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Abstract 

Today’s system operators face the big challenge of 

constructing simulation of systems that make efficient 

select of generation resources under variable load 

profiles. This paper describes IEEE five bus system 

modeling which simulated under Simulink. The real 

power load model designed to allow different load 

profile types (residential, commercial and industrial) 

connecting to load buses. The main purpose of this paper 

is to demonstrate the performance of power network 

based on load profile modeling as a means for enhance 

Distribution Network Operators (DNOs) decision in 

power systems. In this paper IEEE five bus system is 

used as a test bed. The results are shown with constant 

and variable load model. The results indicate the 

effectiveness of this flexible load profile model applied 

to the five bus system. 

 
Keywords:     power system analysis, load modelling,
simulation, load profile, network modelling

1 Introduction 

Deregulation of the electric energy systems and a 

progressive increase of the load play a key role in 

improving reliability and continuity of the electrical 

utility services they provide. Due to the complexity of 

load profile, many challenges facing electrical power 

system analysis, like, state estimation, load flow 

calculation, and network planning and operation. 

Distribution network operators (DNOs) report the 

performance of their network based on inadequate 

modelling approaches because large power systems are 

simply represented by a bulk load. 

The hardest part for most DNOs is to determine the 

errors between estimated and actual load profile 

simulation. There is some of early-published state 

estimation studies describing the role of load profiling 

on the classical electrical power networks. Author in 

(Jardini et al., 2000), presents a statistic analysis of 

different load curves to obtain the representative curves 

of the most important customers. The measurements 

were performed for residential, commercial and 

industrial to determine customers’ daily load profile. 

The fuzzy c-means (FCM) method is used for load 

profiling in (Chang et al., 2003). The load profile 

assignment performed by using customers’ monthly 

energy usage data in two steps. After load profiling, the 

author used recognition technique to assign 500 

customers. In (Kim et al., 2011), It was interesting to 

used load profile for energy diagnosis system. Different 

load profile data according to customer type (residential, 

commercial and industrial) obtained from metering 

devices. Consumption separation method was used to 

classify duration of load devices to a certain time 

interval (1 hour, 1 day, 1 week and 1 month). 

On other hand, other authors modelling the optimal 

power flow control for dynamic grid where the load 

changes according to a profile. (Almeida et al., 2000) 

presents an algorithm to calculate a sequence of Primal-

Dual Interior Point optimization solutions under 

variable load conditions. This methodology to find 

optimal power flow based on two main steps: predictor, 

which estimate a new operating point for an increment 

in the load by linear approximation; and corrector step, 

which uses non-linear method to find the optimal 

solution to the new load level. A three load profile are 

used to find the optimal reactive power control. The 

daily load curves divided into several sequential levels 

to reduce operations of control devices switching. 

Voltage quality and power loss for different loads were 

consider as objective function for optimization 

techniques. Typical clustering method and heuristic 

iteration technique used the maximum load deviation 

(MLD) to decompose the load curve (Varga et al., 

2015). 

Other opportunities to improve planning and 

operation of modern network with/without distributed 

generation and storage under different load conditions 

are considered in a large number of articles recently 

(Hernando-Gil et al., 2016; Bazrafshan et al., 2017; 

Guggilam et al., 2016; Ma et al., 2016; Yi et al., 2016; 

Thrampoulidis et al., 2016; Geng et al., 2016, Li et 

al.,2016). This fact shows that this subject continues an 

interesting topic of research. In relation to modern 

network, a real-time classification and encoding of load 

profiles has been proposed in (Varga et al., 2015). The 

author presents software framework to manage the load 

profile at power system operation. The framework is 

based on artificial neural network as encoding engine 

and local hashing algorithm as classifier engine. A 

dynamic load profile was cluster and classify by multi-

resolution analysis (MRA) method (Bazrafshan et al., 

2017). The ability of traditional methods in profiling 

load developed by MRA method for three key (large, 
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volatility and uncertain smart metering data). A more 

flexible load profiling with less computation presented 

in this method by three main steps (decomposition, 

clustering and reconstruction). 

Moreover, there has been an increasing amount of 

literature on the planning of modern power system’s 

reliability. In active distribution systems, (Hernando-Gil 

et al., 2016) proposed methodology based on empirical 

load profile and time varying fault probabilities for 

reliability planning and risk estimation. The approach is 

developed to avoid the underestimation of network’s 

performance at bulk supply points for more realistic 

estimation of customer interruptions. 

Research has shown that installation of distributed 

generation and storage energy take more attention. 

