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Abstract
Water pressure and flow rate calculation in dynamic
boiler models is challenging because of stiff system
dynamics meaning that time constants of model states
vary by several orders of magnitude. Furthermore,
strong interconnections between pressures and flow
variables may cause instability problems in simulation
runs. This study presents a method to implement and test
dynamic thermal power plant water-steam system
models. A dynamic water-steam system model is
presented. The model is applied for testing of the
functionality of the presented computation model.
Computational performance was tested using different
numerical solvers. Also sensitivity to changes in initial
values of system states and model parameters was
tested. The results indicate that a workable way to make
flexible models was found.
Keywords:  modelling, simulation, power plant

1 Introduction
Water is the working fluid of steam power plants.
Different physical phases of water set challenges to
modelling work. Process components can contain sub-
saturated liquid, saturated liquid-vapour mixture and
superheated steam. In supercritical boilers supercritical
fluid is also present. Physical characteristics of water,
such as density and vapour fraction, change as functions
of fluid pressure and enthalpy. Water properties affect
also to pressure losses and heat transfer coefficients
between the fluid and the internal surfaces of the process
components. Temperature differences and flow rates
affect heat flows. Likewise pressures and flows are
dependent on each other. Therefore, the strong
interconnections between the variables, nonlinearity and
time variant phenomena set challenges to the modelling
and simulation work.

Mathematically, dynamic pressure and flow models are
stiff systems of differential equations. Generally,
stiffness  can  be  described  as  a  property  that  existing
time constants of the system states differs from each
other by several orders of magnitude. A basic difficulty
in numerical solutions of stiff models is a requirement
of absolute stability. Numerical problems may result to

noise in simulation results, which further may lead
simulation run to fail. (Åman, 2011)

Besides the stiffness, computational problems are
caused by calculation errors and discontinuities.
Truncation and rounding errors are caused by digital
computing. The truncation error forms a difference
between the numerical and real solution. The rounding
error results from limited calculation accuracy.
Extension of the simulation step length will expand the
truncation error but reduce the rounding error when the
amount of calculation operations is reduced. If the time
step has been selected too long, the solution may begin
to oscillate and calculated values to drift away from an
allowed area. (Jäntti, 1996)

The differential and/or partial differential equations of
the dynamic models can be non-linear, contain
discontinuities and consist of complex boundary
conditions. Hence, numerical solvers must be applied in
simulations. The choice of the solver has significance
for simulation speed and accuracy. Numerical methods
are often classified in two groups: explicit and implicit.
Explicit methods calculate the next state of a model
from the current state. Implicit methods find a solution
by solving equations involving both the current state and
the next one. Implicit methods are usually more efficient
when solving stiff models. Implicit methods require an
extra computation, but on the other hand the time step to
be used can often be lengthened so that the stability of
the solution does not suffer. (Åman, 2011; Jäntti, 1996)

Solvers can also be divided into two main types: fixed-
step and variable-step solvers. The solvers, which use
the variable step, adjust the step length according to the
situation. During a fast transient situation, a minor step
size is required in the integration. When the model has
slow dynamics, near steady state situation and the
changes  are  small,  the  use  of  the  longer  time  step  is
reasonable.

Special situations such as small flows or quick pressure
changes may also cause computational problems. The
pressure and flow models may also be sensitive to initial
values of state and model parameters. This complicates
the revision of the models.
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Instabilities in modelled pressure and flow, which are
not caused by computational reasons, may also be
found. This brings the extra challenge for the
examination of the instabilities of the model. For
example, oscillations can cause problems in control
system, boiling crisis and excursion of flow due to
differences in the pressure drop characteristics of
different flow pattern. Pressure and flow instabilities
exist especially during startups and shutdowns. (Majuri,
2012)

The objective of this study was to find the workable way
to implement reliable and stable models. The models
must be also flexible and easily edited. The water
pressure and flow model has been developed for
functionality testing. Additionally, the sensitivity of the
model has been tested in different ways.

