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Abstract
The energy situation in both process industries and
power plants is changing and it is of interest to
investigate new polygeneration solutions combining
production of chemicals with the production of power
and heat. Examples of such chemicals are methane,
hydrogen, and methanol etc. Integration of gasification
into chemical recovery systems in the pulp and paper
production systems and into the combined heat and
power (CHP) systems in power plant applications are
among the possible polygeneration systems. It is also
interesting to look at the potential to introduce combined
cycles with gas turbines and steam turbines as a
complement. To perform such analysis, it is important
to have relevant input data on what gas composition we
can expect from running different type of feed stock. In
this paper, we focus on the wood pellets. Experimental
results are correlated into partial least squares models to
predict major composition of the synthesis gas produced
under different operating conditions. The quality
prediction models then are combined with physical
models using Modelica for investigation of dynamic
energy and material balances for large plants. The data
can also be used as input to analysis using e.g. ASPEN
plus and similar system analysis tools.
Keywords:     wood pellets, gasification, CHP, Modelica,
methane, hydrogen

1 Introduction and Literature Review
In the following section, short style guidelines are given.
 In this paper modeling of biomass gasification systems
is discussed especially the approach based on energy
and mass balances in combination with partial least
square (PLS) models developed from experimental
results. Dipal and Baruah (2014) made an overview of
biomass gasification modelling. Different modeling
approaches were categorized based on criteria such as
type of gasifier, feedstock, modeling considerations and
evaluated parameters. Gómez-Barea and Leckner
(2010) structured the modeling work performed with
approaches, from artificial neural nets to computational
fluid dynamics. The study covered the conversion of

fuel particles, char, and the gas and concluded that most 
of the different approaches fit quite well between 
models and the experimental results. However, there are 
research knowledge gaps exist in case of real gasifiers 
or systems at a large scale. Capata and Veroli (2012) 
made a mathematical model over an air-blown a 
circulating fluidized bed (CFB) gasifier with a capacity 
of 100 kWth range. The study concluded that there were 
some problems to get reasonable predictions of tar 
formation. It is interesting to note that we did not create 
any detectable amounts of tar when we were running our 
CFB gasifier with a capacity of 100-200 kWth with the 
wood pellets. This shows that the type of fuel and plant 
operating conditions affect the gasification results. It 
becomes difficult to obtain accurate models correlating 
to the experiments unless the mechanisms are not 
completely understood. Blasi (2015) has made an 
overview of the kinetic processes in detail to describe 
tar formation from a theoretical perspective. Still, it is 
important to describe what is actually taking place inside 
the reactors to be able to predict the process. 

2 Description of the Pilot Plant 
The experimental work has been performed in a pilot 
plant at Bioregional mini-mills in Manchester. The CFB 
reactor is heated with a combustor, which is shut off 
when the operating temperature is achieved. The 
pressurized air is heated in an electric heater to the 
desired operating temperature. The gas produced in the 
CFB is cleaned in two ceramic filters in parallel 
followed by a scrubber. The gas analysis is performed 
using an ABB gas chromatograph (GC). The gas is 
extracted continuously and a new sample is introduced 
to the GC approximately every five minutes. The plant 
lay out is shown in Fig. 1 that includes the gasifier, 
cyclone, gas filtration unit, biomass feeder, hot gas 
generator and the GC. 

In Table 1, we have presented the experimental results 
from the pilot plant. The feed rate is in ton DS/h.m2 
based on the reactor size. The relative oxidation (Relox) 
means the amount of air (m3) needed for the 100 % 
oxidation of 1 kg of fuel (dried solids).
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Figure 1. Schematic illustration of the CFB gasifier 

