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Abstract
The energy situation in both process industries and
power plants is changing. It is becoming interesting to
perform system analysis on how to integrate gasification
into chemical recovery systems in the pulp & paper
industry and into the CHP systems in power plant
applications to complement with production of
chemicals aside of heat and power. The potential
chemicals are methane, hydrogen, and methanol. It is
also interesting to estimate the potential to introduce
combined cycles with gas turbines and steam turbines
using both black liquors and other type of biomass like
pellets, wood chips etc. To perform such type of
analysis, it is vital to have relevant input data on what
gas composition we can expect from running different
types of feedstock. In this paper, we focus on black
liquors as feedstock for integrated gasification systems.
The experimental results are correlated into partial least
squares models to predict major composition of the
synthesis gas produced under different conditions.
These quality prediction models are then combined with
physical models using Modelica for the investigation of
dynamic energy and material balances for complete
plants. The data can also be used as input to analysis
using e.g. ASPEN plus and similar system analysis
tools.
Keywords:     black liquor, gasification, CHP, Modelica,
physical models, synthesis gas

1 Introduction and Literature Review
During the 70’ s, there was a strong demand to increase
steel production from the iron ore. ASEA together with
Stora and LURGI thus started the development of a new
process, the circulating fluidized bed gasification
(CFBG). The CFBG process was tested at a demo-plant
in Vasteras in a 0.5 m inner diameter reactor with 20 m
height. LURGI built a number of coal gasification plants
and ASEA became ABB and afterwards ABB acquired
the American company Combustion Engineering in
1990. Then, black liquor gasification (BLG) became
interesting and a pilot plant was operated in Västerås.

Dipal and Baruah (2014) made an overview of 
biomass gasification modelling recently and different 
modeling approaches were categorized based on criteria 
such as type of gasifier, feedstock, modeling 
considerations and evaluated parameters. Gómez- Barea 
and Leckner (2010) performed the modeling work 
performed with many different approaches from 
artificial neural nets to computational fluid dynamics. 
They covered conversion of single fuel particles, char, 
and gas and conclude that most of the different 
approaches fit quite well between models and 
experimental results. However, a very little work has 
been made on real gasifiers or systems at a larger scale. 
Capata and Veroli (2012) made a mathematical model 
over an air-blown CFB with a capacity of 100 kWth. 
They concluded that there were some problems to get 
reasonable predictions of the tar formation. It is 
interesting to note that we did not create any detectable 
amounts of tar at all while running our CFB gasifier 
(100-200 kWth) with wood pellets. This shows that the 
gasification results are influenced depending on the fuel 
and how the plants are operated. It becomes difficult to 
achieve accurate models correlating to the experiments, 
if the mechanisms are not completely understood. Blasi 
(2016) has made an overview of the kinetic processes in 
detail to describe tar formation from a theoretical 
perspective. Still, it is interesting to describe what is 
actually taking place inside the reactors to be able to 
predict the process. 

2 Description of the Pilot Plant 
The experimental work has been performed in a CFB 
gasifiers in Vasteras at ABB and was built on the design 
developed through the cooperation between ASEA and 
LURGI during the 70’s. The reactor had a diameter of 
170 mm and a height of 10 meters, integrated with one 
cyclone with a G-valve. The synthesis gas was cooled 
through a heat exchanger and the gas was cleaned in a 
bag filter first, then in a scrubber, and finally combusted. 
At the G-valve entrance, the dust was recirculated from 
the bag filter. The gas sampling was made using a NIR 
meter giving simultaneous analysis of several gases.  
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Table 1. Results from experiments with black liquor 
operations 
Avg. 
Temp 

