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Abstract
In this paper a set of mathematical conditions on heliostat
models is presented. Its purpose is to guarantee a deter-
ministic computation of the heliostat setpoints in azimuth
(β ) and elevation (α). In Central Receiver (CR) Concen-
trating Solar Power (CSP) plants, thousands of heliostats
are continuously operated, and the updating of their set-
points is required frequently. For this reason, the fulfill-
ment of some mathematical conditions of the mentioned
type is important. In a simplified approach, during the op-
eration, each heliostat reflects in its mirror a ray from the
sun that impacts on a given aiming point P. This aiming
point is assumed to be higher than the heliostat position, in
the tower receiver. If v is the incident solar vector, x is the
orthogonal vector of the heliostat reflective plane and f (x)
is the center of the heliostat mirror, then a system of equa-
tions with unknown x is arisen. Imposing certain condi-
tions on f , we can ensure the existence and uniqueness of
solution of this system, and provide a sequence converg-
ing to such solution. Furthermore, we offer a numerical
method for approximating the solution in a deterministic
form, which can be computed with the requirements of
hard real time systems.
Keywords: central receiver concentrating solar thermal
plants, heliostat setpoint, Banach’s fixed point theorem,
Newton-Raphson’s numerical method, deterministic com-
putation

1 Introduction
From a simplified point of view, a heliostat could be con-
sidered as a device that supports a mirror and orientates
it, following the daily motion of the sun through a ser-
vomechanism and a multibody system (Otter et al., 2003).
The mirror should be continuously properly oriented to
reflect the sun radiation into an aiming point (objective
point) positioned in the receiver of a Central Receiver
(CR) Concentrating Solar Power (CSP) plant. In this way,
all the heliostats in a CR CSP plant will concentrate the
primary power from the sun into a set of predefined aiming
points, that are carefully selected to generate a distributed
power density pattern in the receiver. Figures 1 and 2 show
this scenario.

Some authors have studied different ways to improve

Figure 1. CESA-I central receiver research facility at Plata-
forma Solar de Almería (PSA).
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Figure 2. Simplified scheme showing the reflection of a ray
representing the direct component of solar radiation being re-
flected in the heliostat mirror and impacting in one of the aiming
points P of the receiver.

the focusing system of the heliostats. For example, Mul-
holland presents in (Mulholland, 1983) a method to de-
termine the optimum size of the heliostat or concentra-
tor, Guo et al. give in (Guo et al., 2012) a least squares
model to determine certain angular errors in some altitude-
azimuth tracking formulas, García-Martín et al. develop
in (García-Martín et al., 1999) a control strategy aimed at
optimizing the temperature distribution within a volumet-
ric receiver, Berenguel et al. apply in (Berenguel et al.,
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2004) a correction control system using artificial vision
techniques, etc.

A related issue is to properly distribute the reception
points of the tower where solar energy is focused. So it
will be possible to get a uniform temperature profile in the
receiver and prevent its structure from being damaged. To
achieve that and develop a robust control system for the
heliostat field, the following problem is considered:

Given a heliostat in which the center C and the ortho-
gonal vector x of its mirror plane are variable, how can
be determined them so that the reflected ray impacts on a
specific receiver point P?

When the center C of the heliostat mirror can be ex-
pressed as a function f (x) of the orthogonal vector x, it
is possible to raise a system of equations to determine x
(Section 2). In such case, some conditions are given on
f to ensure the existence and uniqueness of solution of
such system, and to obtain a sequence converging to that
solution (Section 3). Concretely, it is required that f is a
Lipschitz function and its Lipschitz constant verifies cer-
tain boundedness (see Condition 3.3).

Furthemore, a numerical method is developed to ap-
proximate the solution by mixing the aforementioned con-
vergent sequence with Newton–Raphson’s method. Thus,
a safe and good speed convergence is obtained (Sec-
tions 4 and 5), making the numerical method a poten-
tial solution to use in hard real time control systems
(Burns and Wellings, 2010).

