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Abstract 

Water breakthrough is a big challenge in light oil 

production, and different types of inflow control devices 

are developed to delay or reduce breakthrough. Light oil 

production from a heterogeneous reservoir is simulated 

to study the effect of three types of inflow control 

devices, one passive control and two autonomous 

controls.  NETool is used as the near-well simulation 

tool. The functionality of passive inflow control device 

(ICD) and the autonomous rate control production 

device (RCP) is included in NETool, whereas the 

autonomous inflow control valve (AICV) is simulated 

based on expected behaviour. The total production rates 

and the water cut versus drawdown and the performance 

curves for ICD, RCP and AICV are studied. The results 

confirm that RCP and AICV reduce the water 

production and water cut significantly. The water cut is 

about 27% for RCP and 44% for ICD at 15 bar. AICV 

is designed to close 99% for water, and produces 

negligible amounts of water.  The RCP completed well 

produces about 310 m3 oil and 110 m3 water per day at 

drawdown 15 bar. ICD produces about 230 m3 water per 

day, whereas AICV produces insignificant amount of 

water. The results confirm that the water production 

decreases with RCP and AICV compared to ICD. 

Delayed and reduced water production will result in 

increased oil recovery. 

Keywords: light oil, heterogeneous reservoir, ICD, 
RCP, AICV, water cut, water breakthrough 

1 Introduction 

A major challenge in oil production is to increase the 

ability to recover the residual oil. Estimates show that 

although the oil is localized and mobile, more than half 

of the oil is remaining in the reservoir after shut down. 

There are different challenges regarding increasing the 

oil recovery, and the biggest challenge is water and gas 

breakthrough to the well. In this study, only water 

breakthrough in a heterogeneous light oil reservoir will 

be considered. Oils are categorized based on the density 

or °API (American Petroleum Institute) of the oil.  API 

gravity is calculated by using the specific gravity of oil, 

which is defined as the ratio of oil density to the density 
of water. Light oil is specified by low viscosity, low 

specific gravity and high °API gravity.  

   New technology can increase the recovery in new and 

mature fields significantly. Production data from 

Statoil’s horizontal pilot wells on the Norwegian 

Continental Shelf show that the cumulative oil 

production increased with about 20% when new inflow 

control technology was implemented (Halvorsen et al.., 

2012) Reservoir and near-well models to show the 

potential of implementing the new technology are 

important in order to speed up the implementation of 

new completion technology. The near-well simulation 

tool NETool, is used in this study. 

1.1 Well completion 

Different types of passive Inflow Control Devices 

(ICDs) have been installed in a number of oil fields all 

over the world and the implementation has contributed 

to increase the oil production and recovery significantly 

compared to open-hole wells (Al-Khelaiwi 2007; Krinis 

et al., 2009). Newer technology called Autonomous 

Inflow Control devices (AICDs) has the potential to 

increase the oil production and recovery even more. 

Halliburton, Statoil and InflowControl AS have 

developed AICDs based on different principles (Least et 

al., 2012; Mathiesen et al., 2011; Aakre et al., 2013). 

Near well simulations with AICV completion, show 

high potential regarding increased oil recovery (Aakre 

et al., 2013). Statoil has currently several wells 

completed with RCP at the Troll field where the purpose 

of the RCP is to restrict the gas and maintain the oil 

production. Results show that the cumulative oil 

production with RCP completion is 20% higher than a 

corresponding branch completed with ICDs. Reservoir 

simulations carried out prior to the installation of RCP, 

indicated an increased oil production up to 15% 

(Halvorsen et al., 2012). 

1.2 Water breakthrough 

Early water breakthrough and high water production 

result in early shut down of oil wells and low oil 

recovery. Long horizontal wells are used to obtain 

maximum reservoir contact.  Due to frictional pressure 

drop along the long well, the driving forces are different 

from one location to another. This is called the heel to 

toe effect. In a homogeneous reservoir, the oil 

production rate can be significantly higher in the heel 

than in the toe, and this may lead to early water or gas 

breakthrough in the heel. The heel toe effect is 
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demonstrated in Figure 1. In heterogeneous or fractured 

reservoirs, early breakthrough will occur in the high 

permeable zones due to low flow resistance in the 

reservoir. Figure 2 presents a fractured reservoir, where 

the water has high mobility and flows easily to the 

production well. This is also the challenge in high 

permeable zones in heterogeneous reservoirs.  