 
Table 1. Results from experiments with wood pellet 
operations 
Avg. 
Temp, 
T 

Fuel 
feed, FF 

Relox, 
RE MC CO H2 CO2 CH4 

T2-T6 tDS/h.m2   % % % % 

700.6 1.07 0.36 0.20 8.14 5.44 15.7 0.98 

693.6 0.93 0.42 0.23 5.58 4.5 16.8 1.42 

693.6 1.02 0.38 0.35 7.43 5.78 19.7 1.32 

718.2 1.02 0.38 0.35 6.2 2.3 15.3 1.1 

754.4 1.10 0.35 0.33 9.13 6.1 17.5 1.75 

681.8 0.79 0.49 0.41 4.67 3.51 17.2 0.61 

737 1.02 0.38 0.40 14.1 3.56 15.5 3.06 

774 0.85 0.46 0.44 9.75 8.51 17.2 1.99 

800.2 0.68 0.57 0.50 10.3 8.51 18.5 1.76 

798.8 0.68 0.57 0.50 9.75 6.55 17.6 1.5 

785.8 1.01 0.38 0.40 8.82 6.38 17.4 1.31 

809.2 1.19 0.33 0.44 7.11 4.81 16.4 1.1 

746.6 1.16 0.33 0.45 7.11 4.2 17.6 1.39 

742.6 1.11 0.35 0.46 8.8 4.02 15.6 2.77 

762.2 1.36 0.28 0.41 11.6 4.02 14.2 3.2 

707.4 1.53 0.25 0.38 11.4 7.33 17.1 3.22 

741.4 0.85 0.46 0.44 12.1 5.4 12.1 3.36 

702.8 1.18 0.33 0.36 9.81 7.52 16 2.19 

671.6 1.10 0.35 0 12.5 6.47 15 3.96 

 
In this case, approximately 4.8 m3 of air is needed for 

the 100 % oxidation of 1 kg of wood pellets. The 
moisture content means the moisture including the 
steam added. The gas composition also includes N2 and 
H2O which is not presented in the table. The amount of 

tars and higher CHx is excluded since the content is at 
the detection level, meaning not very accurate values. 

3 Description of Simulation Model 
Combining Energy and Material 
Balances with PLS-Models 

 
The simulation model, used in this paper, is developed 
in Modelica that can be run in both Dymola and Open 
Modelica. The model is expressed as a semi-steady state 
model giving the heat and mass balance of the 
gasification system. The model consists of a heat and 
mass balances where material flows as well as molar 
flows of both organics and inorganics are followed 
through the system with the gasifier, cyclone, G-valve, 
heat exchanger/cooler and the scrubber. 

 The gas composition is given by the PLS-models, 
determined from experimental measurements, for each 
of the gas components H2, CO, CO2 and CH4, while 
N2 is assumed as a ballast from the air fed to the system. 
H2O is given by the shift reaction at given conditions 
and the heat balance of the system based on the partial 
combustion and the heat losses. 

 The heating value given for the wood pellets is 18.5 
MJ/kg which corresponds to the formula CH2O1.2 at 8% 
moisture (measured). For pellets made of wood of 
spruce and pine, the formula CH1.44O0.66 (according to 
the elemental analysis) is expected which corresponds 
to a higher heating value of 23.7 MJ/kg and a lower 
heating value of 21.8 MJ/kg assuming 8% moisture.  
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Table 2. Polynoms (PLS) for prediction of gas 
composition as a function of operating conditions with 
respect to average temperature in the reactor, load, 
relative oxidation and moisture content 

Vol 
% B0 A1 A2 Relox MC 

% R2 Q2 

CO -12.6 0.012 8.46 -0.001 0.07 0.8 0.61 

H2 -13.1 0.017 -0.001 0.0472 0.07 0.8 0.57 

CH4 -6.7 0.002 4.20 0.0392 0.03 0.8 0.69 

CO2 7.2 0.020 0.00097 -0.052 -0.2 0.7 0.7 

 
According to the actual chemical analysis of the wood 

pellets, CH1.46O0.625, the 100 % oxidation demand of air 
would in this case be 4.8 nm3/kg DS, for the two 
compositions. In the calculation for 100% relox in this 
study the latter value has been used for the wood pellets. 
All five measured major gas components are correlated 
to the relox, capacity, MC and the average temperature 
in the CFB using PLS regression. The results are shown 
in Table 2. The gas composition, C (vol.%) is calculated 
for these six major gas components with a polynom as 
shown in 

 
 C = B0 + A1.T + A2.FF + A3.RE + A4.MC      (1) 

 
where T is the value of the average temperature in o C 

of the five positions in the reactor, FF is the load in ton 
dry solids per m2 of the reactor cross area per hour, RE 
is the relative oxidation as the percentage of oxygen in 
relation to what is needed for 100% oxidation of all 
organic material and MC is the moisture content in % of 
the total fuel weight including the added steam. B0, A1, 
A2 , A3  and A4  are the regression constants given in the 
Table 2. 

