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Abstract

This paper presents a method for monitoring the sludge
profiles of a secondary settler using a Gaussian Mixture
Model (GMM). A GMM is a parametric probability den-
sity function represented as a weighted sum of Gaussian
components densities. To illustrate this method, the cur-
rent approach is applied using real data from a sensor mea-
suring the sludge concentration as a function of the settler
level at a wastewater treatment plant (WWTP) in Bromma,
Sweden. Results suggest that the GMM approach is a fea-
sible method for monitoring and detecting possible distur-
bances of the process and fault situations such as sensor
clogging. This approach can be a valuable tool for moni-
toring processes with a repetitive profile.

Keywords: signal monitoring, fault detection, clarifier,
sludge profile

1 Introduction

The effluent water quality and efficient operation of re-
sources are important aspects considered in the operation
of a wastewater treatment plant (WWTP). Process mon-
itoring and detection of abnormal conditions are crucial
tasks, since they can help to improve the process perfor-
mance (Olsson et al., 2014).

The sedimentation is an important process that deter-
mines the performance of the activated sludge process
(ASP). The sedimentation is given by a secondary settler
tank (SST), also called clarifier, which use gravity to sepa-
rate the sludge (biomass) component from the treated wa-
ter (liquid). Different approaches for predicting the SST
behavior includes one, two or three-dimensional dynamic
models. However, the prediction of the concentration pro-
files is still far from satisfactory (Li and Stenstrom, 2014),
which makes the SST monitoring a complex task. Some
examples of methods applied to monitor SSTs include im-
age analysis (Grijspeerdt and Verstraete, 1997) and model-
based approaches (Traoré et al., 2006; Yoo et al., 2002).

In the last two decades, a research field called Machine
Learning has gained especial attention. The main scope
with Machine Learning is to develop methods that can au-
tomatically detect patterns in data (learning), and then to
use the uncovered patters to predict future data (Murphy,
2012). There are many different approaches in machine
learning including decision trees, data clustering, neural

DOI: 10.3384/ecpl17142831

Proceedings of the 9th EUROSIM & the 57th SIMS

networks, Gaussian process regression, Gaussian mixture
models.

The authors proposed in Zambrano et al. (2015) an ap-
proach for monitoring a SST using Gaussian Process Re-
gression (GPR), giving useful information about the status
of the settler. GPR is a non-parametric regression method
where data prediction is given as a probability density
function. Hence, the predicted value comes with a vari-
ance estimate, interpreted as an uncertainty of the predic-
tion. The method is thoroughly described by, for exam-
ple, Rasmussen and Williams (2005) and Murphy (2012),
and has gained large interest within the machine learning
community for applications such as fault detection of envi-
ronmental signals (Osborne et al., 2012), signal prediction
(Grbi€ et al., 2013a,b) and control of bioreactors (Kocijan
and Hvala, 2013).

In this work, we propose an alternative method for mon-
itoring the process presented by Zambrano et al. (2015)
based on a Gaussian Mixture Model (GMM). GMM is a
parametric probability model for density estimation using
a mixture of Gaussian distributions (Bishop, 2007). In this
way, the GMM can describe a set of data using the com-
bination of Gaussian distributions. Diverse applications
of GMM can also be found in literature, for example in
sensor monitoring (Zhu et al., 2014), fault detection and
diagnosis (Yu, 2012).

The paper is organized as follows. First, a general intro-
duction to GMM s presented, including a fault detection
criteria based on the GMM formulation. Then, the prob-
lem of monitoring a secondary settler is presented as case
study. Next, results and discussions are presented. Finally,
some conclusions are drawn.

2 Materials and Methods

This section first presents the basics of Gaussian Mixture
Models (GMM). Further, a GMM-based fault detection
criteria is defined.

2.1 Gaussian Mixture Models

Assume we have a data vector x with N independent ob-
servations from a certain process. In a GMM, the total
distribution of data is modeled as a sum (or mixture) of
several Gaussian distributions with mean ; and covari-
ance matrix 0. Hence, the model can be expressed as
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(Murphy, 2012)

K
p(xi) =Y m N (xi|th, 00), i=1,....N (1)
=1

where each Gaussian distribution is denoted by
N (Xi|Uk,0k). The expression (1) is a combination
of K Gaussian distributions, since we are taking a
weighted sum. The mixing weights m;, must satisfy
0<m <1and YX  m = 1. The resulting function p(x;)
is a probability density function (pdf) from observing the
data x;.

When the value of K-groups is specified, the GMM pa-
rameters 7, l; and oy can be inferred by using the itera-
tive Expectation-Maximization (EM) algorithm applied to
Gaussian Mixtures (Murphy, 2012), which can be summa-
rized in Algorithm 1.