Radial distribution networks with photovoltaic (PV) 

generation was tested to optimize the real power 

consumption of loads (Bazrafshan et al., 2017). The 

power management scheme developed to determine the 

optimal demand response schedule that accounts for 

variable real power injection by PV units. So that, the 

programmable loads provide opportunity to reduce the 

peak load in periods of inappropriate generation. In 

distribution feeders, load profile data and realistic 

photovoltaic (PV) generation are utilized to optimize its 

operation. The active and reactive power set points for 

PV was determine according to voltage regulation and a 

variety of objective functions (Guggilam et al., 2016). 

The proposed method leverage a linearized version to 

formulate a quadratic constrained quadratic program 

(QCQP) as direct applications to distribution networks 

with PV systems. The cost efficiency of the residential 

electricity consumption improved by load scheduling 

(Ma et al., 2016). The load scheduling framework based 

on fractional programing approach to develop a cost 

efficient for the demand side’s day-ahead process and 

real-time pricing mechanism. The proposed algorithm 

considered the distributed energy resources and service 

free in their framework. 

Finally, in attempt to improve the power system 

operation more effectively, energy storage systems 

installed (ESS) with/without distributed generation to 

the modern grid. Real load connecting to distribution 

networks has tested to schedule the ESS by Monte Carlo 

simulation (Yi et al., 2016). The optimization technique 

used for solving an ESS scheduling problem considering 

real load, variable wind energy sources and transmission 

line real time thermal rating (RTTR). The load shifting 

by optimize placement, sizing and control of energy 

storage system presented in (Thrampoulidis et al., 

2016). The network topologies with regardless/regard of 

the load demand, generation capacities and line flow 

limitations effected the costs. A charging/discharging 

policy for the installed storage units formulated as 

slower time-scales. 

However, investigating and modelling varying 

energy demands in various sectors (residential, 

commercial and industrial) will cause significant 

changes in planning, operation and control of power 

system. Most studies in load modelling and profiling 

into electrical power network have been carried out in a 

small number of area. This paper attempts to simulate 

the electrical network with different load profile, which 

can help DNOs to avert the underestimation of 

network’s performance at bulk generation points for 

more actual estimation of customer interruptions. Load 

demand has been developed to determine the overall 

power flow and identify generation sources required to 

meet its increasing as well as exceeded rating elements 

in the network. 

The rest of the paper is constructed as follows. 

Section 2 demonstrates the element of five node network 

modelling. Section 3 gives a brief overview of the load 

profile conception for different type of customers. 

Simulation is implemented and results are presented in 

Section 4. Conclusions are drawn in Section 5. 

2 Load Profile 

In power system, a load profile is a graph illustrating the 

variation in the demand/electrical load versus time. A 

load profile will vary according to temperature, holiday 

seasons and customer type (typical examples include 

residential, commercial and industrial),. DNOs use this 

information to plan how much electricity they will need 

to generate at any given period. These load curves are 

useful in the selection of generator units for providing 

electricity. 

Direct metering devices such as smart grid meters, 

data logging sub-meters, utility meter load profilers and 

portable data loggers can determine load profiles. Real 

demand can be collected at strategic locations to 

analysis load performance, which is beneficial to both 

distribution and end-user customers looking for peak 

consumption (Geng et al., 2010). For most customers, 

based on meter reading schedules, consumption is 

measured on a monthly. Load profiles are used to 

convert the monthly consumption data into estimates of 

hourly or sub hourly consumption in order to determine 

the electrical utilities obligation. For each hour, these 

estimates are aggregated for all customers of an energy 

provider, and the aggregate amount is used as the total 

demand that must be covered by the utilities. 

In this section, the detailed simulation of the load 

profile would be described. For brevity purpose, 

detailed simulation of the load profile for residential, 

commercial and industrial would be shown, covering 

the lower and higher side of the residential units. 

Simulation of three bus load are described concisely. 

2.1 Residential Consumers 

More than half of all electrical power is consumed by 

residences type, which vary in their daily activity 

patterns and the types of appliance they own. Load 

EUROSIM 2016 & SIMS 2016

850DOI: 10.3384/ecp17142849       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



varies by time of day and year where its curve shape be 

function of consumer demand. Figure 1 illustrating how 

electrical demand characteristics varies over a day, or 

when house owners are using electrical power. 

 
Figure 1. Example of residential consumption. 

 

Due to the differences in electric appliances, the 

definition of the representative curves of a range is not 

an easy task to be done and the people habits rising to 

curves of shapes in the peak. In some countries, the 

residential energy consumption value is mainly due to 

refrigerator or freezer, whilst the water heating gives the 

curve peak where heater resistance take 8 min (Li et al., 

2016). Therefore, it is very hard to characterize the peak 

demand because load pattern not fixed for all residential 

usage and depends on many factories such as weather, 

type of human work etc. 