2 Approach to the system of equations
In principle, it must be considered the relationship be-
tween the incident ray, the reflected ray and the reflective
surface of the heliostat. That relationship is given by the
law of reflection (Hecht, 2002, pages 98 and 99).

Law 2.1 (The Law of Reflection) The incident ray, the
normal to the reflective surface and the reflected ray all
lie in the same plane. Furthermore, the angle of reflection
is equal to the angle of incidence.

This law and Proposition 2.3 are key tools to raise a
system of equations. Before stating that proposition, a
lemma is presented that will simplify its proof. Through-
out all this paper, (·|·) will denote the usual Euclidean in-
ner product of RN (where N is some positive integer), and
‖ · ‖ will represent the norm induced by this inner prod-
uct. On the other hand, given v1, . . . ,vm ∈ RN , we de-
note by lin({v1, . . . ,vm}) the linear subspace spanned by
{v1, . . . ,vm} (see (Larson and Falvo, 2012) for details).

Lemma 2.2 Let u,w ∈ RN vectors with ‖u‖ = 1 = ‖w‖
and u 6= −w. If θ is the angle formed by the vectors u
and w, then the angle between u and u+w is θ/2. As a
consequence, (u|u+w)≥ 0.

Next, the announced key proposition is presented.

Proposition 2.3 Let v, P,C∈R3 such that v and P−C are
linearly independent, and let x = P−C+(‖P−C‖/‖v‖)v.
It is satisfied that:

i) If the heliostat reflective plane H passes through the
point C and has orthogonal vector x, then the plane
C+ lin({v,x,P−C}) is perpendicular to H.

ii) The angle between P−C and x is equal to the angle
between v and x.

iii) The vectors v and P−C are in the half-space deter-
mined by x, that is, 0≤ (v|x) and 0≤ (P−C|x).

If the incident solar ray passes through the point C and
has direction vector v, and the heliostat reflective plane H
passes through C and has orthogonal vector

x = P−C+(‖P−C‖/‖v‖)v, (1)

then this proposition and the law of reflection state that the
reflected ray passes through C and P.

It is not possible that v and P−C are linearly depen-
dent because the tower where P is situated prevents (with
its shadow) the existence of an incident solar ray passing
through P and C. But even if v and P−C are linearly de-
pendent and there exits the incident solar ray, the reflected
ray and the line through C and P are coincident when H
has orthogonal vector x=P−C+(‖P−C‖/‖v‖)v (in fact,
they would also coincide with the incident ray and the nor-
mal to H). Therefore, it will not be necessary to suppose
that v and P−C are linearly independent in subsequent
developments.

Conditions 2.4 From now on we assume the following
conditions given by the nature of the problem:

a) The director vector v= (a1,a2,a3) of the incident so-
lar ray satisfies that a3 ≥ 0.

b) We suppose that the center C of the heliostat mirror
can be expressed as a function of its orthogonal vec-
tor, that is, there exists a function f : R3\{0} → R3

such that, if x ∈R3\{0} is a orthogonal vector to the
heliostat mirror, then C = f (x) is the center of such
mirror. Note that, in such case, it holds f (rx) = f (x)
for all x ∈ R3\{0} and for all r > 0.

c) Whatever the center of the heliostat mirror, the dis-
tance from it to the impact point of the tower is al-
ways less than certain upper bound, that is, there is
R > 0 such that ‖P− f (x)‖ ≤ R for all x ∈ R3\{0}.

d) The impact point of the tower P=(p1, p2, p3) is quite
higher than the heliostat, so there is a lower bound
M > 0 such that M ≤ p3− f3(x) for all x ∈ R3\{0}.

Moreover, we consider the following subset of R3:

DM = {(x1,x2,x3) ∈ R3 : M ≤ x3, ‖(x1,x2,x3)‖ ≤ 2R}.
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Taking into account Proposition 2.3 and the comments
following it, if there exists x ∈ R3\{0} such that

x = P− f (x)+
‖P− f (x)‖
‖v‖

v (2)

and the heliostat reflective plane is orthogonal to x, then
the ray reflected by the heliostat impacts on the point P.
Therefore, we must solve the system of equations given
by equality (2). Fortunately, we do not have to require too
much of f to ensure the existence of solution of system
(2). This is shown by the following result (which can be
found in (Deimling, 1985, Theorem 3.2)).

