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Abstract
The environmental concern has significantly raised and
specially in the case of bioprocess industries where new
standards are more and more strict. In this context, areas
of new research have been developed to enhance biologi-
cal treatment processes productivity and reduce emission
of toxic substance. To ensure the control of the incinera-
tion variables, a describing model should be determined.
In our previous work, we presented multi variable iden-
tification results relative- to SIAAP incineration process.
This paper concerns model validation of a fluidized-bed
incineration furnace by different quality criteria. In this
case, our focus is on production phase defined by two in-
cineration modes. Thus, the observed data of each model
is compared with the predicted data using quality criteria.
Keywords: validation methods, fluidized-bed furnace,
subspace state-space system N4SID

1 Introduction
Knowing well a dynamic system is a good way to de-
velop its robust efficient control. It is useful for precise
weather forecast, general data predictions, model-based
simulation and others. For this reason, modelling pro-
cess and its validation need great attention. Over the past
years, new identification methods have been developed to
achieve better results in some specific systems, as it can be
seen in (Grossmann et al., 2009). Other traditional meth-
ods are also developed and adopted, as the N4SID algo-
rithm (Van Overschee and De Moor, 2012; Rabah et al.,
2016), that still has satisfactory results in system iden-
tifications (Grossmann et al., 2009; Panday et al., 2009;
Kojio et al., 2014). An identification process results in a
dynamic model which is believed to be the best approxi-
mation of certain real process.

However, even using tested and approved methods, a
system identification may not give what is expected from
its model. It can diverge in peak values, up or down
trends, model time constant and more.In consequence, one
or more validation methods must be applied on the identi-
fied model to analyses its fit with the real process.

In this paper, model validation of a fluidized-bed incin-
eration furnace by six quality criteria is performed. The
furnace is owned by SIAAP (Rabah et al., 2016; Mailler
et al., 2014) that provides raw measured data to be pro-
cessed. The measured temperature of each part of the
furnace as well as other signals useful for modelling are
provided in a thirty-second sample time. Prediction data
of resultant model are then compared to observed data
for each incinerator sub model. The validation methods
adopted are known as NRMSE, LCE and NMSE, AME,
MSE and MSDE defined in (Hauduc, 2011). Finally, the
results are analyzed and compared to each other. Valida-
tion methods are also used for on-line identification meth-
ods.

This paper is organized as follows: in the next section
SIAAP is presented. The identification method and its re-
sults are presented in Section 3. The validation methods
adopted for this paper are defined in Section 4. The vali-
dation results for each model are presented in section 5.

2 Industrial Process Description
2.1 SIAAP Waste water and sewage Sludge

Treatment Process
The SIAAP is a French public institution. It was founded
in 1971 by the Council of Paris in order to perform the
wastewater treatment (WWT) of Greater Paris due to the
poor quality of the city’s rivers at that time. Nowadays,
SIAAP performs the transport, storage, management and
purification of wastewater of 180 communes reaching al-
most nine million users. It can purify more than 2,5 mil-
lion m3 (Mailler et al., 2014) of wastewater each day with
its 6 treatment stations.

In Seine Centre Plant, where the studied sludge incin-
erator furnace is located, WWT flux can get up to 2,8 m3

per second in dry weather. That infrastructure allows to
change treatment process and can purify up to 12 m3 of
wastewater per second. In this site, there are two different
ways of treatment performed: wastewater treatment and
sludge treatment.

The WWT in Seine Center Plant is divided in three

EUROSIM 2016 & SIMS 2016

836DOI: 10.3384/ecp17142836       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



Figure 1. Sludge Treatment Diagrams.

stages. The preliminary treatment allows eliminate big
particles like sand or fats. The second one, decantation, al-
lows the elimination of much part of colloids, suspended
solids and orthophosphates. The third and last one, bi-
ological treatment, allows the elimination of carbon and
nitrogen pollution.

In Figure 1 we present sludge treatment part. Sludge is
the result of WWT. First of all, sludge is treated passing
by floatation and dehydration process in order to control
the water concentration in the sludge, in a way that it does
not disturb its incineration. In the first one air and polymer
are injected to promote in the process of water and sludge
separation and in the second one another polymer is in-
jected to sludge thickening. Then, sludge is injected in-
side the fluidized-bed furnace to incineration. The smoke
produced is then treated by five different processes, aimed
to control smoke temperature and pollution level. Hot air
issued of the smoke temperature treatment represent the
fluidised air in order to maintain furnace temperature.

Relative data from the sludge treatment process of
Seine Centre Plant is given by SIAAP for the development
of this research.