2 Modelling
The water-steam system of the thermal power plant
consists of several process components. System models
can be built by combining model blocks of these sub-
systems. In this work, the blocks can be classified as
follows: pressure and flow values are calculated in the
pressure point model blocks, and pressure rise and drop
and heat transfer are modelled in the pump, valve and
process element/heat exchanger model blocks.

2.1 Basic Process Components
Figure 1 presents a simple example of a process model,
which contains two pressure points, a pump, valve and
a process element. The water pressure and the outgoing
flow are calculated in the point. Pump and valve models
calculate pressure rise ୮୳୫୮ [Pa] and drop∆ ୴ୟ୪୴ୣ∆
[Pa], respectively. Pressure rise is a function of the
pump speed. Pressure drop between pressure points can
be controlled by manipulating the valve stem position.
In the literature there are several different equations to
the pressure and flow calculation of pumps and valves
(Kirmanen et al., 2012; Ordys et al., 1994). The input
variables of all model blocks are mass flow, inlet
pressure and inlet enthalpy of water. Similarly, the
outputs are mass flow, outlet pressure and outlet
enthalpy. Parameters of blocks can be determined based
on the dimensions of the component and other
properties.

Figure 1. An example of a structure of the pressure and
flow model.
Process element model block represents different water-
steam side components such evaporators, superheaters,
economisers and pipes. It is also possible to divide the

modelled sub-processes into several model blocks
because the model blocks can be connected together.
The element model block contains calculations of
pressure drop ,.୪ୣ୫ [Pa] according to (Pioro et alୣ∆
2004)

୪ୣ୫ୣ∆ = ୰୧ୡ∆ + ୪୭ୡ∆ + ୟୡୡ∆ + ୪ୣ୴ୣ∆ (1)

where ,୰୧ୡ∆ ,୪୭ୡ∆ ୟୡୡ and∆ ୪ୣ୴ are the pressureୣ∆
drops [Pa] due to frictional resistance, local flow
obstruction, acceleration of flow and gravity. There are
several equations in literature, which can be applied to
pressure drop calculation. (Pioro et al., 2004; Tong and
Tang, 1997)

The process element model block calculates also the
time derivate of water enthalpy, which is affected by the
enthalpy of inlet water flow and the heat transfer
between water and walls of the process element.
Moreover, the heat transfer and pressure drop depend on
water properties and flow rate. The properties of water
are interpolated from water-steam tables. The block is
able to handle the thermodynamics of liquid water,
saturated water-steam mixture, superheated steam, and
supercritical fluid. The model block selects suitable
water side heat transfer coefficient and pressure drop for
different situations. The model block includes also
metal walls (and possible refractory layers) of
represented process components. Also the conductive
heat transfer through these walls and layers has been
modelled. The model block calculates time derivatives
of metal and refractory walls temperatures. (Yli-Fossi et
al., 2011; Yli-Fossi et al., 2012)

Pressure point model block calculates time derivatives
of pressure and outlet fluid mass flow(s). The
calculation of pressure for single-phase water and [Pa] 
steam is based on the following equation (Lu, 1999)

d
dݐ

= −

୧ℎ୧ݓ) − ୭ℎ୭ݓ + (ݍ − ቌ ߩ
ߩ߲
߲ℎ

+ ℎቍ ୧ݓ) − (୭ݓ

ܸ ൮1 +
ߩ ߩ߲

߲
ߩ߲
߲ℎ

൲

(2)

where ୧ andݓ ୭ are inlet and outlet mass flow ratesݓ
[kg/s]. ℎ୧ and ℎ୭ are inlet and outlet enthalpies [J/kg]. ݍ
is heat flow [J/s] to fluid. and ߩ ℎ are density [kg/m3]
and enthalpy in a control volume ܸ [ m3]. A certain part
of the modelled process can be defined as the control
volume.
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The time derivative of pressure for two-phase liquid and
vapour mixture can be calculated as (Lu, 1999)

