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Abstract 
CO2-EOR is an attractive method because of its 

potential to increase the oil production from matured 

oilfields, at the same time reduce the carbon footprint 

from the industrial sources. The field response to the 

CO2-EOR technique depends on the petrophysical 

properties of the reservoir. Carbonate reservoirs are 

characterized by low permeability and strong 

heterogeneity, causing significant amounts of water and 

CO2 to be recycled when CO2 is re-injected into the 

reservoir. Naturally fractured carbonate reservoirs have 

low oil production, high water production, early water 

breakthrough and high water cut. This study focuses on 

the oil production and the CO2 recycle ratio in naturally 

fractured carbonate reservoirs, including near-well 

simulations using the reservoir software Rocx in 

combination with OLGA. The simulations indicate that 

closing the fractured zone causes delayed water 

breakthrough and dramatically reduced water cut, 

resulting in improved oil recovery as well as lower 

production and separation costs. 

Keywords:     CO2-EOR, fractured carbonate reservoirs, 
inflow control, near well simulation 

1 Introduction 

Deep geologic injection of supercritical carbon dioxide 

(CO2) for enhanced oil recovery (EOR) plays an 

important role in the sequestration of CO2 to minimize 

the impact of CO2-emissions due to global warming 

(Ettehadtavakkol et al, 2014; Hill et al, 2013). CO2-

EOR refers to the oil recovery technique where 

supercritical CO2 is injected into the oil reservoir to 

stimulate the oil production from depleted oilfields. The 

CO2 mixes with the stranded oil and change the oil 

property, making the immobile oil mobile and 

producible (Ettehadtavakkol et al, 2014). 

 The efficiency of the CO2-EOR technique greatly 

depends on the petrophysical properties of the reservoir 

(Ettehadtavakkol et al, 2014; Tarek, 2014). In carbonate 

reservoirs, the petrophysical properties generally are 

controlled by the presence and the distribution of 

naturally fractures. Fractures are high permeability 

pathways for fluid migration in a low permeability rock 

matrix (Fitch, 2010; Moore, 1989). Oil recovery from 

carbonate reservoirs with fractures are challenging 

compared to oil recovery from other reservoirs, as the 

fluids preferably will flow through the high permeable 

fractures. The result is poor sweep efficiency and 

potentially low oil recovery, due to very early water 

breakthrough (Haugen, 2010). 

 Most carbonate reservoirs are naturally fractured, 

causing significant amounts of water and CO2 to be 

produced together with the main stream from the 

production well during the CO2-EOR process. (Fitch, 

2010; Ettehadtavakkol et al, 2014). For the oil 

companies this is both economic, operational and 

environmental challenging. High demands and rising oil 

prices has increased the focus on new inflow technology 

to improve oil recovery from low recovery oilfields 

(Tarek, 2014). The breakthrough of water and CO2 can 

be limited by installing Autonomous Inflow Control 

Valves (AICV) in the inflow zones in the well.  The 

AICV will automatically shut off the production of 

water and CO2 from one specific zone in the well, but at 

the same time continue the production of oil from other 

zones. The AICV can replace the conventional Inflow 

Control Devices (ICD) installed in a well (Brettvik, 

2013).  

 This study focuses on CO2-EOR in naturally 

fractured carbonate reservoirs, including simulations of 

oil production from an oil-wet reservoir. Both ICD and 

AICV completion were simulated in order to study the 

benefits of the AICV technology. The simulations are 

carried out using commercial reservoir simulation 

software.   

2 CO2-EOR 

CO2-EOR is a technique that involves injection of 

supercritical CO2 into underground geological 

formations, or deep saline aquifers. The goal is to 

revitalize matured oilfields, allowing them to produce 

additional oil. CO2 is highly soluble in oil and to a lesser 

extent in water. As CO2 migrates through the reservoir 

rock, it mixes with the residual oil trapped in the 

reservoir pores, enabling the oil to slip through the pores 

and sweep up in the flow from the CO2-injection well 

towards the recovery well. (Hill et al, 2013) The 

principle of CO2-EOR is shown in Figure 1.  

 When supercritical CO2 and oil mix, a complicated 
series of interactions occur wherein the mobility of the 

crude oil is increased. These interactions involve 
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reduction in the interfacial tensions and the capillary 

pressure between the oil and the water phase. Injection 

of CO2 into the oil formation changes the oil physical 

properties in two ways, leading to enhanced oil 

recovery. First, the oil viscosity is reduced so that the oil 

flows more freely within the reservoir. Then, a process 

of dissolution occur thereby causing swelling of the oil, 

resulting in expansion in oil volume which means that 

some fluid have to migrate. The amount of swelling 

depends on the reservoir pressure and temperature, the 

hydrocarbon composition and the physical properties of 

the oil (Hill et al, 2013; Pasala, 2010, NRG Energy, 

2014; Ghoodjani et al, 2011). 