Theorem 2.5 (Brouwer’s Fixed Point Theorem) Let D
be a nonempty compact convex subset of RN and let
g : D→ D be a continuous function. Then g has a fixed
point, that is, there exists x ∈D with x = g(x). The same is
true if D is only homeomorphic to a compact convex set.

Since P − f (x) + (‖P − f (x)‖/‖v‖)v ∈ DM for all
x ∈ DM , then Theorem 2.5 shows that system (2) has solu-
tion in DM when it is assumed

Condition 2.6 f is continuous on DM .

3 Sufficient conditions for uniqueness
of solution and convergence

Before continuing with our development, we recall some
concepts and an important result. Given D ⊆ RN and a
function g : D → RN , it is said that g is Lipschitz on a
subset A⊆ D if there is a real constant c≥ 0 such that

‖g(x)−g(y)‖ ≤ c‖x− y‖ (3)

for all x,y ∈ A. The least constant c for which the pre-
ceding inequality holds will be denoted by L(g|A). If
L(g|A) < 1, it is said that g is a contraction mapping on
A.

A basic tool to prove existence and uniqueness of so-
lutions of systems of equations is Banach’s celebrated
fixed-point theorem. It is true for general complete metric
spaces but here we only need its version for closed subsets
of RN (see (Deimling, 1985, Theorem 7.1) or (Edwards,
1994, Theorem 3.1)).

Theorem 3.1 (Banach’s Fixed Point Theorem) Let D
be a closed subset of RN and g : D→ D be a contraction
mapping on D. Then:

i) g has a unique fixed point x ∈ D.

ii) For all x(0) ∈ D, the sequence
{

x(n)
}

, given by

x(n+1) = g
(

x(n)
)

(n ∈ N∪{0}), (4)

converges to x, and satisfy∥∥∥x(n)− x
∥∥∥≤ L(g)n

1−L(g)

∥∥∥x(1)− x(0)
∥∥∥ (n ∈ N). (5)

Our aim in this section is to obtain a sequence converg-
ing to a solution of system (2) by using Theorem 3.1. In
the following proposition we give sufficient conditions on
f to get a contraction mapping and be able to apply Theo-
rem 3.1.

Proposition 3.2 Let v=(a1,a2,a3),P=(p1, p2, p3)∈R3

be with a3 ≥ 0, M,R ∈ R be bounds with 0 < M < R and
f : R3\{0}→ R3 be a function such that M ≤ p3− f3(x),
‖P− f (x)‖ ≤ R and f (rx) = f (x) for all x ∈ R3\{0} and
for all r > 0. Suppose that there exists δ ∈ (0,M] such that
f is Lipschitz on the set

Dδ = {(x1,x2,x3) ∈ R3 : δ ≤ x3, ‖(x1,x2,x3)‖ ≤ 2R}

and L( f |Dδ )< M/(2δ ). Then the function g : DM → DM ,
defined by

g(x) = P− f (x)+
‖P− f (x)‖
‖v‖

v (x ∈ DM), (6)

is a contraction mapping on DM and L(g)≤ 2δL( f |Dδ)/M.

The new condition given by Proposition 3.2 is

Condition 3.3 There exists δ ∈ (0,M] such that f is Lip-
schitz on Dδ and L( f |Dδ )< M/(2δ ).

If we assume this condition, Theorem 3.1 and Proposition
3.2 tell us that system (2) has a unique solution in DM , and
provide us with a sequence converging to that solution.