2.2 Incineration Process
The incineration in the Waste Water Treatment Plants
(WWTPs) is a thermal recycling relative to sewage sludge

treatment. The purpose of this technologies is to solve
hygiene problems while the WWTPs effluents are consid-
ered as a source of contamination (Mailler et al., 2014).
Despite the complexity of the combustion mechanism
involved and the strongly non-linearity, the use of this
technology has increased thanks to new thermal recovery
strategies (Martins et al., 2014; Tong et al., 2012; Ravelli
et al., 2008; Khiari et al., 2008; Hadavand et al., 2008; Li
and Li, 2016).

Figure 2. The incineration process sketch.

Figure 2 presents the considered incineration process
which is composed by two principal process: the furnace
(incinerator) and the heat Exchanger.

2.2.1 The Furnace
The Seine center furnace is called Pyrofluid incinerator. it
is based on the bubbling fluidized bed technology. This
system is consist of 6 important parts as shown in Figure
2:

• Windbox: it ensures the preheated fluidised air
transfer to the Bed, and has a major role in the boot
process.

• Vault: it ensures uniform distribution of air thanks to
tuyeres.

• Fluidised bed: it is composed of sand as inert par-
ticles. The Injection fluidised air in the bed ensure
uniform turbulence.

• Freeboard: its volume allows the complete combus-
tion of organic material. In the reactor, the temper-
ature should be maintained at T2S = 850 ◦C for at
least 2 seconds.

• Dome: at this level, NH4OH is injected in order to
reduce NOx toxicity and water to avoid high temper-
ature.

• Flue: it ensures fume transport to the heat exchanger.

The load temperature of this process is from 800◦C to
950 ◦C and it ensures the total combustion of sludge in just
few seconds. This technique reduces the volumes of the
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incinerated waste by 90% and the mass by 70% (Rabah
et al., 2015).

2.2.2 The Heat Exchanger

In fact, the heat exchanger is composed by two exchangers
blocks: recuperator and economizer.

In order to ensure an optimal energy recovery, the ther-
mal energy resulting of combustion phenomenon is recy-
cled in the process thanks to the recuperator that preheats
the fluidizing air and the economizer, allows the water
heater for other needs at the station.

3 Identification Process Overview
The fluidized bed incineration is one of the key innova-
tive technologies in the field of sewage sludge incinera-
tion treatment but also the most complex one because of
the difficulty of establishing a representative model of the
process in order to improve the system efficiency. How-
ever, to understand the dynamics of fluidized bed is nec-
essary but not sufficient to improve the performance of
this technology. The development of numeric identifica-
tion methods provide tools to model the dynamics of these
complex systems. These models are usually used in order
to improve control and guarantee optimal performance.

The furnace is driven by external excitation, these are
the system "Inputs". The reaction of the process which
is measured by the sensors is called system "Output".
The objective in this step is to synthesize a mathematical
model that describes the system reaction, this model will
be able to predict the output of the system.

The incineration process is decomposed into 6 sub-
models interconnected between them as presented in Fig-
ure 3.

3.1 Sludge Incineration sub-models: Input-
output interaction.

Figure 3. Sludge Incineration: input-output Sub-model.

• M1 - Bed Model (TB).

• M2 - Reactor Model (T 2S).

• M3 - Top Reactor Model (TS).

• M4 - Flue model(T fin).

• MR - Recuperator Model (T fout ,Tain)

• G - Model of thermal dissipation (Tbv)

3.2 Identification Strategy
The identification is to find mathematical models of sys-
tems based on experimental data (black box model) and
available knowledge (Grey box model or semi-physical
model). These models must provide an approximation of
the considered system in order to calculate the physical
parameters or design simulation algorithms, monitoring or
control. The classic approach is to formalize the available
knowledge, to collect experimental data and estimate the
structure, the parameters, and end up with validation. The
identification methods are generally based on minimizing
of the "prediction error". In other words, these techniques
establish a model by reducing prediction error of the fu-
ture output Yi while considering past output Y0 and input
U0 and Ui. In this case, we present validation result of
identification model based on the subspace state space sys-
tem identification method (Favoreel et al., 2000; Hachicha
et al., 2014; Jamaludin et al., 2013; Van Overschee and
De Moor, 1994; Viberg, 1995). All models are presented
as a linear discrete time invariant state space model (LTI)
(Pekpe, 2004; Van Overschee and De Moor, 2012):{

xk+1 = Axk +Buk +νk
yk =Cxk +Duk +ωk

(1)

Where xk ∈Rn is the state vector at discrete time instant
k, uk ∈Rm is the input, yk ∈Rl is the output while νk ∈Rn

and ωk ∈ Rl are additional unobserved signals sequences,
νk is the measurement noise and ωk the process noise. The
identification result was presented in (Rabah et al., 2016).