 

Figure 1. Principle of CO2-EOR (Oil and Gas 360, 2016). 

3 Carbonate reservoirs 

More than 60 % of the world’s oil resources occur in 

carbonate rocks (Fitch, 2010). Although carbonate 

reservoirs contain a majority of the oil reserves, only 

small amounts of the oil production worldwide come 

from these reservoirs (Fitch, 2010). Generally, 

carbonate reservoirs are characterized by complicated 

pore structures and strong heterogeneity. The 

heterogeneity of carbonate reservoirs is the result of a 

complex mineral composition and a complex rock 

texture. The heterogeneity is one of the main reasons 

causing low oil recovery from carbonates, as it 

contributes to highly variability in the petrophysical 

properties within small sections of the reservoir (Fitch, 

2010; Moore, 1989). 

3.1 Petrophysical properties of carbonate 

reservoirs 

The petrophysical properties are controlled by the 

presence and the distribution of open fractures. Most 

carbonate reservoirs have a dual character of rock matrix 

and natural fractures. Fractures are discontinuities in the 

rock appearing as breaks in the natural sequence. The 

orientation of the fracture can be anywhere from 

horizontal to vertical, as illustrated in Figure 2. The 

fractured corridors exist in all scales, ranging from 

microscopic cracks to fractures of ten to hundreds of 

meters in width and height. This results in greatly 

variable permeability in carbonate reservoirs, from 

values less than 0.1 mD in cemented carbonates to over 
10 000 mD in fractures and have a considerable impact 

on oil production (Fitch, 2010; Moore, 1989). 

 Porosity is another important parameter affecting the 

oil recovery as it is a result of the secondary processes 

involving compaction and cementation of the sediments, 

and is controlled by the original grain shape and grain 

size distribution. Porosity in carbonate reservoirs varies 

from 1 % - 37 % (Fitch, 2010). 

 

Figure 2. Fractures in reservoir. 

 

Wettability of the reservoir describes the preference for 

the rock matrix to be in contact with one certain fluid 

phase over another. The reservoirs can be either water-

wet or oil-wet (Satter et al, 2007). An oil-wet reservoir 

has higher affinity for the oil phase than for the water 

phase, oil will occupy the smaller pores and preferably 

stick to the grain surface in the larger pores. In oil-wet 

reservoirs, attractive forces between the rock and the 

fluid draw the oil into the smaller pores. While repulsive 

forces cause the water to remain in the center of the 

largest pores. The opposite condition is water-wet 

reservoir, in which the pore surface prefers contact with 

the water phase and water absorbs into the smaller pores. 

The wetting phase fluid often has low mobility, while 

the non-wetting fluid is more mobile and especially at 

large non-wetting phase saturations (Schlumberger, 

2007; Ahmed, 2013, International Human Resources 

Development Corporation, 2016). A great majority of 

carbonate reservoirs tend to be oil-wet. Extensive 

research work on wettability for carbonate reservoir 

rocks confirms that carbonates exhibit significantly 

more oil-wet character than water-wet character. 

Performed contact angle measurements show that 15 % 

of carbonates are strongly oil-wet (θ=160°-180°), 65 % 

are oil-wet (θ=100°-160°), 12 % are intermediate-wet 

and 8% are water-wet (Esfahani et al, 2004). 

Evaluations of wettability for the carbonate rock 

samples, using relative permeability curves and Amott 

tests conclude that the carbonate reservoirs investigated 

ranges from intermediate-wet to oil-wet (Esfahani et al, 

2004). Figure 3 illustrates the difference between a 

water-wet and an oil-wet reservoir rock.  

 

Figure 3. Wetting in pores (Schlumberger, 2007). 
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Presumed petrophysical properties of carbonate 

reservoirs are presented in Table 1. 

Table 1. Petro physical properties of carbonate reservoirs 

(Fitch, 2010; Moore, 1989). 

Porosity Permeability Permeability 
in fracture  

Wettability 

0.01-0.3 0.7-130 mD Large Intermedia

te-wet to 

strongly 

oil-wet 

 

3.2 CO2-EOR in carbonate reservoirs  

Use of supercritical CO2 for EOR stimulates oil 

production from low recovery oilfields, simultaneously 

contributing to minimizing the impact of CO2-emission 

to the atmosphere. The injected CO2 remains trapped in 

the underground geological formations, as much of the 

CO2 is replacing the oil and water in the pores (NRG 

Energy, 2014).  