   New and improved inflow control technology that can 

spontaneously choke or close for unwanted fluids can 

solve the problem with early gas or water breakthrough. 

 

 

Figure 1. Heel toe effect. Water (blue) and gas (red) 

breakthrough in the heel (Ellis et al., 2010) 

 

 

Figure 2. Fractured reservoir with water breakthrough 

(Aakre et al., 2014) 

2 Inflow control devices 

Different types of inflow control devices are developed. 

One passive and two autonomous inflow control devices 

are described in this chapter.   

2.1 Passive inflow control devices  

Different types of passive Inflow Control Devices 

(ICDs) are developed to delay the early breakthrough by 

restricting the flow. In this study oil production, using 

nozzle ICD is studied. Well completion with ICDs 

includes a large number of ICDs evenly distributed 

along the well. ICDs are designed to give a more 

uniform oil production along the well. The diameter of 
each nozzle is chosen to obtain the desired pressure drop 

over the ICD at a specific flow rate. The pressure drop 

highly depends on the nozzle diameter and the density 

of the fluid and less on the viscosity. Passive ICDs are 

capable of delaying the water breakthrough significantly 

(Al-Khelaiwi, 2007), and the technology has opened up 

for production from reservoirs with thin oil columns. 

The total oil recovery increases significantly with use of 

ICDs. However, ICDs neither choke nor close for the 

undesired fluids like water, and after breakthrough, the 

whole well has to be choked to avoid the downstream 

separation facilities to be overloaded. Reservoir 

simulations have been performed for different types of 

ICD completions and the results have been useful to 

improve the ICD design (Krinis et al., 2009).  Krinis et 

al.  used the reservoir model NETool to determine the 

optimal number and location of ICDs along the well, and 

they stated that the simulations were the key factor to 

succeed in optimization of the horizontal well 

performance. The principle behind the nozzle ICD is 

based on the following equations (Al-Khelaiwi, 2007): 

∆𝑃 =  
𝜌𝑣3

2𝐶2 =  
𝜌𝑄2

2𝐴𝑣𝑎𝑙𝑣𝑒
2 𝐶2 =  

8𝜌𝑄2

𝜋2𝐷𝑣𝑎𝑙𝑣𝑒
4 𝐶2 

𝐶 =  
𝐶𝐷

√(1−𝛽4)
=  

1

√𝐾
   

𝛽 =
𝐷2

𝐷1
  

where ∆𝑃 is pressure drop across orifice, ρ is the average 

fluid density, v is the fluid velocity through an orifice, Q 

is the fluid flow rate through the orifice, A is the cross 

section area of orifice, D is the diameter of the orifice, 

C is the flow coefficient, CD is the discharge coefficient 

and K  is the pressure drop coefficient. 

2.2 Autonomous inflow control devices 

In addition to the heel-toe effect that is initializing the 

coning, coning also occurs due to heterogeneities in the 

reservoir. Robust inflow control that can choke back 

and/or close locally the water producing zones has the 

potential to increase the oil recovery significantly 

compared to standard ICDs. Statoil has installed one 

type of Autonomous Inflow Control Devices (AICDs) 

called Rate Controlled Production (RCP) in wells in the 

Troll field (Halvorsen et al., 2012). The RCPs delay gas 

and water coning and in addition, the RCPs have the 

capability to choke for low viscous fluids after 

breakthrough. Halliburton has developed an AICD that 

behave like a traditionally ICD before breakthrough, 

and choke for the low viscous fluids after breakthrough 

(Least et al., 2012). The autonomous function of the 

AICDs, enables the wells to produce for a longer period 

of time, and the total oil production and oil recovery 

from a given field will increase (Least et al., 2012). The 

AICDs are installed in the wells in the same way as the 

ICDs, and are suitable for production in long horizontal 

wells. In this study, simulations have been performed 

with Statoil’s RCP.  
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   The RCP is characterized by being very little sensitive 

to changes in differential pressure, and gives a more 

uniform flow rate over a range of drawdowns compared 

to the ICD. The following equations describe the 

functionality of the RCP (Halvorsen et al., 2012; 