Remark 3.4 Supposing that the function f is Lipschitz on
Dδ is not too restrictive. For example, if we assume that
f is of class C 1 on some open set containing Dδ , then
f is Lipschitz on Dδ . We give a bound for the Lipschitz
constant of f in this situation. As the partial derivatives
of f are bounded on Dδ , we can find k1(δ ), k2(δ ), k3(δ )∈
R+

0 such that

‖∇ f j(x)‖ ≤ k j(δ ) (x ∈ Dδ , j = 1,2,3). (7)

It can be proved by applying the Mean Value Theorem
(Edwards, 1994, Theorem 3.4) that the Condition 3.3 is
fulfilled if

k1(δ )+ k2(δ )+ k3(δ )≤M/(2δ ). (8)

4 Newton–Raphson’s method for the
raised system

In this section we recall Newton–Raphson’s method for
solving system (2). Suppose we want to solve a system of
three equations with three unknowns of the form F(x) = 0,
where F is a function from a subset Ω⊆ R3 into R3. One
idea is to find a matrix Q = (qi j) whose entries qi j are
functions from Ω into R, such that the fixed-point iteration
determined by the function G : Ω→ R3, where

G(x) = x−Q(x)F(x) (x ∈Ω); (9)
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gives quadratic convergence to the solution of F(x) = 0.
The following theorem motivates the choice of Q (see
(Burden and Faires, 2010, Theorem 10.7)). Its proof is
based on the Taylor development of G (consult (Edwards,
1994, Theorem 7.1)).

Theorem 4.1 Let Ω be an open subset of RN , A⊆Ω be a
convex subset and G : Ω→ RN be a function of class C 2

on Ω. Suppose that there exists a fixed point w ∈ A of G,
and G has the following properties:

a)
∣∣∂ 2Gi(x)/(∂x j∂xk)

∣∣ ≤ K for each x ∈ A, i, j,k ∈
{1, . . . ,N}, and for some constant K > 0 (that is, the
second partial derivatives of G are bounded on A).

b) ∂Gi(w)/∂x j = 0 for all i, j ∈ {1, . . . ,N}.

Then, for all x(0) ∈ A with ‖x(0)−w‖ < 2/(N5/2K), the
sequence generated by

x(n+1) = G
(

x(n)
)

(n ∈ N∪{0}) (10)

converges quadratically to w. Concretely,

‖x(n+1)−w‖ ≤ N5/2K
2
‖x(n)−w‖2 (n∈N∪{0}). (11)

When G(x) = x − Q(x)F(x), and Q,F are of class
C 1, the second condition of Theorem 4.1 is equivalent to
Q(w)JF(w) = I3, where JF(w) is the Jacobian matrix of F
at the point w and I3 is the identity matrix. So Newton–
Raphson’s method consists in choosing Q(x) = JF(x)−1

for each x ∈ Ω, and performing the fixed point iteration
determined by the function G, where

G(x) = x− JF(x)−1 F(x) (x ∈Ω). (12)

Remark 4.2 To apply Newton–Raphson’s method and
ensure its quadratic convergence to the solution of the sys-
tem (using Theorem 4.1), we must impose the following
conditions:

i) Ω must be an open neighbourhood of the solution w
of the system F(x) = 0.

ii) F has to be of class C 3 on Ω (take in mind the inverse
mapping theorem).

iii) det(JF(x)) 6= 0 for all x ∈Ω.

iv) The second partial derivatives of the function G must
be bounded on a convex subset A⊆Ω containing w.

v) The first value of the iteration x(0) ∈ A has to be close
enough to the solution w.

Next we see how are these requirements in our context.
Let f : R3\{0} → R3, v,P ∈ R3 and R,M ∈ R be as in
Conditions 2.4, and let

DM = {(x1,x2,x3) ∈ R3 : M ≤ x3, ‖(x1,x2,x3)‖ ≤ 2R}.

Consider the function F : R3\{0}→ R3 defined by

F(x) = P− f (x)+
‖P− f (x)‖
‖v‖

v− x (x ∈ R3\{0}).

