(10)

P = P(S∗,r,w) =
Ksw(1+ r)

Sin(r+w)−S∗r(1−w)
,

a = a(r,w) =
r+w

r
.

We can obtain the sludge age by rewriting the integral
in Equation (2) using Equation (6). Then we have (see
Diehl et al. (2017))

θ =
A

wQXr

[−Q(1+ r)Y
A

∫ S∗

Sin

(Ks +σ)dσ

µmaxσ

]
=

1
µmax

[
1+

(1+ r)Ks

(Sin−S∗)
ln
(

Sin + rS∗

S∗(1+ r)

)]
. (11)

2.2 The settler
Ideal settler model. For an ideal settler we assume that
all the sludge fed to the settler will always pass through
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z0

0
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Figure 2. The DZC settler. The steady-state variables are shown
as well as the vertical z-axis of the settler.

the thickening zone, regardless of the amount of incom-
ing sludge and the recycle and waste flows. Although in
many cases unrealistic, this model could work well when
the settler is over-sized.

DZC settler model. The processes in the settler are
described by a steady-state approximation of a partial dif-
ferential equation (PDE) which includes a hindered set-
tling velocity function and a compression function (Bürger
et al., 2011). The behavior of a real settler can be divided
into three qualitatively different operations: underloaded,
overloaded and normal operation. By normal operation
we mean that all the biomass fed to the settler is conveyed
through the thickening zone and that there exists a sludge
blanket in the thickening zone, see Figure 2. In this work
we only study the steady-state solutions under normal op-
eration and therefore set Xe = 0.

The following simple relationship is a reasonable ap-
proximation obtained from the steady-state solutions that
have a sludge blanket in the thickening zone (Diehl et al.,
2016)

Xr =Uzsb(q) := X∞
zsb

(
1+

q̂zsb

q+ q̌zsb

)
, (12)

where q is the bulk velocity in the thickening zone, defined
as

q = q(r,w,Q,AS) :=
Q(r+w)

AS
, (13)

where X∞
zsb

, q̂zsb and q̌zsb are parameters which depend on
the chosen sludge blanket level zsb. AS is the settler con-
stant horizontal cross-sectional area, see model details in
Diehl et al. (2016).

3 ASP with ideal settler model
3.1 Steady-state solutions
From the mass balances of the process (5), (8) and (9), the
steady-state equations for an ASP with ideal settler can be
expressed as (ignoring the variables Sin and Xin; these can
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be obtained from (3) and (4))

S∗ = Sin−
w
Y

Xr, (14)

X∗ =
r+w
1+ r

Xr, (15)

VR = f (S∗,r,w), (16)

where f (S∗,r,w) is given by (10). Equation (16) is solved
for S∗ = S∗(r,w), then Equation (14) gives Xr = Xr(r,w)
and Equation (15) gives X∗ = X∗(r,w). Note that all these
variables are two-parameter solutions of the control vari-
ables r,w. Note also from Equations (9) and (10) that S∗ is
expressed implicitly. If Sin� S∗ is assumed, we have the
following results.

Theorem 1. Given an ASP with an ideal settler described
by Equations (14)–(16). If Sin� S∗ then the solution of
Equations (14)–(16) can be expressed explicitly as

S∗ = S∗(r,w) =
(r+w)Sin

r [(1+ r)exp(β )− (r+w)]
, (17)

Xr = Xr(r,w) =
Y
w
(Sin−S∗(r,w)) , (18)

X∗ = X∗(r,w) =
(r+w)Y
(1+ r)w

(Sin−S∗(r,w)) . (19)

where

β =
Sin(r+w)
Ksw(1+ r)

[
VRµmax

Q(1+ r)
− ln

(
r+w

r

)]
,

and when the denominator in Equation (17) is positive.

Proof. The assumption implies that Equation (16) can be
expressed as (cf. Equations (9) and (10))

Q(1+ r)
µmax

[
1
G

ln
(

a(Sin + rS∗)
S∗(1+ r)

)
+ ln(a)

]
=VR, (20)

where

G =
Sin(r+w)
Ksw(1+ r)

and a =
r+w

r
.

Solving (20) for S∗ we get

G
(

VRµmax

Q(1+ r)
− ln(a)

)
= ln

(
a(Sin + rS∗)

S∗(1+ r)

)
.

For simplicity we set β = G
(

VRµmax
Q(1+r) − ln(a)

)
, then we

have

exp(β ) =
a(Sin + rS∗)

S∗(1+ r)
⇐⇒

S∗(1+ r)exp(β ) = a(Sin + rS∗) ⇐⇒

S∗ =
aSin

(1+ r)exp(β )−ar
⇐⇒

S∗ =
(r+w)Sin

r [(1+ r)exp(β )− (r+w)]
,

if the denominator is positive.
Once S∗ is obtained, Xr and X∗ are given from Equa-

tions (14) and (15), respectively.

3.2 Substrate input-output relationship for
constant sludge age

The two-parameter solution of Equations (14)–(16) (or
(17)–(19) in Theorem 1) means that two additional equa-
tions can be imposed to define the operation conditions.
We are interested in investigating the steady-state solu-
tions of the process for different values of Sin for a con-
stant sludge age θ0. For Sin as a variable, we have six vari-
ables to take into consideration: S∗,X∗,Xr,r,w, and Sin.
However, to get a one-parameter solution with Sin as a pa-
rameter, we can add the following to Equations (14)–(16):

r = r0, (21)
1

µmax

[
1+

(1+ r)Ks

(Sin−S∗)
ln
(

Sin + rS∗

S∗(1+ r)

)]
= θ0. (22)

Since r = r0 is constant, Equation (22) defines implic-
itly S∗ = S∗(Sin), then Equation (16) gives w = w(Sin),
Equation (14) gives Xr = Xr(Sin) and Equation (15) gives
X∗ = X∗(Sin).