Fuel 
feed Relox MC CO H2 CO2 CH4 

T2-T6 tDS   % % % % 

655 8 0.45 0.35 2 4 13.5 1.2 

597 8 0.54 0.35 2.2 7.5 16.1 1.2 

686 16 0.29 0.35 4 11.7 15.7 2.1 

703 16 0.36 0.35 3.3 13.3 19.1 1.9 

705 20 0.35 0.35 3.9 12.2 18.8 2.3 

646 11 0.45 0.35 4.1 8.7 16.7 1.6 

654 19 0.26 0.30 3.7 15 14.5 1.8 

676 17 0.36 0.30 3.9 12.9 14.2 1.1 

613 14 0.38 0.3 2.8 12.3 9.5 0.9 

678 14 0.36 0.3 2.5 12.4 8.9 1 

677 14 0.35 0.3 2.2 9.3 6.9 1.1 

674 13 0.52 0.42 2.8 8.3 15 1.2 

677 13 0.53 0.42 2.8 8.1 15.8 1.1 

611 15 0.36 0.32 3.7 12 15.2 1.4 

612 16 0.33 0.32 3.6 12.4 15.1 1.5 

678 15 0.34 0.3 3.4 11 6 1.1 

 
The gas sampling was made at several points in the 
reactor, although the main position was after the filter. 
The black liquor gasifier was operated for several years 
and experiments run in accordance with factorial design 

of the variation of the operating variables: temperature, 
relative oxidation, capacity, pressure, different black 
liquors, addition of KCl, operation with TiO2, recycling 
of dust from bag house and others. 

3 Experimental results 
In Table 1, we have presented few results extracted from 
our large data set. The selections have been made to 
have representation of the whole operational volume 
with similar amount of samples for each condition, to 
get balanced models. Every experimental test has been 
operated at least four hours under as steady state 
conditions as possible. The fuel rate is shown in ton 
DS/h.m2 based on the reactor size. The 20 kg/h fuel load 
in the reactor corresponded to 1.13 ton tDS/m2.h. The 
relative oxidation (Relox) means the amount of air (m3) 
needed for the 100 % oxidation of 1 kg of fuel (dried 
solids). In this case, approximately 4.9 m3 of air is 
needed for the 100 % oxidation of 1 kg of feed. The 
moisture content means the moisture including the 
steam added.The amount of tar was found to be very low 
that could not be determined accurately during steady 
state operations, although some tar was formed during 
the start-up phase. Since tar were not found 
considerably, they are excluded under the synthesis gas 
compositions. In addition, N2 and H2O are also not 
included in Table 1. It is found that there is a significant 
difference between the gas composition obtained from 
black liquor and wood, gasified in principally using the 
same reactor (Naqvi et al, 2010, 2016, 2017a).  

 

 
  
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 1. Correlation between H2 and CO composition as well as residual carbon in fly ash 
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Table 2. Results from the simulation with black liquor gasification using the combined physical model for energy and 
material balances and PLS models for gas composition 