(13)

Conditions 4.3 The requisites above can be rewritten for
system (2) as follows:

a) f must be of class C 3 on an open subset Ω⊆R3\{0}
containing DM .

b) det(JF(x)) 6= 0 for all x ∈Ω.

c) To perform the fixed point iteration given by the func-
tion G : Ω→ R3, where G(x) = x−JF(x)−1 F(x) for
all x ∈ Ω, the first value x(0) ∈ DM has to be close
enough to the solution.

Note that under these requirements, as DM is compact and
G is of class C 2, it holds that the second partial derivatives
of G are bounded on DM .

5 A numerical method to approximate
the solution

Under the conditions of Proposition 3.2, the development
carried out in Section 3 gives us an iterative method to
approximate the solution of system (2). This is the fixed
point iteration given by the contraction mapping g. The
convergence of this method is safe. However, the me-
thod converges with linear speed, whence it is slower than
Newton–Raphson’s method.

On the other hand, when f is of class C 3 on an
open subset containing DM , we have no guarantees that
Newton–Raphson’s method can be applied because, a pri-
ori, we do not know if det(JF(x)) 6= 0. Moreover the con-
vergence of Newton–Raphson’s method is local, since x(0)

must be chosen close enough to the solution.
For these reasons, we try to use both methods together

in order to take advantage of both. First, we get close
to the solution using the contraction mapping method.
We must set an initial tolerance tol0, and, when it is at-
tained, we change over to Newton–Raphson’s method. If
Newton–Raphson’s method can not be applied, we con-
tinue with the contraction mapping method. In Algorithm
1 we can see the procedure.

Note that, to apply this algorithm, the function f of the
heliostat and Newton–Raphson’s method must first be im-
plemented. An outline of Newton–Raphson’s method can
be found in (Burden and Faires, 2010, Algorithm 10.1).
To do its implementation, take into account that the me-
thod fails when the Jacobian matrix of F is not regular,
there is no convergence (2 tol0 ≤

∥∥∥x(k+1)− x(k)
∥∥∥) or the

maximum number of iterations is exceeded.
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Algorithm 1 Numerical method to approximate the solu-
tion
Input: v, P, M, δ , L f , x0, tol0, tol, m.
Output: w, iter0, iter1, iter2.

1: Lg← 2δ L f/M
2: xk← x0
3: w← P− f (xk)+(‖P− f (xk)‖/‖v‖)v . second value

of the iteration
4: if ‖w− xk‖= 0 then
5: iter0← 1
6: else. calculate the number of iterations to attain tol0:
7:

iter0← 1+floor
(

log
(
(1−Lg) tol0
‖w− xk‖

)
/ log(Lg)

)
8: end if
9: k← 1

10: while k < iter0 and k < m and ‖w− xk‖ 6= 0 do
11: xk← w
12: w← P− f (xk)+(‖P− f (xk)‖/‖v‖)v
13: k← k+1
14: end while
15: iter0← k
16: Apply Newton–Raphson’s method with:
Input: w, tol0, tol,m,v,P.
Output: w, iter1, control variable to indicate if Newton–

Raphson’s method fails.
17: if Newton–Raphson’s method fails then
18: xk← w
19: do Steps 3–15 with tol and iter2 instead of tol0

and iter0
20: else
21: iter2← 0
22: end if
Output: w, iter0, iter1, iter2.

6 First example. Type B heliostats
In type B heliostats there is a unique joint between two
pieces: the post and the arm (see Fig. 3). The heliostat
mirror is at the end of the arm so that the mirror plane is
perpendicular to the arm. Let Q be the point where the
joint is situated and l be the length of the arm. If x is a
vector orthogonal to the mirror plane, then the center of
the heliostat mirror is given by

f (x) = Q+
l
‖x‖

x (14)

As f is continuous, Theorem 2.5 ensures the existence of
solution of system (2). In fact, given δ ∈ (0,M], f is Lip-
schitz on Dδ and L

(
f |Dδ

)
≤ 2l/δ . Then Proposition 3.2

can be applied if it is satisfied that 2l/δ < M/(2δ ) for
some δ ∈ (0,M]. Taking, for example, δ = M, this in-
equality is fulfilled since 4l < M. Therefore Proposition
3.2 and Theorem 3.1 give us existence and uniqueness

Arm
Joint

Post

x

f(x)

Q
l����

@@

@@

@
@
@

�
���s

Figure 3. Type B heliostat

of solution of the system (2) on DM , and a fix point ite-
ration converging to it. Moreover L( f |DM ) ≤ 2l/M and
L(g)≤ 4l/M.