4 Validation Methods
The validation of identified models uses the relative
reference-model criteria that compares the residuals of the
identified model to the ones of a simplistic and reference
model. In order to know error greatness, the absolute cri-
teria will also be used. According to (Hauduc, 2011), nei-
ther the relative error criteria nor the graphical methods
are considered. In fact, the relative error criteria does
not offer a relation between two models as the relative
reference-model and the graphical methods don’t state a
numerical result of its method, which resulting in a quali-
tative method.

4.1 Absolute Criteria
In this paper, absolute criteria approach avoid error com-
pensation. And there is an optimal cost value of zero in
this approach. Error dimensions are given in the square of
the measured temperature unit.
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The AME method, defined by (2), denotes the ab-
solute maximum error. It is used to know the model’s
behaviours, but it does not describe the real process very
well. The MSE method, defined by (3), emphasizes high
errors but it does not have a reference, which is difficult
to decide if its result is satisfactory or not. The MSDE
method, defined by (4), is calculated based on two time
steps. It denotes peak’s timing errors.

AME(◦C) = max(|Oi−Pi|) (2)

MSE(◦C2) =
1
n

n

∑
i=1

(Oi−Pi)
2 (3)

MSDE(◦C2) =
1

n−1

n

∑
i=1

((Oi−Oi−1)− (Pi−Pi−1))
2

(4)

4.2 Relative reference-model criteria
The NRMSE method, defined by (5), emphasizes larger
errors in the identified model and can be compared to other
methods to indicate the influence of this type of error. One
could state that larger errors would not be emphasized by
this method, but as seen in (5), the square root is present
in both numerator and denominator. The denominator root
underlines errors when the observed data is much closer to
its mean than to predicted data.

The LCE method, defined by (6), emphasizes very low
magnitude errors. Natural logarithm in both numerator
and denominator puts all residuals in a lower scale in a
way that smaller residuals have influences in results closer
to the influence of greater ones. Then, greater errors con-
tinue to be considered in LCE criteria, but with lower em-
phasis.

Finally, NMSE method, defined by (7), also emphasizes
high errors, but without a square root. It seems that greater
residuals will give lower criteria values, but results of this
criteria tends to be more elevated than NRMSE - i.e. better
results - when the observed data is closer to its mean than
to predicted data.

All these methods avoid errors compensations and have
an optimal cost value of 1. Values close to zero indicate
that the identified model is not better than the reference
model, which is all in this case a constant equal to ob-
served data mean. Negative values indicate a model worse
than the reference model. Lower possible value is negativeinfinity.

NRMSE(%) = 1−

√
∑

n
i=1 (Oi−Pi)

2√
∑

n
i=1
(
Oi− Ō

)2
(5)

LCE(%) = 1− ∑
n
i=1 (lnOi− lnPi)

2

∑
n
i=1
(
lnOi− lnO

)2 (6)

NMSE(%) = 1− ∑
n
i=1 (Oi−Pi)

2

∑
n
i=1
(
Oi− Ō

)2 (7)

5 Results and Discussions
This section presents the validation of each sub model
identified using a subspace method. The recuperator part
that comes after the flue, is divided in two models. One
analyses the fluidised air and the other deals with the
fume temperature. The models are called MRAirOut and
MRSmokeOut , respectively. The output signal of each model
is the temperature of its respectively furnace section. vali-
dation algorithms are developed using MATLAB interface
in order to get NRMSE, NMSE, MSE, LCE, AME and
MSDE results.

Tables 1 and 2 show results of each validation method
for each sub model for absolute criteria and relative
reference-model criteria, respectively. Two different fur-
nace operation modes are presented: one with reactor fuel
injection and the other without fuel injection.

Considering Section 4, absolute criteria has subjective
results, having different quality standard values depending
on very specific system characteristics. However, these
methods could be useful for superficial analysis. It is seen
in Table 1 that the models present tolerable AME results,
except for the model MRSmokeOut , knowing that tempera-
ture in the furnace can reach values in the order of 900◦C.
MSE results cannot be analysed singly due to its subjec-
tivity, but the results of the same model in both operation
modes can be compared. It is seen that M1, M2, M3 and
MRSmokeOut have better MSE values in operation without
reactor fuel injection than operation with fuel.

Table 1. Absolute Criteria Results of Each Validation Method
with and without Reactor Fuel Injection.