d
dݐ =
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୴ߩ−୪ߩ

୧ݓ) − (୭ݓ

݁୪ ୪ܸ + e୴ ୴ܸ

݁୪ = ୪ߩ
߲ℎ୪

߲ +
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୪ߩ − ୴ߩ

୪ߩ߲

߲ − 1

݁୴ = ୴ߩ
ݒ߲
߲ +

୪(ℎ୴ߩ − ℎ୪)
୪ߩ − ୴ߩ

୴ߩ߲

߲ − 1

(3)

where ୪ andߩ ୴ are liquid and vapour densities [kg/m3]ߩ
and ℎ୪ and ℎ୴ are liquid and vapour enthalpies [J/kg] in
the control volume ܸ [ m3].

The time derivative of liquid volume ୪ܸ [m3]  in  the
control volume can be expressed as (Lu, 1999)

d ୪ܸ

dݐ =
୧ݓ − ୭ݓ − ൬ ୪ܸ

୪ߩ߲
߲ + ୴ܸ

୴ߩ߲
߲ ൰ d

dݐ
୪ߩ − ୴ߩ

(4)

Vapour volume ୪ܸ [m3] in the control volume is (Lu,
1999)

୴ܸ = ܸ − ୪ܸ (5)

The time derivative of the outlet fluid mass flow [kg/s]
from the pressure point model block is calculated as
(Fabian, 2009)

ୢ௪
ୢ௧

= ି౮౪ି∆౪౪
/ (6)

where is pressure [Pa] in the pressure point and  ୬ୣ୶୲
is pressure [Pa] in the next pressure point in the flow
direction. According to Figure 1, is the pressure of the 
left pressure point model block and ୬ୣ୶୲ is the pressure
of the right point. and ܮ are the total length [m] and ܣ
inner cross-sectional areas [m2] of tubes of process
components between pressure point model blocks for 
and ୬ୣ୶୲. Fluid inertia is most significant in long  ܣ/ܮ
and slender tubes. ୲୭୲ [Pa] is the total pressure drop∆
between the pressure points. In case of Figure 1, ୲୭୲∆
can be determined as

୲୭୲ = ୮୳୫୮∆ + ୴ୟ୪୴ୣ∆ + ୪ୣ୫ୣ∆ (7)

In literature there are alternative ways to calculate mass
flows (Jäntti, 1996; Lu, 1999). In this work the Equation
6, based on Newton’s second law, is applied. The same
equation is used for liquid water and vapour. The
compressibility of vapour is considered in the pressure
equations.

2.2 Boiler Evaporator Loop
Steam boilers can be classified according to the
structures of the evaporation process. The types are
drum boilers with natural or forced circulation, and a
once-through design. Boiling occurs in evaporator tubes
which form furnace walls. Figure 2 illustrates the
structure of the forced circulation system. The main
components of the system are: the steam drum,
downcomer pipes, circulation pump and riser tubes.
The drum separates steam from the saturated water-
steam mixture flowing out from the riser tubes.
Downcomer pipes convey water from the drum to the
lowest part of the evaporator under the furnace floor.
Riser  tubes  lead  water  back  from  the  bottom  of  the
furnace to the drum. The outlet flow from the riser tubes
consist of saturated water and saturated steam, which are
separated from each other in the steam drum. Saturated
water mixed with new feed water is circulated back from
the drum to the evaporator and saturated steam is led to
the superheaters to be heated up. In a natural circulation
boiler, the density difference between liquid water in
downcomer and water-steam mixture in riser provides
the pressure difference required for circulation. In a
forced circulation boiler, a pump is used to increase the
circulation rate as compared to that of a natural
circulation boiler. (Åström and Bell, 2000; Li et al.,
2005)