Besides, to apply Newton–Raphson’s method, we need
the partial derivatives of the function F : R3\{0} → R3

given, for each x ∈ R3\{0}, by

F(x) = P−Q− l
‖x‖

x+
∥∥∥∥P−Q− l

‖x‖
x
∥∥∥∥ v
‖v‖
− x. (15)

We prove straightforwardly that the Jacobian matrix of F
is

JF(x) =
l
‖x‖

(
xxT

‖x‖2 − I3

)

+
l v
(

P−Q− l
‖x‖ x

)T

‖x‖‖v‖
∥∥∥P−Q− l

‖x‖ x
∥∥∥
(

xxT

‖x‖2 − I3

)
− I3

(16)
where the vectors are considered as 3×1 column matrices
and I3 is the identity matrix.

Example 6.1 Consider two type B heliostats, one with
its joint at the point Q1 = (−0.008,186.996,5.445) and
other with its joint at Q2 = (−35.191,383.648,11.125).
Both heliostats have an arm of a meter in length. Two
solar rays can strike on them. Their direction vec-
tors are v1 =(0.591431,−0.164578,0.789382) and v2 =
(0.510816,−0.199895,0.836127). It is desired that, for
both solar incident rays, the reflected rays from each he-
liostat impact first on the point P1 =(20,1.7,75), after on
the point P2 = (−0.6,1.738,73.991) and finally on P3 =
(0.008,6.524,34.165) (all coordinates are in meters). We
can take the bound M = 34− 13= 21. The obtained re-
sults are shown in Table 1. Remember that our numerical
method (Algorithm 1) consists of three stages. In Table 1,
the number of iterations of the first stage (fixed point itera-
tion of the function g) is represented by FP, for the second
stage (Newton-Raphson’s method) we put NR, and for the
last stage (again fixed point iteration of the function g) FP
is used too.

Finally, we compare the hybrid method and Newton-
Raphson’s method. Taking the first heliostat, the inci-
dent solar vector v1 and the impact point P1, then the so-
lution x = (136.7502,−217.2572,225.2455) is obtained
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Table 1. Results with type B heliostats

x1 x2 x3 FP NR FP

136.7502 −217.2572 225.2455 4 2 0

115.3882 −216.9750 223.1364 4 2 0

107.2535 −209.6961 171.7516 4 2 0

120.8285 −224.2384 234.4766 4 2 0

99.5775 −223.9091 232.3027 4 2 0

92.6350 −216.1090 180.2265 4 2 0

285.6065 −445.4998 371.4253 5 1 0

263.5169 −445.0280 368.3868 5 1 0

258.7250 −438.7159 321.4195 4 2 0

254.1878 −459.2700 389.6425 5 1 0

232.3052 −458.7087 386.4839 5 1 0

228.2491 −452.0741 339.0899 4 2 0

Table 2. Comparison of Hybrid and Newton-Raphson’s me-
thods

iter0 iter1 iter2

Hybrid 4 2 0

N.R. 5

with both methods. However the number of iterations em-
ployed by each method changes. This is shown in Table 2.
The columns iter0, iter1 and iter2 represent the number
of iterations in each of the stages of the hybrid method as
detailed in Algorithm 1. For Newton-Raphson’s method,
iter1 correspond to the total number of effected iterations.

The iterations of Newton-Raphson’s method are fewer,
but we must observe that:

1. Once the first iterations of the hybrid method are
passed, it is also used Newton–Raphson’s method.

2. At each step of Newton–Raphson’s method a Jaco-
bian matrix must be calculate and a linear system
must be solved. Hence the number of operations of
Newton-Raphson’s method is greater than the num-
ber of operations of the fixed point iteration given by
the contraction mapping g.