Some of the world’s largest remaining oil reserves are 

found in oil-wet, fractured carbonate reservoirs. The oil 

production performance from these reservoirs is nearly 

half the production from other reservoirs, whereas the 

CO2 utilization is about 60% less (Ettehadtavakkol et al, 

2014; Fitch, 2010). CO2-EOR in carbonate reservoirs 

poses great challenges to the oil industry as it is strongly 

linked to the relationship between the fractures and the 

rock matrix. Because fractures may exhibit 

permeabilities that are several orders of magnitude 

higher than the permeability of the rock matrix, the CO2 

may channel into the high permeable fractures and 

thereby not contribute to EOR.  

4 Simulations 

The near-well simulations of CO2-injection into the 

carbonate reservoir were carried out using the 

commercial reservoir simulation software Rocx, in 

combination with OLGA. The OLGA software is the 

main program, but several additional modules are 

developed to solve specific cases. The geometry for the 

simulated reservoir is 0.5 m in length, 96 m in width and 

50 m in height. 3 grid blocks are defined in x-direction, 

25 in y-direction and 10 in z-direction. The radius of the 

wellbore is 0.15 m. The well is located 35 m from the 

bottom, indicated as a black dot in Figure 4.  

The reservoir is divided into three zones in x-direction. 

A constant porosity of 0.15 is used in the entire 

reservoir. A permeability of 4000 mD is set in the 

second zone, and a permeability of 40 mD is set in the 

first and the third zone. The second zone represents the 

fractured part, thus the permeability is set much higher 

in this zone compared to the two other zones. The 

temperature is maintained constant at 76°C and the 

waterdrive pressure from the bottom of the reservoir is 

176 bar, the wellbore pressure is set to 130 bar.  

 

Figure 4. Grid and geometry of the simulated reservoir. 

 

The reservoir and fluid properties for the simulations 

carried out are presented in Table 2. 

Table 2. Reservoir and fluid properties for the specific 

simulations. 

Properties Value 

Oil viscosity 10 cP 

Reservoir pres 

sure 

176 bar 

Reservoir temperature 76°C 

Oil specific gravity 0.8 

Porosity 0.15 

Permeability first zone    

(x-y-z direction) 

40-40-20 mD 

Permeability second 

zone  (x-y-z direction) 

4000-4000-2000 mD 

Permeability third zone  

(x-y-z direction) 

40-40-20 mD 

Wellbore pressure 130 bar 

 

The module Rocx is connected to OLGA by the near-

well source component in OLGA, which allows 

importing the file created by Rocx. In order to get a 

simulation of the complex system including valves and 

packers, OLGA requires both a “Flowpath” and a 

“Pipeline” as shown in Figure 5.   

 In the simulations, the “Flowpath” represents the pipe 

and the “Pipeline” represents the annulus. The annulus 

is the space between the pipe and the rock, as presented 

in  (Schlumberger, 2007).   

   

Figure 5. A schematic of the pipe and the annulus. 

(Schlumberger, 2007). 
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Figure 7 illustrates how the “Flowpath” is divided into 

six equal sections. The sources implemented in the 

“Pipeline” are connected to the boundaries in Rocx, and 

indicate the inflow from the reservoir into the annulus. 

the leaks indicate the inflow from the annulus into the 

pipe, through the control valves A, B and C. The packers 

are simulated as closed valves and are installed to isolate 

the different production zones in the well.  

 In the simulations, the packers divide the “Pipeline” 

into three zones. The inflow from Source-1 goes from 

section one in the annulus and enters the pipe in section 

two. Similarly, for the flow in the production zones two 

and three.  

4.1 Relative permeability curves 

The simulation software Rocx generates the relative 

permeability curves for oil (Kro) and water (Krw). The 

calculations are based on the Corey correlation, a power 

law relationship with respect to water saturation. The 

model is derived from capillary pressure data and is 

widely accepted as a good approximation for relative 

permeability curves in a two-phase flow. The required 

input data is limited to the irreducible water saturation 

(Swc) and the residual oil saturation (Sor), and their 

corresponding relative permeabilities (Tangen, 2012): 

𝐾𝑟𝑤 = 𝐾𝑟𝑤𝑜𝑐 (
𝑆𝑤 − 𝑆𝑤𝑐

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟
)
𝑛𝑤

 


𝐾𝑟𝑜 = 𝐾𝑟𝑜𝑤𝑐 (
1 − 𝑆𝑤 − 𝑆𝑜𝑟
1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟

)
𝑛𝑜𝑤




Where Swc defines the maximum water saturation that a 

reservoir can retain without producing water, and Sor 

refers to the minimum oil saturation at which oil can be 

recovered by primary and secondary oil recovery. Krwoc 

is the relative permeability of the water at the residual 

oil saturation, and Krowc is the relative permeability of 

oil at the irreducible water saturation. nw and now are the 

Corey coefficients for water and oil respectively. The 

coefficients are functions of the pore size distribution in 

the reservoir and are therefore reservoir specific. The 

Corey coefficients strongly influence the relative 

permeability curves, as the relative permeability 

changes when the pore-geometry change. Typical 

values for the Corey coefficient for an oil-wet reservoir 

are nw = 2-3 and now = 6-8. 

To simulate CO2-injection into the reservoir, it was 

necessary to correlate for the effects of CO2 to the 

Figure 6. OLGA study case for the performed simulations. 

 

Figure 7. The near-well simulation in OLGA. 
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relative permeability curves. CO2-injection reduces the 

interfacial tension and the oil viscosity, and causes oil 

swelling. Based on these parameters, the following 

relations was implemented to calculate the Corey’s 

exponents and the residual oil saturation for simulation 

with CO2-injection (Ghoodjani et al, 2011; Tangen, 

2012): 

𝑛𝑜𝑤(𝐶𝑂2 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛) = 0.568951 ∙ 𝑛𝑜𝑤  

𝑆𝑜𝑟(𝐶𝑂2 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛) = 0.754288 ∙ 𝑆𝑜𝑟  

The relative permeability curves for the performed 

simulations are generated in Rocx, using the parameters 

listed in Table 3. 

Table 3. Relative permeability data for the specific 

simulations. 

Swc Sor Krowc Krwoc nw now 

0.1 0.1 1 0.75 3 3.4 

 

Figure 8 shows the implemented relative permeability 

curves for the simulations. The green lines represent the 

relative permeability of oil (Kro) and the blue lines 

represent the relative permeability of water (Krw). 

Initially, when the water saturation is equal to the critical  

water saturation (Sw = Swc) the injected CO2 does not 

contact fully with the oil. As oil saturation decreases, the 

movement of oil becomes more difficult and the injected 

CO2 will improve the oil flow by lowering interfacial 

tension and the oil viscosity. The CO2-injection may 

lead to reduced trapped oil and lower residual oil 

saturation by swelling mechanism.  

 

 

Figure 8. Relative permeability curves. 

4.2 Input to OLGA and Rocx  

The simulations were carried out for an oil-wet 

carbonate reservoir with fracture. Two different cases 

were simulated. Both cases include the relative 

permeability curves seen in Figure 8 and the reservoir 

and the fluid properties listed in Table 2. In Case 1, all 

control valves A, B and C are fully open. In Case 2 the 

control valve A and C are open, while control valve B is 

kept closed. This is to study how closing the fractured 

zone will affect the oil production and the CO2-recycle 

ratio in the reservoir. The simulations where run for 400 

days. Detailed specifications for the simulations are 

listed in Table 4. 

Table 4. Input for the performed simulations.  

Case Data 
input to 
Rocx 

Relative 
perm. 
curve 

CO2-
injection 

Position  

Valve A 

and 

Valve C 

Position 

 Valve B 

1 See 

Table 2 

See     

Figure 9 

Yes Open Open 

2 See 

Table 2 

See    

Figure 9 

Yes Open Closed 

5 Results 

Produced water is the largest by-product associated with 

the oil production. The oil industry aim for new inflow 

control technology to shut off production from highly 

fractured zones when water breakthrough occur, and 

thereby be able to utilize the benefits from CO2-EOR. 

To simulate the closing of the fractured zone in Case 2, 

Autonomous Inflow Control Valves (AICV) replace the 

conventional Inflow Control Devices (ICD) in the well. 

The AICV completely stops the production from a 

specific production zone when it starts to produce water 

and/or gas along with the oil. The oil production from 

the well will continue from the other production zones 

in the reservoir. Figure 8 and Figure 9 shows the 

accumulated oil and water production respectively. The 

orange lines represent Case 1 and the black lines 

represent Case 2. Both cases simulate injection of CO2 

into the reservoir, thus simulates CO2 displacing the oil. 

Assuming that the injected CO2 completely dissolve in 

the water phase, water is considered as carbonated water 

in the following results. The consequence with injection 

of CO2 into fractured reservoirs is that the carbonated 

water and CO2 moves through the fractures and directly 

into the production well, without being distributed in the 

reservoir. Large amounts of CO2 will in that case be 

recycled and will not contribute to EOR. 