Figure 2. The structure of the circulating evaporation
system.
Several studies about the modelling of the circulating
evaporation process can be found in the literature. In the
presented model the drum pressure is determined as
(Åström and Bell, 2000)
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(8)

where  andݓ ୱ are the mass flows [kg/s] of the feedݓ
water to the drum and the steam flow from the drum. ℎ
and ℎୱ are the enthalpies [J/kg] of the feedwater and the
saturated steam. ୪ andߩ ୴ are liquid and vapourߩ
densities [kg/m3] and ℎ୪ and ℎ୴ are liquid and vapour
enthalpies [J/kg] in the drum. ୪ܸ୲ and ୴ܸ୲ are liquid and
steam volumes [m3] in the total circulation evaporation
system. ݉୲ is the mass [kg] of the metal structure of the
system.  isܥ  the  specific  heat  capacity  [J/(K*kg)]  of
metal and ୱܶ is  the  saturation  temperature  [K]  of  the
steam.

The flow through the downcomers can be calculated as
(Li et al., 2005)

dୢݓୡ

dݐ =
ୡୢܪୡ݃ୢߩ − ∫ ୰ߩ

౨
 ݃dݖ − ୰∆ − ୡୢ∆ + ୮୳୫୮∆

ୡୢܮ) + ୡୢܣ/(୰ܮ

(9)

where ୡ andୢߩ ୰ are the densities [kg/m3] of the processߩ
fluid in the downcomers and the risers. ୡ andୢܮ ୰ areܮ
the the lengths [m] of of the downcomers and the risers.
.ୡ is the height [m] of the downcomersୢܪ ݖ is the vertical
position [m] in the risers. ݃ is the gravitation constant
[m/s2]. ୡ is the inner cross-sectional area [m2] of theୢܣ
risers.  ∆ୢୡ, ୰ and∆ ୮୳୫୮ are the pressure drops∆
[Pa] across the downcomers, the risers and the
circulation pump. ୮୳୫୮ is omitted if a natural∆
circulation boiler is modelled.

The flow through the risers can be presented as (Åström
and Bell, 2000)

୰ݓ = ୡୢݓ − ୰ܸ ൬ߙ௩
୴ߩ߲

߲ + ൬1 − ௩ߙ
୪ߩ߲

߲
൰

+ ୪ߩ) − (୴ߩ
௩ߙ߲

߲
൰

d
dݐ

+ ୪ߩ) − (୴ߩ ୰ܸ
௩ߙ߲

ߙ߲

dߙ

dݐ
(10)
 

where ୰ܸ is  the  volume  [m3] of the risers. ௩ߙ is the
average steam volume fraction. ߙ  is steam mass
fraction at the risers’ outlet.

Condensate and steam flow rates through the surface
level in the drum can also be modelled by the equations
found in the literature (Åström and Bell, 2000).

2.3 Test Model
This work is a part of the wider modelling work where
different types of steam power plants have been
modelled. These models include also the air-flue gas
system and the dynamics of combustion and the heat
transfer from hot flue gases to heat exchanger structures.
Also the main control loops are included. The models
can be used for several purposes, such as control design
and process development. The focus of this paper is on
the  testing  of  pressure  and  flow  calculations.  A  fairly
simple model is used for the testing, because it facilitates
the analysis of the computation and the examination of
the functionality. The dynamic water-steam system
model has been developed using Simulink and Matlab
by  The  MathWorks  Inc.  The  process  is  modelled  as  a
continuous time model.

Figure 3. The diagram of the dynamic power plant water-
steam system model.