2.2 Commercial and Industrial Consumers 

In commercial businesses load, small and large 

consumers having similar end uses to residential 

(cooling, heating etc) in addition to many need to 

commercial devices (office machinery, cash register, 

escalators etc). Figure 2 represents the electrical use of 

a commercial facility during 24 hours. The commercial 

load (office building, restaurants stores etc) shows a 

strong upward curve during summer (or winter) session 

because it depend heavily on cooling (or heating) 

systems (Lee, 2004). 

 

 
Figure 2. Example of commercial consumption. 

Finally, industrial facilities and plants use 

electricity to variety of manufacturing applications such 

as compressor motors, heating systems etc. The 

industrial load profile does not vary as much through the 

day where it depend on work, weekends and break 

times. The peak demand of summer day for industrial 

consumption from utility system shown in Figure 3. 

 
Figure 3. Example of industrial consumption. 

 

3 5 Node Network Modelling 

Throughout the electrical power network there are 

common buses that look like important branch points 

within the power grid. These buses operate at a defined 

voltage level and phase angle to forming the complex 

bus voltage. In general, three types of busses is consider 

in a power network, namely the slack bus, the generator 

bus and the load bus. 

Figure 4 shows a single line diagram of a 5 bus 

system with two generating units, seven lines. Per unit 

system based on 100 MVA was considered for all parts 

of network. Four basic parts of the system are modelled: 

slack generator, PV control generator, transmission 

lines and load profiles. Figure 5 presents the simulation 

of the 5 bus network using Simulink. 

 

 
Figure 4. Single line diagram of 5 bus network. 
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Figure 5. 5 bus network simulation. 

 

All generation units, load demand and power loss 

calculated is shown in Table 1. 

Table 1. Generation and load demand for IEEE 5bus. 

Unit Total (MW) 

Total Generation (PG2) unlimited 

Total Generation (PG2) 90 

Max. Demand(PD3) residential 45 

Max.  Demand(PD4) Commercial 40 

Max.  Demand(PD5) Industrial  60 

 

3.1 Slack generator 

In a simulated power system, some quantities allowed to 

vary or swing to solve particular steady-state problem 

successfully. For that, there is only one slack generator 

has known voltage magnitude |V| and voltage phase (set 

to 1.0∠0.0˚ (per-unit)). In Figure 6, Psg and Qsg are the 

swing variables and obtained through the load flow 

solution as follows: 

Ssg = Psg + j Qsg (1) 

 

 
Figure 6. Slack generator simulator. 

 

3.2 Voltage Control Generator 

Generator buses or voltage controlled buses have inputs 

of the voltage magnitude corresponding to the generator 

voltage and real power Pg corresponds to its rating 

(Figure 7) . Generally, voltage controlled busses are 

connected to equipment used for voltage and VAR 

correction, such as static VAR correction systems, 

generators and shunt capacitors (Figure 8). It is 

calculated the reactive power generation Qg and phase 

angle of the bus voltage by load flow solution. In 

general, generator is modeled as a complex power 

injection at a specific bus (i) is 

s�� � p�� � 	jq�
�  (2) 

 
Figure 7. Voltage control generator. 

 
 

 
 

Figure 8. Voltage regulator. 
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3.3 Transmission Line  

This section deals with the modelling of transmission 

line elements encountered in the electrical power 

network. Transmission line transmits bulk power from 

sending to receiving end and represented by standard (π 

model) consist of four main elements (resistance, 

inductance, capacitance and conductance). The analysis 

of power system is mainly dependent on the 

performance of the transmission line in the power grid. 

All transmission lines, transformers, and phase shifters 

are modeled with a common branch model as shown in 

Figure 9. The three phase series RLC branch block 

(Figure 10) used to simulate performance of 

transmission line by setting its parameter corresponding 

data of network (Milano, 2005). 

 
Figure 9. π model. 

 
Figure 10. Transmission line simulation. 

 

3.4 Load bus 

At this bus, the real (Pd) and reactive power load (Qd) 

are specified and no generator is connected to it. It is 

required to find out the voltage magnitude and phase 

angle through load flow calculations. The total demand 

of the system is represent the distributed loads over the 

whole network. Power Systems on whether they 

represent an industrial, commercial or residential load, 

they can vary greatly in electrical characteristics as well 

as quantity. In most power simulation, it sees the load as 

a simplest PQ load characteristic with constant demand 

of real and reactive power that does not change with any 

external influences. Various load models have been 

introduced, taking into account day, month and year 

cycles as well as it can be consider the voltage and 

frequency dependencies in the future work. Normally 

constant power loads are modeled as real and reactive 

power consumed at a bus (i) as follows: 

                                ��� � 	�
� � 	
��

�                           (1) 