 EXPERIMENTAL RUNS 
Input 1 2 3 4 5 6 7 8 9 
DS, % 70 70 70 70 70 70 70 70 70 
Feed rate, ton DS/m2h 1.8 1.8 1.8 2.4 1.2 1.8 1.8 2.4 1.8 
Relox, % 35 45 25 35 35 35 35 35 35 
Temp bottom, o C 700 700 700 700 700 725 700 725 725 
Temp at BL-injection, o C 695 695 695 695 695 720 695 720 720 
Temp after scrubber, o C 65 65 65 65 65 65 40 40 40 
Output          
Theoretical possible heat prod, kW -137 -139 -136 -161 -96 -143 -137 -169 -143 
Heat consumed in reactor, kW 44 48 40 58 29 48 44 66 48 
Vol. %  in wet gas          
H2O 33 29.4 37.3 34 32.2 35.1 33 39.9 35.1 
H2 10.5 8.7 12.8 9 10.6 13 10.5 9.6 13 
CH4 1.16 0.96 1.43 1.26 1 1.33 1.16 1.33 1.32 
CO2 12 11.2 12.9 10.6 12.9 10.8 12 9.8 10.8 
CO 2.5 2.1 2.85 1.8 2.7 2.8 2.5 1.68 2.9 
N2 40.3 46.9 32.1 42.6 40 36.5 40.3 37.2 36.5 
H2S 0.57 0.56 0.6 0.7 0.56 0.43 0.58 0.52 0.43 
Heating value dry gas, kJ/kg of BL -4635 -4284 -5039 -3883 -4633 -6147 -4635 -4668 -6147 
Heating value wet gas, kJ/nm3 -1887 -1580 -2290 -1672 -1874 -2268 -1888 -1753 -2268 
Velocity upper reactor, m/s  5.5 6.1 4.9 6.95 3.7 6.2 5.5 8.2 6.2 
Flame temp (o C), Air surplus 1.1  1221 1154 1293 1182 1231 1246 1315 1274 1336 
Flame temp (o C), Air surplus 1.0  1272 1197 1354 1229 1282 1305 1376 1334 1405 
Condensate, mol/kg of BL  9.4 6.4 12.2 9.9 8.8 12.8 25.2 34 30.2 
Vol. % in gas after scrubber          
H2O  26.7 25.5  27 26.4 27.4 13 15.8 13.5 
H2 11.5 9.2  9.95 11.5 14.5 13.6 13.5 17.3 
CH4 1.27 1  1.39 1.1 1.48 1.5 1.87 1.77 
CO2 13.1 11.9  11.7 14 12.1 15.6 13.7 14.4 
CO 2.7 2.3  2 2.9 3.2 3.2 2.4 3.8 
N2 44.1 49.5  47.1 43.5 40.8 52.4 52.1 48.7 
H2S 0.63 0.59  0.78 0.61 0.48 0.75 0.73 0.57 
Heating value of dry gas, kJ/nm3  -2065 -1668  -1848 -2035 -2536 -2452 -2457 -3021 
Product gas/air  1.96 1.68  1.85 1.97 2.16 1.96 2.13  
Air, nm3/h per ton DS/m2h 3222 4143  4296 2148 3222 3222 4296  
H2S removal, %    46.9 58.5 50 41.8 50.7 49.7 41.9 
SO4 reduction, %     90.8 86.9 93.3 92.2 91.3 87.9 92.2 
C-conversion   91 78 98.9 97.6 92.8 82.5 97.6 

 
 

There are much lower levels of H2 in wood 
gasification than BLG but instead higher CO levels. For 
wood pellets gasification, higher CH4 concentrations are 
obtained as compared to black liquor gasification. 

The experimental data (not shown here) has also been 
gathered for the reduction of SO4 and calculation of the 
carbon conversion, i.e. balance between what is gasified 
respective to unconverted carbon in the bed solids dust. 
In the scrubber, a selective absorption of H2S takes place 
while limiting the absorption of CO2 as far as possible. 

In the experiments at the pilot plant, we have achieved 
1 M (32 g S/l) at a selectivity of 20 by avoiding 
turbulence in the liquid, but promoting turbulence in the 
gas phase. In addition, pH is kept as constant as possible 
at 10.5, to give fast reaction of H2S. While CO2 get a 
back pressure in the liquid film reducing the absorption 
that is kinetically much slower than the one for H2S 
absorption. Few examples of the simulation results are 
shown in Fig. 1 for the black liquor. 
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Figure 2. Different solutions can be either integrated as shown in the figure or operated separately 
 

In Table 2, we have summarized the results from the 
simulations using different conditions with respect to 
calculated gas composition using the PLS-models. The 
energy and material balances are performed using the 
physical model. The physical model takes into account 
endothermic and exothermic reactions like reduction of 
SO4 respective to oxidation of C and H. 

The heat transfers through walls, in heat exchanger 
and scrubber are calculated as well as particle separation 
in the cyclone and the bag filter. However, the 
absorption of H2S respective to CO2 in the scrubber as a 
function of pH of the scrubber solution is not included 
here. The recycling of ash from the bag house is also not 
included in this simulation. 