4 ASP with DZC settler model
4.1 Steady-state solutions
The mass balances of the system considering the DZC set-
tler model have to include Equation (12) in order to get a
sludge blanket in the thickening zone. The steady-state
equations are then expressed as

S∗ = Sin−
w
Y

Uzsb(q), (23)

X∗ =
r+w
1+ r

Uzsb(q), (24)

Xr =Uzsb(q), (25)
VR = f (S∗,r,w). (26)

Straightforward calculations give that the expression
for the sludge age is the same as for the ideal settler model
(cf. Equation (11) and Diehl et al. (2017)).

4.2 Substrate input-output relation for con-
stant sludge age

As in the case of an ASP with ideal settler, we are in-
terested in the solution of the process for a constant
sludge age for different values of Sin. By imposing
θ(r,Sin,S∗) = θ0 we get a one-parameter solution. Note
that we cannot impose another equation (e.g. r = r0) as
we did for the ideal settler model, since we have Equation
(12) controlling the sludge blanket.

Hence, Equations (22), (23) and (26) are solved for
S∗ = S∗(Sin), r = r(Sin) and w = w(Sin). Then, Equa-
tion (24) gives X∗ = X∗(Sin) and Equation (25) gives
Xr = Xr(Sin).
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5 An approximation for S∗ given θ0
Note that S∗ is given implicitly in Equation (22), and will
depend on Sin, r and θ0. This equation can, however, be
solved explicitly for S∗ if we make an assumption.

Theorem 2. Given an ASP described by Equations (14)–
(16) (for an ideal settler) or by (23)–(26) (for a DZC set-
tler), and where θ is given by (11). Assume that θ is fixed
to θ0, i.e. Equation (22) is imposed. If Sin� S∗, then the
following simple expression for S∗ holds:

S∗ =
Sin

(1+ r)exp(αSin)− r
, (27)

where

α =
θ0µmax−1
Ks(1+ r)

.

Proof. Assuming Sin� S∗, Equation (22) can be written
as

1
µmax

[
1+

(1+ r)Ks

Sin
ln
(

Sin + rS∗

S∗(1+ r)

)]
= θ0,

solving for S∗ gives

S∗ =
Sin

(1+ r)exp(αSin)− r
,

where α = (θ0µmax−1)/(Ks(1+ r)).

6 Numerical example
We assume that the ASP has the following con-
stants and parameters: VR = 3000 m3, Q = 1000 m3/h,
µmax = 0.17 h−1, Ks = 0.05 kg/m3, Y = 0.7. For the
DZC settler model we let: B = 3 m, zsb = 1 m,
X∞

1 = 6.52 kg/m3, q̂1 = 0.32 m/h, q̌1 = 0.45 m/h. The
latter constants were obtained with standard parameters
for the hindered settling and compression functions and
the procedure in Diehl et al. (2016).

Numerical solutions of the model equations will now be
compared with the approximate solutions given by Theo-
rems 1 and 2. The numerical solutions are obtained with
fsolve, a function in Matlab which solves systems of
non-linear equations.

6.1 Theorem 1
This case deals with an ASP with an ideal settler model.
Figure 3 shows the numerical (without approximation, i.e.
without the assumption Sin� S∗) and approximated solu-
tions given by Theorem 1 for S∗,X∗ and Xr. That is, we
compare the results from Equations (14)–(16) with results
from Equations (17)–(19). The influent substrate concen-
tration is set to Sin = 0.1 kg/m3. The results are shown

for an interval of values of r and for some values of the
wastage ratio w.

Note that in plot (a), for higher values of S∗, the dif-
ference between the values given by Theorem 1 and the
values from the solution with no approximation becomes
larger. The same effect can be seen in plot (b) for X∗ and
in plot (c) for Xr. S∗ starts to decrease for higher values in
r. Then, the difference between values with and without
approximation starts to decrease.

6.2 Theorem 2
For the ideal settler model, Figure 4 shows numerical and
approximated solutions given by Theorem 2. Equation
(22) is solved for S∗ = S∗(Sin) at an interval of values for
Sin. The recirculation is set to r = r0 = 1 (cf. Equation
(21)), and we set θ0 = 16 h. Note that, for higher values
of Sin, the values for S∗ given by Theorem 2 are closer to
those given by the solution of the process with no approx-
imation.

For the DZC settler model, Equations (22), (23) and
(26) are solved for S∗ = S∗(Sin),r = r(Sin) and w = w(Sin)
at an interval of values for Sin. Figure 5 shows the numer-
ical and approximated solutions for S∗ = S∗(Sin). We set
θ0 = 6.5 h and show some results for some values of the
settler area AS.

Note that, for a given Sin and when a higher AS is used,
the solution with no approximation gives a higher recy-
cle concentration Xr (see Equations (12) and (13)). This
means that we have a more thickened sludge, which gives
a lower S∗ (see Equation (23)). Therefore, S∗ becomes
much lower compared to Sin as AS increases. Hence, the
values from Theorem 2 are much closer to the solution of
the model equations without approximation.

7 Conclusions
An ASP formed by a PFR and a settler has been stud-
ied in steady-state operation. It is shown that explicit,
but approximate, solutions can be obtained for the case
of an ideal settler under the assumption that the influent
substrate concentration is much greater than the effluent
one. With this assumption it is also possible to obtain
an explicit expression for the effluent concentration as a
function of the influent one under the operating condi-
tion that the sludge age should be maintained at a specific
value. Numerical examples show the performances of the
simpler explicit expressions under two different models
for the settler and hence when the simpler formulas can
be used. Further research might be focused on consider-
ing the decayed particulate biomass as an additional con-
stituent in the process.
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