Mathiesen et al., 2011): 

𝛿𝑃 =  𝑓(𝜌, 𝜇) . 𝑎𝐴𝐼𝐶𝐷  . 𝑞𝑥  

𝑓(𝜌, 𝜇) = (
𝜌𝑚𝑖𝑥

2

𝜌𝑐𝑎𝑙
) ∙ (

𝜇𝑐𝑎𝑙

𝜇𝑚𝑖𝑥
)

𝑦

  

𝜌
𝑚𝑖𝑥

= 𝛼𝑜𝑖𝑙 𝜌𝑜𝑖𝑙 
+  𝛼𝑤𝑎𝑡𝑒𝑟𝜌

𝑤𝑎𝑡𝑒𝑟
+  𝛼𝑔𝑎𝑠𝜌

𝑔𝑎𝑠
  

𝜇
𝑚𝑖𝑥

=  𝛼𝑜𝑖𝑙𝜇𝑜𝑖𝑙
+  𝛼𝑤𝑎𝑡𝑒𝑟𝜇

𝑤𝑎𝑡𝑒𝑟
+  𝛼𝑜𝑖𝑙𝜇𝑜𝑖𝑙

 (7) 

where 𝛿𝑃 is pressure drop through RCP, q is the flow 

rate, x and y are user input constants, 𝑎𝐴𝐼𝐶𝐷 is the valve 

strength parameter, α is the volume fraction of the actual 

phase, ρcal and μcal are the calibration density and 

viscosity.  

   InflowControl AS has developed an autonomous 

inflow control valve (AICV) which is completely self-

regulating and does not require any electronics or 

connection to the surface. AICV gives low flow 

restriction for oil production and has the ability to close 

almost completely for water and gas. The valves will 

locally close in the zones with gas and/or water 

breakthrough, and simultaneously produce oil from the 

other zones along the well. The AICV technology utilize 

the fact that flow behavior through laminar and turbulent 

flow elements are different. The AICV technology 

consists of two different flow restrictors placed in series. 

The first one is a laminar flow restrictor and the second 

is a turbulent flow restrictor. Figure 3 presents a sketch 

of the combination of flow restrictors, where 1 is the 

laminar flow element and 2 is the turbulent flow 

element. The pressure in chamber B activates the piston 

in the valve to close or open. If oil is flowing through 

the AICV, the pressure drop through the laminar flow 

element is high, resulting in low pressure in chamber B 

and the valve is open. Water gives lower pressure drop 

through the laminar restrictor, resulting in high pressure 

in B, and the valve closes.  

 

Figure 3. Combination of laminar and turbulent flow 

restrictors in series 

The pressure drops through laminar and turbulent flow 

elements are expressed by Eq. (9) and (10) respectively. 

(Aakre et al., 2013; Aakre et al., 2014) The laminar flow 

element is considered as a pipe segment, and the 

pressure drop through the element is expressed as: 

∆𝑃 = 𝑓 .
𝐿.𝜌.𝑣2

2𝐷
=

64

𝑅𝑒
 .

𝐿.𝜌.𝑣2

2𝐷
=

32.𝜇.𝜌.𝑣.𝐿

𝐷2  

where ∆𝑃 is the pressure drop, f is the laminar friction 

coefficient, ρ is the fluid density, μ is the fluid viscosity, 

L is the length of the laminar flow element, D is the 

diameter of the laminar flow element, Re is Reynolds 

number.  

   The pressure drop through the turbulent flow element 

is proportional to the density and the velocity squared, 

and is given as: 

∆𝑃 = 𝑘.
1

2
 . 𝜌 . 𝑣2  

where k is a geometrical constant, ρ and v is the fluid 

velocity.  