 

Figure 8. Accumulated oil volume. 
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Figure 9. Accumulated water volume. 

 

The large volume flow of carbonated water produced in 

Case 1 is due to no restrictions for the fluids to flow 

through the fractured zone in the reservoir, consequently 

most of the oil and carbonated water are produced from 

the second zone in this case. This is seen more clearly in 

Figure 10, where the total liquid flowrate in the different 

sections in the pipe is displayed. The total liquid flow 

includes the volume of oil, water and CO2. The orange 

line represents Case 1 and the black line represents Case 

2.  

 

Figure 10. Total liquid flowrate along the pipe. 

 

As seen from the figure, the major part of the total liquid 

volume is produced in the fractured part of the reservoir 

in Case 1, as it enters the pipe in section 4. For Case 2, 

the total liquid flowrate increases along with the 

pipeline, but the inflow from the annulus to the pipe 

occurs mainly in section 2 and section 6. This is as 

expected since these sections represent the first and the 

third production zone in the reservoir. In section 1, 3, 4 

and 5 the total liquid flowrate is constant, this is due to 

no inflow from the annulus into the pipe in these 

sections, as the control valve in the second production 

zone is closed. 

Fractured carbonate reservoirs are a major challenge 

for the oil industry using CO2-EOR. The low 

permeability and the high heterogeneity result in high 

production rate of water and CO2, mainly through the 

fractured zone. By chocking the high permeability zone, 

the oil and water production is reduced. On the second 

hand it delays the water breakthrough, which in turn 

results in decreased water cut. The water cut is the 

defined as the ratio of water to the total liquid, and 

expresses the amount of water produced along with the 

oil. Figure 11 shows the water cut during the whole 

simulation, the orange line represent Case 1 and the 

black line represent Case 2. 

 

Figure 11. Water cut. 

 

Carbonated water and CO2 produced along with the oil 

cause economic, operational and environmental 

difficulties for the oil industry. Treatment of the 

produced water faces challenges resulting in necessity 

for expanding the capacity of water separation and 

facilities for handling the large volumes of carbonated 

water and CO2. The high heterogeneity of carbonates is 

the main reason for the low oil recovery from these 

reservoirs. Water flows more easily through the 

fractured zone compared to the oil, resulting in very 

early water breakthrough and thereby high water and 

low oil flowrate. The results from the performed 

simulations are summarized in Table 5. 

Table 5. Results from Case 1 and Case 2. 

Case Accumulated 
oil volume 

[m3] 

Accumulated 
water 

volume [m3] 

Water 
breakthrough 

[day] 

Water 
cut        

[-] 

1 17 000 355 500 2.9 0.975 

2 18 700 20 100 64 0.725 

 

As seen, closing the fractured zone in the reservoir is 

advantageous to achieve improved oil quality as well as 

lower production and separation costs. The water cut in 

Case 1 is 0.975 after 400 days of simulation, meaning 

that 97.5 % of the total liquid volume is carbonated 

water and CO2. The high value for the water cut results 

in low quality oil and large amounts of carbonated water 

and CO2 to be removed subsequently. Another problem 

with fractures is decreased recovery due to early 

breakthrough of carbonated water in the well. When this 

occurs the carbonated water will be the dominating fluid 

and reduce the production of oil. At a certain point the 

production will no longer be profitable and the well may 

be abandoned even though a large amount of oil is still 

left in the reservoir.  
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6 Conclusions

The objective of this work was to study CO2-EOR in a

fractured carbonate reservoir. The study included near-

well simulations of oil production, using the reservoir

software Rocx in combination with OLGA. CO2-EOR

in fractured carbonate reservoirs gives low oil

production, high water production, early water

breakthrough and high water cut. The enormous

amounts of water produced result in challenges

regarding the necessity for expanding the capacity of

water separation and facilities for handling the large

volumes of carbonated water and CO2.

Fractures in the reservoir are a major problem for the

oil industry using CO2-EOR. Water breakthrough

occurs after only 2.9 days in a fractured reservoir and

the water cut is 97.5 % after 400 days of production. Due

to the very early breakthrough of water, significant

amounts of the injected CO2 will be recycled with the

produced water. The simulations indicate that CO2-

injection into a carbonate reservoir in combination with

closing the fractured zone causes delayed water

breakthrough and dramatically reduced water cut,

resulting in improved oil quality, longer lifetime for the

well as well as lower production and separation costs.
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