The loads can be modeled using Simulink block 

(three phase series RLC load) but it will be represented 

as fixed (static) load. A constant MVA load model have 

no ability to vary with time. Therefore, that, simulation 

for variable real power load construct with fixed bus 

voltage reference and variable real power as shown in 

Figure 19. Fault or any external changes of network state 

will not effect on load parameters. This load models can 

be described by the following equation: 
 

                        	�� �	��  �

��
�                                  (2) 

                           �� �	��  �

��
�                                (3) 

where �
�
 stand for reactive powers consumed at 

reference voltage �
�
 and represented by three phase 

series RLC load while �
�
is vary according to load 

profile curve connected to this model. The external 

control structure block connected to this model can be 

variable load curve (continues or discrete). This model 

will enhance the ability of the system to be studied at 

different loading conditions. 

 

4 Simulation Results 

Before modelling the IEEE 5 bus, Newton Raphson 

method has been implemented to calculate all the 

parameters of the system. All generation units, load 

demand and power loss calculated is shown in Table 2. 

Table 2. Generation, load demand and losses for IEEE 
5bus. 

Unit  Total (MW) 

Total Generation (PG1,PG2) 148.05 

Total Demand (PD3, PD4, PD5) 145 

Total real power loss  3.05 

 

The 5 bus IEEE modelling has been developed with 

Simulink in order to study its behavior under different 

load conditions. Slack generator simulated to has 

unlimited real and reactive power generation while its 

voltage and voltage angel set to 1.06∠0.0˚ per unit. 

Parameters of generation, load, voltage and voltage 

angel for other buses have set according to data of IEEE 

five bus shown in Table 3. 
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Table 3. IEEE 5 Bus Data. 

Bus 

No. 
Type 

Generation Load Voltage 

Real React. Real React. Magn. angle 

1 1 0 0 0 0 1.06 0 

2 2 90 0 0 0 1 0 

3 0 0 0 45 15 1 0 

4 0 0 0 40 5 1 0 

5 0 0 0 60 10 1 0 

 

At the beginning, load is considered as constant and 

simulation implemented for 10 seconds to compare with 

Newton Raphson (NR) method results. Figure 11 and 

Figure 12 shows measurements of real power flow 

(RPF) and losses (RPL), respectively, in all the 

transmission lines. This measurements has been 

compared with accurate calculated by Newton Raphson 

method to valid Simulink model as in Table 4. 

 
Figure 11. Active power flow on the lines with constant 

load. 

 
Figure 12. Active power losses on the lines with constant 

load. 
 

In order to validate the proposed variable load 

simulation, random load profile used as input signal to 

Figure 19 instead of constant one. In Figure 13, output 

and output signals are identical except very small 

transient when signal switch from value to another. 

Table 4. Real power lines  flow and losses by NR. 

 
Transmission Lines 

1-2 1-3 2-3 2-4 2-5 3-4 5-4 

RPF (MW) 15.09 27.05 30.50 32.60 56.06 11.76 3.97 

RPL (MW) 0.069 0.55 0.525 0.594 0.429 0.013 0.013 

 

 

Figure 13. Load model testing. 

Three different daily load profile (residential, 

commercial and industrial) are connected to load buses 

as follows: residential load curve (Figure 14) connect to 

bus 3, commercial load curve (Figure 15) connect to bus 

4 and industrial load curve (Figure 16) connect to bus 5. 
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Figure 14. Residential daily load curve connect to bus 3. 

 

Figure 15. Commercial daily load curve connect to bus 4. 

 

 
Figure 16. Industrial daily load curve connect to bus 5. 

 

The results show that real power flow and losses in 

transmission lines will be effect by variable load profiles 

as shown in Figure 17 and Figure 18. The simulation of 

variable load details in Figure 19. The 5 bus Simulink 

simulation under different load conditions is performed 

on a computer with core i74800MQ CPU, 2.7GHz, 

16GB RAM and Microsoft Windows 7 operating system 

running in real-time mode. 

 
 
 
 

 

 
Figure 17. Lines Power flow with variable loads. 
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Figure 18. Lines losses with variable loads.  

 

5 Conclusions

This paper has presented network modelling with

variable load profile using Simulink. . System of IEEE

five bus is used as a test bed. This simulation can be

easily adapted to accommodate different types of

generation resources by considering time-varying load

profile. The simulation introduce four main blocks

represent slack generator, control generator,

transmission line and variable load. Three different

types of load profile (residential, commercial and

industrial) tested the five bus network simulation. The

results demonstrate that the simulation can be adequate

to identify the real power flow and losses into

transmission lines. Simulation results indicate that 

varying demand can change the dynamic performance 

of the system and will help DNOs understand what they 

need to do to provide solutions for network stability. 
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