   AICV is a new technology and is still not included as 

an option in NETool. However, AICV has the same 

function as ICD in open position, and when closed, the 

flow rate through the valve is reduced to less than 1%. 

This relationship between open and closed valve is used 

to simulate the AICV functionality.  

   Near-well simulations are important to be able to 

anticipate or predict the economic potential of well 

completion with different types of inflow controllers. 

The near-well simulation tool NETool is used in this 

project. 

3 NETool 

NETool is a one dimensional steady state near-well 

simulation tool. The NETool models include fluid 

properties, reservoir properties and well completion. 

The required information is imported or defined by the 

user via a graphical user interface. NETool evaluates the 

logic and algorithms.  

   Regarding completion, different options are included 

in NETool. In this study, different types of inflow 

controllers are installed in a long horizontal well. The 

design parameters are specified by the user to fit the 

specific reservoir and fluid conditions. The well is 

divided into zones, and the user specifies reservoir and 

fluid properties for each zone. In addition, the user 

specify the implementation of inflow controllers, 

packers, etc. for each zone. The most important user 

defined inputs to NETool are described below. 

3.1 Relative permeability 

In numerical reservoir simulation, the relative 

permeability is significant to predict the oil, water and 

gas production during the reservoir operation. It is a big 

challenge to estimate the relative permeability curves 

for a given field. Relative permeability curves are 

determined based on experimental core plug tests, and 

models for relative permeability are developed based on 

the experimental data.  

   The relative permeability, Ki, is defined as the 

effective permeability divided by the absolute reservoir 
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permeability. Darcy’s law describes the absolute 

reservoir permeability as:  

𝑞 = −
𝑘∙𝐴

𝜇
∙

𝑑𝑝

𝑑𝐿
     (10) 

where q is the volume flow rate, k is the absolute 

permeability, dp/dL is the pressure gradient, A is the 

reservoir cross section area and µ is the fluid viscosity.  

   The relative permeability is the ratio between the 

effective permeability and the absolute permeability, 

and is a function of the saturation of the different phases 

in the reservoir. (Selley, 1998; Ahmed, 2006) 

𝑘𝑟,𝑖 =
𝐾𝑖

𝑘
  

where kr,i is the relative permeability for phase i.  

   In this study, the Corey model and the Stone II model 

are used to define the relative permeability curves for 

water and oil respectively. The Corey model [10] for 

predicting the relative permeability of water is given by: 

𝑘𝑟𝑤 = 𝑘𝑟𝑜𝑤𝑐 (
𝑆𝑤−𝑆𝑤𝑐

1−𝑆𝑜𝑟−𝑆𝑤𝑐
)

𝑛𝑤

  

where krw is the relative permeability of water, krowc is 

the relative permeability of water at the maximum water 

saturation, Sw is the water saturation, Swc is the 

irreducible water saturation, Sor is the residual oil 

saturation and nw is the Corey fitting parameter for 

water.  

   The Stone II model estimates the relative permeability 

of oil in an oil-water system based on the following 

equation [11]: 

𝑘𝑟𝑜𝑤 = 𝑘𝑟𝑜𝑤𝑐 (
𝑆𝑤+𝑆𝑜𝑟−1

𝑆𝑤𝑐+𝑆𝑜𝑟−1
)

𝑛𝑜𝑤
 |  (13) 

where krow is the relative oil permeability for the water-

oil system, krowc is the endpoint relative permeability for 

oil in water at irreducible water saturation and now is a 

fitting parameter for oil.  (Li &Horne, 2006) 

3.2 Input to NETool 

Different types of passive and autonomous inflow 

control devices are available in NETool. In this study 

the nozzle ICD and Statoil’s RCP are utilized. The 

functionality and equations for these devices are 

presented in Chapter II. The diameter of nozzle ICD is 

set as 4 mm. The design parameters for the RCP, x, y 

and aAICD are set as 4, 1.1 and 10-7 respectively.  