Figure 3 illustrates the structure of the test model. The
water-steam system model consists of a feedwater pump
and  a  valve,  a  preheater,  economisers,  a  drum,  and  a
natural circulation evaporator, three superheaters, two
attemperation sprays and a steam pipe, a turbine valve
and a steam turbine. The flue gas side has not been
included in this model. Suitable heat flows are only
added to the model blocks of the economisers, the
evaporators and the superheaters as input variables.
Feed water is heated by the preheater taking heat energy
from steam extracted from the steam turbine. The
economisers (flue gas preheaters) increase feed water
temperature after the preheaters near to the boiling
point. The evaporators generate steam and the drum
separates steam from saturated liquid-vapour mixture.
The superheaters increase the live steam temperature
before the turbine. Superheated steam temperature is
controlled by attemperation sprays. The cooling water is
taken before the feedwater valve. The spray valves are
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also modelled. The main pressure is controlled by the
heat power directed to the evaporators. The turbine
control valve is used to regulate the steam flow to the
turbine. A drum level control is also implemented in the
model. The level is adjusted with the feedwater flow.
The controllers are needed to achieve the desired steady
state of the system. The pressure point model blocks
have been marked on Figure 3 with P1…P7. The
presented equations are applied in each blocks.

3 Simulation Tests
The presented model has been tested in different ways.
The numerical solvers were compared with test runs.
The effect of the correctness of the initial values of the
states has been studied. The tolerance of the model to
the changes in the parameters and the structure was also
examined.

3.1 Comparison of Numerical Solvers
The MATLAB offers several solvers for solving
ordinary differential equations (ODEs). The ode45
solver was chosen as a reference solver which is more
suitable for nonstiff systems. The ode45 solver uses a
variable step and one-step Runge-Kutta procedure. It
calculates both the fourth and fifth order
approximations. The MATLAB/Simulink environment
contains four solvers, ode15s, ode23s, ode23t and
ode23tb, all of which are designed to solve stiff
equations. The numbers in the names represent the
orders of the approximations. Ode15s solver turned out
to be very slow for the test model and for this reason it
was left out from the more exact study. The ode15 is a
multistep solver which is based on the numerical
differentiation formulas. The one-step ode23s solver is
based on a modified Rosenbrock formula of the second
order. The ode23t is an implementation of the
trapezoidal rule using a free interpolation. The ode23tb
is an implementation of TR-BDF2. (MATLAB:
Documentation, 2016)

The comparative simulation test runs were performed by
different solvers. Each solver was tested with three
values, 1e-3, 1e-5 and 1e-8, of the relative tolerance.
The relative tolerance measures the error relative to the
size of each state. The relative tolerance represents a
percentage of the state's value. For example, value 1e-3,
means that the computed state will be accurate to within
0.1%. The parameter of the absolute tolerance was set in
auto-mode. The same initial values of the states were set
for each simulation run. The model was near steady state
at full load. The lengths of the runs were 100 simulated
seconds.  The  results  of  the  simulation  runs  are
summarized in Table 1. The speed is presented as a ratio
between a real time and consumed simulation time.
Decrement of the tolerance decreases simulation speed
and noise of calculated variables. The solvers ode45 and
ode23s are clearly slower than the solvers ode23t and

ode23tb. Figures 4 and 5 present simulated steam
pressure  and  mass  flow  in  the  point  P6  after  the  last
superheater. Oscillations of the simulated results are
distinctly seen especially when the relative tolerance is
1e-3. The solver is ode23tb, which seems the most
efficient on the basis of Table 1. In this case, it seems
that the suitable compromise between simulation speed
and accuracy is achieved with relative tolerance 1e-5.