Algorithm 1 EM for Gaussian mixtures

1: Initialize ,ukl, le,ﬂ,: andseti=1.
2: while not converged do
3: Compute Y(zx)-
4 Compute /.Lé“ ; ﬂ,i*l i Ni; G,ﬁ“.
step

i< i+1.
6: end while

> Expectation step
> Maximization

o

The expressions used in Algorithm 1 are

TN (Xa| i, 0})

Yznk) = - ——n=1..,Nk=1,...K
" 5'(:1 n-j’/V(xﬂLuijj)
(2)
1y
A Znk ) Xn 3)
1y Ny n; 7( k)
) N, N
ﬂ:}iJrl = ka Nk = Z Y(an>7 (4)
n=1
i+1 1 ¢ i+1 i+ T
o, = ﬁk Z Y(an) (Xn — My ) (Xn —H ) . (5)
n=1

One way to assign a value for K is using the silhouette
criterion, see details in Rousseeuw (1987). The silhouette
value S estimates how similar samples are in one cluster
to samples in another cluster. S ranges from —1 (data mis-
classified) to +1 (data well-clustered), where S close to
zero means that the clusters are indistinguishable.

2.2 GMM based fault detection criteria

When implementing a GMM to a group of data, the main
idea is to compute a residual r so to monitor and decide
between normal and abnormal profiles in the process. We
assume that r belongs to one out of two different hypoth-
esis: Hy and H|. Hence, the problem can be expressed by
the classical binary hypothesis testing problem

Hy:r<h

6
H :r>h ©)
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where Hj refers to the non-faulty (normal) condition hy-
pothesis, H; refers to the faulty (abnormal) condition hy-
pothesis, and / is a predefined threshold. The aim is to de-
cide if the system has changed between Hy and H; when
changes in the dynamic of the process are presented. It is
assumed that Hy and H; are equally likely.

For monitoring a group of profile data, each of them
with N samples, we propose a GMM based residual r as
detailed in Algorithm 2.

Algorithm 2 GMM-based residual calculation

1: Collect a group of M-profiles in non-faulty conditions.

2: Set K and compute the iterative EM algorithm (see
Algorithm 1) to get m, Uy, Ok.

3: while monitoring a new profile do

4: for every profile do
5: !
r= ) (7
p(X; Tk, Uik, O1:K)
where
N K
p(X: Tk, fik, O1k) = Y, Y e (Xnl i Ok)- (8)
n=1k=1
6: end for

7: end while

As given by expression (6), a fault is decided if r > A,
where the threshold /2 = max{r}|;ey, is the maximum r
obtained during the evaluation of the non-faulty profiles.
Hence, the non-faulty profile with data far from the rest of
profiles will determine the value for A.

Note from expression (7) in Algorithm 2 that, the far-
ther the new profile data is from the non-faulty data, the
lowest the p(x) and the larger the residual r will be.

3 Case Study:
ondary Settler

Monitoring a Sec-

The present approach is tested using real data from a sen-
sor installed in a secondary settler at Bromma WWTP in
Stockholm, Sweden. The sensor measures the suspended
solids (SS) concentration as a function of the settler level.
The sensor goes from top to bottom of the setter, pass-
ing through the clarification and the thickening zone, and
measuring the level [m] and the SS concentration [g/L], as
shown in Figure 1(a). The profile obtained is called sludge
profile. A typical sludge profile is shown in Figure 1(b).

Note in Figure 1(a) that we indicate a sludge blanket
level, at which there is a jump from lower (less than 0.5
g/L) to higher (above 1 g/L) SS concentration, see Figure
1(b).

The sensor works discontinuously, which means that a
new sludge profile is automatically measured after a cer-
tain period of time (in minutes). The collected data can be
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Figure 1. (a) Experiment setup; (b) Typical sludge profile plot-
ted as level vs. SS concentration.

affected by different factors including: changes in the re-
turn and/or excess of sludge flow rates, sludge scape, large
variations in the influent flow and composition and sensor
clogging.

As part of the experiment, two additional measurements
were recorded: the level at which the SS concentration is
equal to 0.5 g/L (called fluff level) and equal to 2.5 g/L
(called sludge level). We will refer to these levels during
the results and discussions of the experiment.

4 Results

Figure 2(a) shows M = 15 sludge profiles in non-faulty
conditions used for calculating the GMM. Figure 2(b)
shows the non-faulty sludge profiles plotted using dots.
The highest silhouette value obtained was S = 0.77 with
K = 3, which means that the optimal number of clusters
is three, as shown in Figure 2(c). Figure 2(d) shows the
contours of the probability density function of the GMM.
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Figure 2. (a) Sludge profiles used to get the GMM; (b) Sludge
profile data in (a) plotted using dots; (c) Clusters of the data
in (b); (d) Contours of the GMM pdf, color scale indicates the
value of the pdf contours.