   AICV is a new technology and is still not given as an 

option in NETool. However, AICV has the same 

function as ICD in open position, and when closed, the 

flow rate through the valve is reduced to about 1% of the 

flow rate in open position. This relationship between 

open and closed is used to simulate the AICV 

functionality in NETool. 

A sketch of the base-pipe including annulus, inflow 

control devices and packers are presented in Figure 4. 

The packers are installed to isolate the different zones, 

and thereby avoid annulus flow from one zone to 

another. The well has a total length of 500 m, and is 

divided 32 zones, with two inflow-controllers in each 

zones. Each section isolated with packers, includes three 

or two inflow zones. Three different cases are simulated, 

one with nozzle ICD, one with RCP and one with AICV. 

 

Figure 4. Well completion including packers (red squares) 

and inflow control devices (black dots).  

   Figure 5 represents the reservoir permeability along 

the production well.  The reservoir is heterogeneous and 

has two high permeability zones with permeability 1D, 

and the permeability in the other is 100 mD. Figure 6 

shows the oil saturation in the reservoir. The oil 

saturation is assumed as 100% in the low permeability 

zones, whereas the water saturation is assumed 100% in 

the high permeability zones. Since NETool is a steady 

state simulation tool, it is not possible to study the 

changes in oil and water saturation with time nor is it 

possible to determine the breakthrough time. These 

simulations are therefore based on the assumption that 

the water breakthrough has already occurred in the high 

permeable zones, whereas the low permeable zones are 

still saturated with oil. This simplification of the oil and 

water saturation in the reservoir is made to be able to 

study the effect of the different inflow control devices 

after water breakthrough.  

 

 

Figure 5. Permeability. The permeability is 1D and 100 

mD in the high and low permeability zones, respectively. 

 

Figure 6. Oil saturation. The low permeability zones are 

saturated with oil (100%) and the low permeability zones 

are saturated with water (0% oil). 

Tab. 1 represents a summary of the input parameters 

used in this study, and the estimated relative 

permeability curves are presented in Figure 7. 
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Table 1. Input to NETool 

Reservoir Parameters and 

well specifications 

 

Well length 550 m 

Reservoir thickness 200 m 

Reservoir width 4000 m 

Reservoir Pressure 302 bar 

Porosity 0.20 

Permeability  100 mD and 1D 

Oil viscosity  2cP 

°API gravity 33 

Reservoir Temperature 68°C 

Dissolved gas/oil ratio 1303/Sm3 

 

 

Figure 7. Relative permeability curves for oil-wetted 

reservoir. 

4 Results and discussion 

The aim of this study is to find the effect of different 

types of inflow control devices on oil and water 

production. Three different cases are performed, one 

with ICD completion, one with RCP completion and one 

with AICV completion. The input parameters for the 

simulations are the same for the three cases. The 

simulations are run with drawdown of 2, 5, 10 and 15 

bar, and the total production rates versus drawdown, the 

water cut versus drawdown and the performance curves 

for ICD, RCP and AICV are studied.  

   These shortcuts Figure 8 shows the oil performance 

curves for ICD, RCP and AICV. The curves are 

calculated based on the total production rate from the 

well and presented as the volume flow of oil through one 

inflow control as a function of pressure drop over the 

completion.  Due to low permeability in the oil zones, 

the pressure drop in the reservoir is high which gives a 

low differential pressure, ΔP, over the inflow controls 

and low production rates. At the actual ΔP over the 

inflow control devices, RCP gives the lowest pressure 

drop per volume flow. The oil flow rate through RCP is 

about 500 l/h at differential pressure 0.7 bar. ICD and 

AICV produces less than 500 l/h at ΔP 1.15 bar and 1.25 

bar respectively.  Figure 9 shows the typical 

functionality of ICD and RCP. The curves are plotted 

based on the equations presented in Section 2, and 

shows that RCP has higher production rates versus ΔP 

at low ΔP, whereas above a certain pressure it changes. 