Table 1. Comparison of the Solvers

Name Relative
tolerance

P6:
Pressure
deviation:
variance
[%]

P6:
Mass flow
deviation:
variance
[%]

Simulation
speed:
real time /
simulated
time

ode45
1e-3 0.1075e-2 1.1419e-2 0.4463
1e-5 0.0184e-2 0.3303e-2 0.4244
1e-8 0.0185e-2 0.3294e-2 0.3497

ode15s 1e-3 not tested not tested very slow

ode23s
1e-3 0.0413e-2 0.4899e-2 0.5520
1e-5 0.0414e-2 0.4905e-2 0.5428
1e-8 0.0324e-2 0.4291e-2 0.3042

ode23t
1e-3 0.0261e-2 0.3646e-2 7.3868
1e-5 0.0223e-2 0.3571e-2 4.8860
1e-8 0.0220e-2 0.3545e-2 1.0878

ode23tb
1e-3 0.7236e-2 3.8129e-2 8.3178
1e-5 0.0516e-2 0.4356e-2 8.1136
1e-8 0.0222e-2 0.3566e-2 3.3905

Figure 4. Simulated steam pressure in the point P6 using
different values of the relative tolerance by the solver
ode23tb.
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Figure 5. Simulated steam mass flow in the point P6
using different values of the relative tolerance by the
solver ode23tb.

3.2 Effects of Initial State and Parameters
The initial values of the model state have high
significance from the point of view of the functionality
of the model. To setting the model first time to the
steady state may be difficult. The correct initial values
can be calculated or estimated before the first simulation
run. However, this can be time-consuming and
troublesome. The second alternative is to simulate the
model to the desired state. The challenge is that wrong
initial values can lead the simulation run to fail. In any
case, when the desired state has been reached, it can be
saved. Saved states can be used to the initialisation of
the state values. The changing of the parameters and
structure of the model may also cause problems. For this
reason, it is a significant advantage if the model tolerates
different state values and updating of the model.

Figure 6 represents a case where the initial values of the
outlet pressure and outlet mass flow of the pressure
point  P5  were  set  incorrect  in  the  full  load  state.  The
deviation of the outlet pressure was set -15 % and the
outlet mass flow -100 % (0 kg/s) before a simulation
run. Other model state variables were at the proper
values. All controllers were set on manual mode. The
figure proves that the model tolerates the false initial
values  and  settles  in  steady  state.  However,  if  the
deviation of the pressure was set -20 %, then the
simulation run failed.

The drum model functionality also was tested in the
same way. The initial value of the drum pressure was set
about -15 % smaller than in the full load situation.
Figure 7 shows that the drum pressure began to rise
immediately at the beginning of the simulation. The
steam flow from the drum was decreased because the
drum pressure was smaller than in the next pressure
point P4. Steam flow returned normal when the drum
pressure rose enough. Figure 8 presents the mass flows
of the downcomers and the risers in the evaporation loop

in the same simulation run. The pressure deviation
affected the riser flow more strongly than into the
dowcomer flow. At the end of the simulation the flows
reached the balances. The model tolerated the change of
the initial value of the drum pressure.

Figure 6. Simulated pressures and mass flows in the point
P5.

Figure 7. Simulated pressures and mass flows in the
drum.

Figure 8. Simulated downcomer and riser mass flow in
the drum.
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Effect of the changes in the model parameters was also
tested by the model. It turned out that the model
tolerated well a change in the size of the drum and other
process components. Effect of the editing of the
structure of the model also was studied. A new
superheater model was added between the present
superheater and the pressure point P4. Thus, the new
model version contained two superheater model blocks
between  the  drum and  P4.  The  controllers  were  set  to
auto-mode in this simulation test. The adding of the
model block caused oscillation before the model settled
in the balance, which can be seen in Figure 9. The initial
state of the new block was far from the reasonable
values. For example, in the start situation the vapour
mass fraction was zero inside the new superheater. In
spite  of  this  the  model  was  able  to  handle  the
unconventional situation. The reasonable values were
reached in the end of the simulation run.

Figure 9. Simulated pressures and mass flows in the point
P4.

4 Conclusions
A dynamic power plant water side model and selected
water pressure and flow equations has been presented.
The equations are based on physical equations. The
suitable solver's choice was also studied and tested.
Functionality testing proved that the model tolerates
different changes well within certain limits. A workable
way to make flexible models with pressure and flow
calculation was found.
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