The GMM parameters 7, U, and oy obtained for the
data in Figure 2 are shown in Table 1. There we denote
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x = [x1 x2], where x; = {SS conc.} and x, = {level}.
Then t, and oy, are

cov(xy,x2)

cov(xz,x2) |’

_ |mean(x) _|cov(xy,x1)
Hie = [mean(xz)} Ok = {cov(xz,x])

where k = 1,2,3 refer to Cluster 1,2,3, respectively, as
shown in Figure 2(c)-(d).

Table 1. GMM parameters

k  Weight Mean Covariance
() () (o)
voos L Do onos
2o gl [Sliso osss0.
I e

The monitoring of the settler was carried out in several
trials. As illustration, we present one trial which consisted
of 33 days of monitoring, where a new sludge profile was
collected every 15 minutes, giving a total of 3168 sludge
profiles. In order to see the evolution of the sludge pro-
files during time, they are shown after 10, 20 and 30 days
of running the experiment, as shown in Figure 3(a)-(c),
respectively.

conc. [g/L]

conc. [g/L] conc. [g/L]

Figure 3. Total of sludge profiles during SST monitoring after:
(a) 10 days; (b) 20 days; (c) 30 days.

Figure 4 shows the evolution of the fluff and sludge
level, as well as the residual r. The residual r is colored
from dark blue (beginning of experiment) to dark red (end
of experiment), which correspond to the same range of
colors assigned to the sludge profiles shown in Figure 3.

5 Discussions

As mentioned in the case study, a typical sludge profile
has an abrupt change in the SS concentration around the
sludge blanket level, see the profiles in Figure 2(a). This
jump in the SS concentration was captured by the GMM,
which classifies the data points before the jump as Cluster
1, and data points after the jump as Cluster 2, as shown
in Figure 2(c). Also note that the data points with lev-
els close to zero (bottom of the settler) and with high SS
concentration were classified as Cluster 3.
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Figure 4. (a) Fluff level (blue line) and sludge level (red line);
(b) Residual r (colored dots) and threshold /4 (black horizontal
line). Gray zones refer to Period I and II, see details in Section
5.

From the total of profiles collected during the experi-
ment, we highlight 2 groups of profiles marked as Period I
and II in Figure 4. Period I refers to large variations in the
influent flow rate, causing fluctuations in the sludge blan-
ket, this effect can also be seen in the oscillatory variation
of the fluff level (see Figure 4(a)). The sludge profiles of
this period are shown in Figure 5(a). Note in this Figure
that several data points at concentrations between 1 and 2
g/L are located far from the pdf contours with high val-
ues obtained from non-faulty data, which results in large
values for r.

level [m]

conc. [g/L] conc. [g/L]

Figure 5. Group of sludge profiles for periods indicated in Fig-
ure 4. (a) Period I; (b) Period II. The plots include the contours
of the probability density function shown in Figure 2(b).

Another type of events was related to sensor clogging,
which began to be detected in profiles during Period II.
This clogging event was confirmed by in-situ ocular in-
spection of the sensor and the existence of floating sludge
at the surface level of the settler, promoting sludge es-
cape. Figure 5(b) shows the sludge profiles of this Period.
Note in this Figure that several data points are located far
from the pdf contours with high values obtained from non-
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faulty data, particularly at concentrations below 0.5 g/L
and between 1 and 2 g/L, which results in large values for
r, sometimes even larger than those obtained in Period I.

Note that the data from both periods include outliers.
Outliers are defined as sharp changes in the measured val-
ues between two successive data. For our case study, out-
liers in the sludge profiles mean that the measured data
is far from the contours obtained with the non-faulty pro-
files (cf. Figure 2(d)). If there are several outliers in a
given sludge profile, it will result in a large value for r.
In this study, data correction from outliers was not part
of the work. For a process with several events of outliers,
the profiles reconstruction could be given by relocating the
outliers using the GMM pdf.

Missing data is another possible situation when mon-
itoring profiles. This is, when the amount of data in a
given profile is incomplete. In the same way as in the case
of outliers, the profiles reconstruction could be given by
assigning the missing data using the GMM pdf.

Observe that collecting data from two sensors measur-
ing the same process, the total set of data from each sen-
sor will be different, resulting that each sensor will have a
unique probability density function. This means that the
present methodology has an important advantage, since is
not just applied to specific sensors or processes but to sen-
sors or processes from diverse areas.

A possible application for the current approach is to use
the residual value r as a tool for a control action. In this
way, it would be possible to formulate different control
strategies based on, for example, changes in the recycle
flow rate of the WWTP, in order to keep the new sludge
profiles as similar as possible to the non-faulty profiles.

6 Conclusions

A GMM-based approach for monitoring and fault detec-
tion of the sludge profiles in a SST working in a WWTP
has been proposed. Using a set of non-faulty profiles, the
aim was to obtain a non-faulty region (SS concentrations,
SST height) defined by a pdf via the GMM method. This
pdf is then used to evaluate new profiles and detect possi-
ble abnormal profiles. Results obtained with real data im-
plementation suggest that this method could help to mon-
itor the performance of a SST.
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