The reason is that ΔP is proportional to the volume flow 

in the power of 4 for RCP and proportional to the 

volume flow squared for ICD. Figure 10 gives the 

comparison between the water performance curves for 

ICD, RCP and AICV. The water is produced from the 

high permeability zones where the flow restriction 

through the reservoir is low. This results in high 

production rates of water and high pressure drop across 

the completion. The figure shows that the RCP is 

choking for water and that the ICD is producing 

significantly higher amounts of water compared to RCP 

at ΔP above 1 bar. The functionality of AICV is to close 

almost completely for water, and at closed position, the 

flow rate will be about 1% of the flow rate through open 

valve. Since AICV is not included in NETool, the AICV 

was simulated by using 4 mm ICDs in the oil zones and 

0.4 mm ICDs in the water zones. This will indicate the 

potential of AICVs. The water curve for AICV shows 

that the amount of water flowing through the AICV is 

insignificant. 

 

Figure 8. Oil production as a function of differensial 

pressure through the inflow controllers. 

 

 

Figure 9. Calculated performance curves for RCP and 

ICD. 

   Figure 11 presents the water cut versus drawdown 

when using ICD, RCP and AICV. The water cut 
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decreases with increasing drawdown, and at drawdown 

15 bar the water cut is about 27% for RCP and 44% for 

ICD. The water cut differs less at low drawdowns, and 

at 2 bar, the water cuts are 59% and 64% for RCP and 

ICD respectively. When the AICV technology is used, 

the water cut is negligible for the range of simulated 

drawdowns.  

   The total production rates for the horizontal well are 

presented in Figure 12. The figure shows that ICD is 

producing more water than oil when the drawdown is 

lower than 10 bar. At higher pressure drops, the oil 

production is higher than the water production. 

However, the well is producing water from only 6 zones 

and oil from 26. RCP is designed to choke for water, and 

the oil production exceeds the water production at 

drawdown higher than 3 bars. The ratio between the oil 

and water production depends on the relative 

permeability, the fluid properties and the fuctionallity of 

the inflowcontrol devices. Since ICD is a passive inflow 

control, the water flow will not be restricted, and water 

through each ICD will be produced at higher flow rates 

than oil. RCP is autonomous and chokes for water, 

which results in low water production and unrestricted 

oil production at the range of drawdowns used in this 

study. The simulations are able to predict the benefits of 

using autonomous inflow control devices. 

 

Figure 10. Water production through ICD, RCP and AICV 

 

Figure 11. Watercut as a function of drawdown. 

 

 

Figure 12. Total production rate of oil and water as a

function of drawdown.

5 Conclusions

Water breakthrough is a big challenge in light oil

production, and different types of inflow control devices

are developed to delay, reduce or avoid breakthrough.

Light oil production from a heterogeneous reservoir is

simulated to study the effect of the three types of inflow

control devices, nozzle ICD, autonomous RCP and

AICV. NETool is used as the near-well simulation tool.

The functionality of ICD and RCP is included in

NETool, whereas AICV is simulated based on expected

behaviour. The simulated horizontal well is 550 m long

and packers and inflow control devices were evenly

distributed along the well. The wells with ICD, RCP and

AICV completion were simulated using different

drawdowns ranging from 2 to 15 bar. The total

production rates versus drawdown, the water cut versus

drawdown and the performance curves for ICD, RCP

and AICV were studied. The results confirm that

autonomous inflow controls, RCP and AICV, reduce the

water production and water cut significantly compared

to passive ICD. The water cut decreases with drawdown,

and is about 27% for RCP and 44% for ICD at 15 bar.

When the AICV technology is used, the water cut is

negligible for the range of simulated drawdowns. RCP

gives the highest oil production rate at drawdown

ranging from 2 to15 bar, but this is expected to change

when the drawdown is further increased.  The RCP

completed well produces about 310 m3 oil and 110 m3

water per day at drawdown 15 bar. ICD produces about

230 m3 water per day, whereas AICV produces a

negligible amount of water. The results confirm that the

water production decreases with RCP and AICV

compared to ICD. Delayed and reduced water

production will result in increased oil recovery.
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