R2 is 1.0 when perfect fit of all experimental data into 
the model, while 0.5 is a value that is a minimum for 

being able to start using the correlation. Q2 is the 
corresponding prediction power when the model is used 
to predict performance at any condition covered by the 
experiments. Above 0.5 we can start using the 
prediction model and the prediction is perfect at 1.0. 
Here we get 0.6-0.7 for most of the gas components, 
which makes the models usable, although quite a bit 
from very good. The moisture (H2O) is calculated from 
the shift reaction with the constant KT given for the 
average temperature (T), assuming we have steady state 
conditions as shown in 

 
KT = [CO][H2O]/[H2] [CO2]  (2) 
KT = (Temp-649) * (0.154/55) + 0.50800  (3) 

 
This is for the actual gasification. For the moisture 

content in the gas after the scrubber, the water content 
of the gas at saturation for the given scrubber 
temperature is used. From this we recalculate the gas 
composition used in the simulations later on as a 
function of operating conditions, but then combining 
also with energy and mass balances. The results from 
the combined model for wood pellets are presented in 
Table 3. The composition of wood pellets is assumed as 
CH1.44 O0.66 with Mw of 24. We need to add net 42.9 mol 
O2/kg fuel and 3.76 mol N2 per mol O2 added as air for 
100% oxidation. 

The relative oxidation and the load has strong impact 
while the temperature has less effect. However, the 
steam has no significant impact, i.e. when increasing by 
40% from a relatively high level. In the reactor, it is seen 
that the heat demand for driving the processes varies 
considerably, i.e. from 30% to about 50%. 

It is interesting to note that we cannot detect any tars 
in the synthesis gas, neither directly at the fuel injection 
point (2 meters above the injection point) or in the 
exhaust gas channel before the filter. 

 
Table 3. Results from simulation using the combined modelica and PLS models for gas after condensation to 40oC 

for wood pellets. MC is moisture content in pellet + steam 

Load Relox MC T CO H2 CH4 CO2 N2 H2O HHV 

t/m2.h % % oC % % % % % % kJ/m3 

1 35 30 700 8.4 20 1.8 17.6 37.6 14.6 3918 

1 25 30 700 9.5 22.7 1.4 20.6 30.5 15.2 4221 

1 45 30 700 7.5 17.8 2 15.2 43.2 14.2 3681 

1 35 45 700 10.5 20.2 2.5 15.1 38 13.7 4498 

1 35 30 800 8.5 19.7 1.8 17.2 37.1 15.8 3898 

2 35 30 700 12.4 20.4 4.6 11.4 38.4 12.9 5565 

2 25 30 700 14 23.3 4.8 13.4 31.3 13.2 6191 

2 45 30 700 11 18.2 4.4 9.8 43.9 12.7 5078 

2 35 45 700 13.8 20.5 5.2 9.4 38.5 12.6 5993 

2 35 30 800 12 20.2 4.3 11.8 38.1 13.6 5398 
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The bed weight is ca 21 kg. 2* 0.4 kg is passing over 
to the filter and the filter ash has 7% respectively 6.2 % 
C in the ash. The carbon particles are small balls and 
when the bed material is emptied, the C-content is found 
to be 1.2 %. The total carbon in the feed is 62 kg and in 
the residue, is 0.3 kg. The C-conversion is (1- 0.3/62) = 
99.5%. We have now been running the experiments five 
times and tried to control the process in order to verify 
that no detectable tars are formed and now feel quite 
convinced that this is a fact. We also have ideas about 
the reasons for no tar in the gas and will perform tests in 
future to confirm this experimentally. 

4 System Studies 
 

The studies on H2-production in a CHP plant was 
presented (Naqvi et al. 2016, 2017). Yang and Ogden 
(2007) made an overview of production costs for 
Hydrogen production. Further studies were made on 
black liquor gasification systems where different cycles 
and solutions were compared, including among others 
CO2 removal (Naqvi et al. 2010, 2017). Asadullah 
(2014) has made a critical review of down- stream gas 
cleaning after biomass separation, which includes also 
particle and tar removal. Concerning the gas separation, 
H2 is a very small molecule and thus passes through 
even tight membranes quite easily compared to most 
other molecules except water. 