For the black liquor gasification, we found that there 
is residual carbon not converted during the gasification. 
By recirculating the solids from the bag-house into the 
reactor, the amount of residual carbon dropped to below 
4% in the filter ash at stabilized conditions. This resulted 
in a carbon conversion of higher than 96-99% at steady 
state with recycled dust from the bag house to the down-
comer of cyclone 1. 

The results showed that the H2 content is in the range 
9 -17%vol., while the CO content is only 2-4%. The 
CH4 content is in the range 1-1.9%, which is quite high 
in relation to the CO content. Since H2S is stripped off, 
the concentration of H2S is found to be 0.5-0.8% with 
SO4 reduction of 87-93%, which is as good or better as 
in a conventional recovery boiler.  

The moisture (H2O) is calculated from the shift 
reaction with the constant KT given for the average 
temperature (T) at steady state conditions as shown in 
 

KT = [CO][H2O]/[H2] [CO2]  (1) 

This is for the actual gasification. For the moisture 
content in the synthesis gas after the scrubber, the water 
content of the synthesis gas at saturation for the given 
scrubber temperature is used. From this we recalculate 
the gas composition used in the simulations later on as a 
function of operating conditions, but then combining 
also with energy and mass balances. 

4 System Studies 
The experiments are not always easy to control as 
exactly as wanted in the pilot scale plants. For the 
analysis of impacts of different variables (like 
temperature, relative oxidation, organic load and impact 
of water/moisture for the black liquor), the model still is 
good enough in relation to other uncertainties. By 
inserting the conditions and gas composition, the 
material and energy balances are determined for the 
systems studied in addition to the dynamics and 
controllability. The detailed system analysis is not 
possible to include in this paper due to the limited 
number of pages available, and thus will be presented in 
future studies. 

For system analysis, one study on H2 production in a 
CHP plant is presented in Naqvi et al (2017b). Yang and 
Ogden (2007) made an overview of production costs for 
Hydrogen production as well. Another study was made 
on black liquor gasification systems Dahlquist et al 
(2017), where different cycles and solutions were 
compared, including among others CO2 removal. 
Asadullah (2014) has made a critical review of 
downstream gas cleaning after biomass separation, 
which includes the particle and tar removal. 

In Fig. 2, we have a gasification process that could be 
used for black liquors or another biomass. The BLG 

EUROSIM 2016 & SIMS 2016

888DOI: 10.3384/ecp17142885       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



with addition of titanate (TiO2) can give a solution with 
direct caustization for conversion of Na2CO3 to NaOH, 
as well as selective absorption of H2S for the chemical 
recovery. The gas then can be separated to extract 
hydrogen, while the residual gas is combusted directly 
in a boiler, or in an external gas turbine combustor, 
making a combined cycle possible. Heat from the steam 
turbine condenser then can be used for e.g. district 
heating. Even CO2 can be removed at the far end of the 
exhaust gas train. The BLG with direct causticization at 
the pulp mill is an interesting option (Dahlquist, Jones, 
2005). The alternative with a combi-cycle could give an 
electric to fuel heating value efficiency of up to 38%, 
which is high for a process with such a poor fuel. 

5 Conclusions 
In this paper, we have presented that how regression 
models such as PLS, PCA and similar can be made from 
experiments and combined with dynamic physical 
models developed in e.g. Modelica. Such developed 
models can be used to study different systems from the 
energy and material balance perspective, but also 
investigate how to go from one process mode to another 
in a smooth way. This will be more important as the 
economic conditions will vary much more in the future 
from one part of the day to another, as well as over the 
season, making it much more complex to fulfil all 
different demands. When earlier the focus has been on 
conversion processes like gasification, we will see an 
increasing demand also for gas separation like 
membrane separation for developing efficient system 
solutions. New demands like CO2 removal may give 
quite different economical optima, if CO2 is valued 
significantly higher than today. This also will shift the 
use of fossil fuels for production of chemicals into a 
demand to use biomass, which will give new incentives 
to the proposed processes for production of base 
chemicals like CH4 and hydrogen. 
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