3. There is no guarantees that Newton–Raphson’s me-
thod can be always applied.

7 Second example. Type A heliostats
In this section, we consider the simplest heliostat type.
Now the center of the mirror is fixed, that is, there is
C =(c1,c2,c3)∈R3 such that f (x)=C for all x∈R3\{0}.
Then system (2) is trivially solved without applying any

α
β

x

(x3>0)

(x1>0)

(x2 > 0)

�
�

�
�

��

Q
Q

QQk

Figure 4. Spherical coordinates

numerical method because we have

x = P−C+
‖P−C‖
‖v‖

v . (17)

It may be that a spherical coordinates of the orthogo-
nal vector x are needed. For example, the angles α ∈
[−π/2,π/2] and β ∈ (−π,π] determined by Fig. 4 may
be required. In the following example these angles are
calculated.

Example 7.1 A simple heliostat has the center of its mir-
ror at the point C1=(−0.008,186.996,5.445), and another
has it at the point C2 =(−35.191,383.648,11.125). Two
solar rays can strike on them, one with direction vector
v1 =(0.591431,−0.164578,0.789382) and other with di-
rection vector v2=(0.510816,−0.199895,0.836127). It is
desired that, for both solar incident rays, the reflected rays
from each heliostat impact on the points P1=(20,1.7,75),
P2=(−0.6,1.738,73.991) and P3=(0.008,6.524,34.165)
(all coordinates are in meters). The implemented compu-
tations give the results presented in Table 3.

8 Conclusions
If a heliostat meets that the center C of its mirror can be
expressed as a function f (x) of its orthogonal vector x, and
such function f satisfies certain general conditions (condi-
tion 3.2), then, given an incident solar vector v and a spe-
cific receiver point P, there exists x making the reflected
ray impacts on P. Furthermore, a numerical method is de-
veloped to approximate the solution x, with safe and good
speed convergence properties. These properties make the
numerical method a potential solution to use in hard real
time control systems for the deterministic computation of
the heliostat setpoints.

As we do not work with a specific function f , the model
proposed to find the orthogonal vector x can be applied
to different types of heliostats. For each heliostat type
a mathematical model should be derived to obtain the
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Table 3. Results with type A heliostats

Center Incident Impact Angle α Angle β
of solar point (radians) (radians)

heliostat vector of the

mirror tower

C1 v1 P1 0.72094 −1.0076

C1 v1 P2 0.73797 −1.0805

C1 v1 P3 0.63113 −1.0965

C1 v2 P1 0.74487 −1.0753

C1 v2 P2 0.75955 −1.1510

C1 v2 P3 0.65516 −1.1645

C2 v1 P1 0.61247 −1.0001

C2 v1 P2 0.61942 −1.0355

C2 v1 P3 0.56352 −1.0373

C2 v2 P1 0.63908 −1.0647

C2 v2 P2 0.64510 −1.1014

C2 v2 P3 0.59063 −1.1027

function f .
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Basic symbols
‖ · ‖: usual Euclidean norm of RN .
v: incident solar vector.
P: aiming point in the tower receiver.
C: center of the heliostat mirror.
x: orthogonal vector of the heliostat mirror plane.
f : function relating the orthogonal vector x and the center
C of the heliostat mirror.
R: maximum distance between P and the center of the
heliostat mirror (or greater).
M: minimum difference between the height of P and the
height of the heliostat mirror center (or less).
δ : a positive constant in the interval (0,M].

Dδ : set of vectors in the closed ball of center 0 and radius
2R whose third coordinate is greater than or equal to δ .
L(g|A): Lipschitz constant of the function g on the set A
(when A is the domain of the function g, we put L(g)).
g: function given by g(x)=P− f (x)+(‖P− f (x)‖/‖v‖)v.
∇ f j: gradient of the function f j.
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