Sub Model AME MSE MSDE

Without
Fuel

M1 4.40 2.70 0.07
M2 10.12 7.31 1.51
M3 6.00 2.00 0.16
M4 28.85 15.32 0.08
G 6.43 8.74 0.05

MRAirOut 14.31 38.63 0.02
MRSmokeOut 12.59 25.65 0.05

With
Fuel

M1 / M2 22.25 18.44 2.65
M3 33.19 53.08 0.52
M4 10.29 2.98 0.08
G 8.49 1.83 0.05

MRAirOut 21.50 16.12 0.05
MRSmokeOut 52.47 142.88 0.34

5.1 Relative Reference-Model Criteria Results
At first, we note that the values have a sorting relation, in
a way that if all the NRMSE values are sorted in ascend-
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Table 2. Relative Reference-Model Results of Each Validation
Method with and without Reactor Fuel Injection.

Sub Model NRMSE LCE NMSE

Without
Fuel

M1 55.24 79.95 79.96
M2 53.20 78.07 78.09
M3 83.65 97.31 97.34
M4 73.15 92.59 92.79
G 82.53 96.96 96.95

MRAirOut 73.30 92.77 92.87
MRSmokeOut 66.68 88.76 88.90

With
Fuel

M1 / M2 57.97 82.34 82.33
M3 48.29 73.62 73.26
M4 61.69 85.44 85.32
G 85.73 98.00 97.96

MRAirOut 73.73 93.28 93.10
MRSmokeOut 68.35 90.68 89.98

ing or descending order, the other two criteria results will
follow the same order. Thus, the bigger NRMSE values
are, the bigger LCE or NMSE values will be. It does not
imply a linear relation among these criteria. It just makes
it clear the different emphasis that each method gives to
residuals types.

Considering this point, it can also be said that all the
models have similarities in the type of the error. For ex-
ample, M1 with fuel has a NRMSE result of 42,01% and
LCE result of 65,92% and M1 without fuel has a NRMSE
result of 55,24% and LCE result of 79,95%.

Moreover, it can also be suggested that some data are
correlated, as it has the same type of error. It means that
the inputs and outputs signal of one sub model may be
related to the inputs and outputs signal of another one.

Each system has different response curves, like swing-
ing and noisy curves, slowly and soft curves, periodical
curves and more. Like each validation method lay em-
phasis on a kind of residual, each system should adopt a
different validation method. For this paper, fluidized-bed
furnace system is identified and should be validated. As
the temperature curves have so many peaks, peak timing
validation methods like MSDE (Hauduc, 2011) should be
chosen. Looking at the residuals values, it is noted that in
most cases that their values are not so high. Thus, a valida-
tion method for low magnitude residuals may be adopted.
It is shown in Table 2 that the LCE results for most of
models are excellent.

As for on-line identification, validation methods need
to be extremely secure in some cases. All the precautions
must be taken to avoid inefficient or unstable models. To
prevent this situation, redundancy methods should be per-
formed. In a general view, a method that takes in account
high and low magnitudes residuals could do well. As a
suggestion, LCE and NRMSE methods should be adopted
simultaneously. This on-line identified model validation
has not yet been proven, but it is a subject of next studies.

6 Conclusions
This paper investigates model validation of a fluidized-
bed incineration furnace by different quality criteria.
The model of each part of the furnace is identified with
the N4SID method using MATLAB function. The three
methods adopted present good results. Regarding the
type of error of the dynamic system being studied, low
magnitude error methods should be performed. LCE
method presents excellent results. For on-line model
identification, both LCE and NRMSE are suggested.

Notation
SIAAP Paris urban area waste-water treatment authority.
NRMSE Normalized Root Mean Square Error.
LCE Logarithmic residuals Comparison errors.
NMSE Normalized Mean Square Error.
AME Absolute Maximum Error.
MSE Mean Square Error.
MSDE Mean Square Derivative Error.
Oi Observed model data.
Pi Predicted model data.
Ō Observed data mean
n The number of validation data.
T 2S Reactor Temperature (Temperature of 2s) (◦C).
TS Temperature in the top of the incinerator (◦C).
TB Bed Temperature (◦C).
Tbv Windbox Temperature (◦C).
InT 2S Reactor fuel injection (l/s).
InB Bed fuel injection (l/s).
QS Sludge flow (l/s).
InNH4OH NH4OH injection (l/s).
Ins Water top reactor injection (l/s).
Qair Fluidizing air flow (Nm3)
PdB Bed differential pressure(mbar)
T fin Recuperator input fume temperature (◦C).
T fout Recuperator output fume temperature (◦C).
Tain Recuperator input Air temperature (◦C).
Taout Recuperator output Air temperature (◦C).
O2 Oxygen measure (%).
Q f Flue gas flow (Nm3).
PC Flue pressure (Nm3).
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