By condensing water before the membrane unit, we 
thus can get relatively pure H2 in the permeate. The 
separation between N2 and H2 has been commercialized 
since long ago in the ammonia production. Here 

relatively large pressure difference between feed and 
permeate has been applied. Now new membranes are 
coming where the pressure difference might be only one 
or a few bars, which makes it easier from a system 
perspective. Example of such membranes are porous 
graphene (Du et al., 2011) and PDMS composites with 
SiO2 and B2O3 (Lee et al., 2015). If we can let H2 pass 
through while the rest are remaining in the reject, these 
can be combusted in a boiler or even a gas turbine with 
an external combustion chamber. If we want to upgrade 
the gas further CO2 is the second easiest gas to separate 
as it is quite polar and thereby can be dissolved in liquids 
like MEA (mono ethanol amine) or alkaline solutions 
like the scrubber solution used to separate H2S in the 
black liquor process, but with a higher pH. With pH 11.5 
all CO2 is absorbed. With the MEA it is easy to 
regenerate the liquid by just heating and stripping off 
CO2 again. Using alkaline solution, the 
Na2O.TiO2 regeneration can be used, but a bit more 
complex system solution is needed. The separation with 
MEA using micro porous membranes was demonstrated 
by Yuexia et al. (2010) and Lv et al. (2012). Here 
modification of the polypropylene membrane was made 
to get long term stabile performance. 

In the solution presented in Figure 2, we have a 
gasification process that is used for the production CH4. 
The synthesis gas could be separated to extract methane, 
while the residual gas could be combusted directly in a 
boiler, or in an external gas turbine combustor, making 
a combined cycle possible. The heat from the steam 
turbine condenser then could be used for the district 
heating. Even CO2 can be removed at the far end of the 
exhaust gas train. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Different bio-refinery systems can be either integrated or operated separately
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In a system for black liquor gasification, an alternative 
with a combi-cycle turned out to be able to give an 
electric to fuel heating value efficiency of up to 38%, 
which is high for a process with such a poor fuel 
(Dahlquist, Jones 2005). If we instead look at 
alternatives with biomass in a CHP plant, the district 
heating is very interesting from an energy efficiency 
perspective but with an issue that the heat demand varies 
significantly over the year. It is thus interesting to be 
flexible such as the heat demand must be fulfilled when 
it is very cold, and then chemicals or electric power may 
be of secondary importance. As the conditions will vary 
much more than previously, the dynamics of the system 
is of interest in order to perform transition from one 
operation mode to another in a smooth way. This is 
another important aspect needing the dynamic 
simulation models like the one in Modelica, and not only 
steady state models. 

In the future, we see a stronger demand to use cheaper 
fuels in the CHP plants, as the cost for biomass fuels like 
pellets becomes too high to be competitive in many 
cases. Organic waste then is interesting as the cost is 
very low or you even get paid to take care of the waste. 
By gasifying the waste, remove the particles like alkali 
salts and corrosive substances like HCl, we can produce 
clean fuel that can be used in both gas turbines and 
boilers that are not designed for wastes. The waste has 
not been directly tested in the pilot plant but should be 
principally easier than the black liquors that we actually 
have tested and found feasible to use as fuel. 

Concerning the gas separation using membrane 
filtration, the plan is to test the separating gas 
compositions that are produced from the gasifier, to 
determine the efficiency for the mixtures. There are new 
types of membranes are developed all which gives a 
high probability for finding suitable membranes to use 
in the future, and also to give input to membrane 
developers what to aim for? The regeneration of 
absorbents used in the liquid-membrane-combinations 
is another task to develop further. Here the possibility to 
recover CO2 and deposit or use it for other purposes is 
of high potential interest to reduce CO2 emissions to the 
atmosphere. This also should have a positive economic 
impact in the future. 

5 Conclusions 
In the paper, we have shown how regression models like 
PLS, PCA and similar can be made from experiments 
and combined with the dynamic physical models 
developed in the Modelica. These models can be used to 
study different systems from the energy and material 
balance perspective, but also to investigate how to 
switch from one process mode to another in a smooth 
way. This has significance as the economic conditions 
will vary considerably in the future from one time of the 
day to another, as well as over the season, making it 
much more complex to fulfil different demands. When 

there is focus on the conversion processes such as the 
gasification, we will see an increasing demand for the 
gas separation, like membrane separation, for 
developing efficient system solutions. The new 
demands like CO2 removal may give different 
economical optima, if CO2 is valued significantly higher 
than today. This will also shift the use of fossil fuels for 
production of chemicals into a demand to use biomass, 
which will give new incentives to the proposed 
processes for production of base chemicals like CH4 and 
H2. 
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