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Abstract
This paper presents a dynamic model of a gas turbine
developed for the HYSOL project. The model is devel-
oped mainly for control purposes and based on mathe-
matical, physical and chemical principles. Approxima-
tions and assumptions are presented with the objective
to minimize complexity and to maintain a modular struc-
ture. The main modules are presented independently and
ready to be connected to form the complete and param-
eterizable gas turbine model. Possible cases of algebraic
loops appearance are detected and solutions are proposed
to avoid them. Moreover, first principles compression and
expansion maps are developed to avoid non-linear alge-
braic loops. The Modelica modelling language and the li-
braries Modelica.Fluid and Modelica.Media have been ex-
tensively used for the models development. Results from
simulation experiments are presented, implementing the
proposed mathematical models for compressor and tur-
bine submodules independently, as well as for the com-
plete gas turbine system.
Keywords: CSP hybridisation, gas turbine, object ori-
ented modelling, first principle compression/expansion
maps, simulation of gas turbines

1 Introduction
Mathematical approximations applied in the dynamic
modelling of a gas turbine for model based control pur-
poses are presented in this paper. The hypothesis pre-
sented come from the first principles used in a wide range
operation model to be used in HYSOL european project.
The information presented in this paper comes exclusively
from published sources and detailed through references
mainly focused in the technology behind the Modelica
modelling language. Suggested reads for the Modelica
language are (Cellier, 1991; Åström et al., 1998; Fritz-
son, 2004). For turbines concepts it has been mainly
used (Bathie, 1996; Kehlhofer et al., 2009; Gülen and
Kim, 2014). An important reference of previous imple-

mentations concepts is the ThemoPower Modelica library
(Casella and Leva, 2006).

In this paper, the modelling principles for the three main
gas turbine subsystems are presented, oriented to be im-
plemented in the Modelica modelling language. Model-
ica is a general purpose acausal object-oriented modelling
language for physical systems modelling (Fritzson, 2004),
and its evolution is extensively described in (Åström et al.,
1998). The Modelica Standard Library (MSL) is fre-
quently referenced for base classes and final use models
to be directly reused in gas turbine subsystems compo-
nents. Modelica.Media and Modelica.Fluid are
the two most used packages from MSL in the presented
work. For modelling and simulation works the Dymola c©
tool (3DS, 2016) has been used.

2 Description of a Basic Gas Turbine
Model

This section presents the approximations used in the mod-
elling the different parts, all obtained from public refer-
ences. The two main phenomena background come from
thermofluid and mechanical disciplines. Object oriented
thermofluid modelling is described in (Tummescheit,
2002), which indeed has its base in the Computational
Fluid Dynamics (CFD) methods detailed in (Patankar,
1980) and (Versteeg and Malalasekera, 1995). Cur-
rently the Modelica.Fluid library implement these
concepts, see (Elmqvist et al., 2003). With respect
to mechanical components it is only required to model
1-dimensional rotational mechanical systems and there-
fore the Modelica.Mechanics.Rotational pack-
age has been directly used.

Following the above references, the modelling method-
ology for thermofluid parts use two main concepts detailed
in (Tummescheit, 2002):

• Control Volumes (CV). Stating mass and energy con-
servation, computing effort variables from flows.
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Figure 1. A general gas turbine diagram composed by compres-
sor (’C’), combustion chamber, turbine (’T’) and shaft. These
are the minimum components to be considered for a basic tur-
bine in an object oriented approach.

• Flow Models (FM). Stating momentum conserva-
tion, and computing flows from effort variables.

The general scheme regarded for the gas turbine is de-
picted in Fig. 1, referenced as basic gas turbine engine
(Bathie, 1996), in which three main connected compo-
nents are shown: compressor, combustion chamber and
turbine. The compressor and turbine are connected me-
chanically by a shaft with other secondary components
that are usually present in detailed models but not regarded
in the analysis presented in this article.

For definition of effort and flow variables, see (Cel-
lier, 1991). So all components will be classified as CV
or FM, or an alternating arrangement of them: ...-CV-FM-
CV-FM...

So all the components in this model will be classified
in either of both categories: CV or FM, attending to mini-
mize the order of the final differential and algebraic equa-
tion (DAE) system, that is, trying to minimize the number
of components of type CV.

As detailed in (Kehlhofer et al., 2009) and (Bathie,
1996), the boundary conditions defined by environment
air pressure, temperature and humidity strongly influence
the behaviour of the turbine-set. Hereafter turbine-set is
referred as the set composed by compressor-combustion
chamber-turbine, that is our basic gas turbine. Interest-
ing qualitative analysis about changes in operational point
of the turbine-set w.r.t. environment variables changes
is presented in two chapters in (Kehlhofer et al., 2009).
So, any model to be used in a wide range conditions
should accept variations at inlet air conditions. These
variations should be compensated by the control system.
The Modelica.Media library (Casella et al., 2006) has
been used to define the set of classes that implement dif-
ferent mediums properties.

The turbine-set model will be used in model based con-
trol applications that would require mathematical model
inversion. This usage obligates to apply assumptions that

minimize model complexity and let to obtain the required
mathematical inverse model.

2.1 Compressor
There exist different types of compressors with a variety
of complexities and applications: axial, rotary, centrifugal
and reciprocating. The model presented in this section is
general and simpler than (Greitzer, 1976), assuming that
the compressor is an idealized FM device in which neither
mass nor energy conservation are stated, and the isentropic
conditions are met in the operating range. Extreme situ-
ations like surge and stall instabilities, and choked flow
conditions, are never met. Ideal gas state assumption is
used for the air.

Isentropic conditions assume that the state of the gas
changes through the compressor under the condition ds =
0 for any general formulation of balances of mass and en-
ergy. The general definition for specific entropy s appears
as its classical definition equation:

T ds = du+ pdv (1)

where, in a differential mass element dm, T is the tem-
perature, u is the specific internal energy, p the pressure,
v = 1/ρ the specific volume and ρ the density.

From the mechanical point of view, inside the compres-
sor, there is an interaction between the gas flow (assumed
isentropic flow) and the shaft blades that is stated in terms
of a steady state energy balance as shown in (2):

ṁ∆h = τωηmec (2)

where ṁ is mass flow rate, ∆h = houtlet − hinlet is the
specific enthalpy increment through the compressor, τ is
the torque applied over the shaft, ω the angular velocity of
the shaft and ηmec the mechanic efficiency. The previous
equation is actually an energy balance not usual in a FM,
but necessary to link the thermodynamic and mechanical
domains.

In practice, the parameters available from industrial
compressors are usually implicit in the measured com-
pressor characteristic (or map) from the company manu-
facturer. The compressor map is a 2-D table with its steady
state operation points, that relates the pressure ratio Φc
with the mass flow rate ṁ and angular velocity ω . From
the map, the Φc(ṁ,ω) could be fitted from a polynomial
interpolation in these two supposed independent variables
ṁ and ω . So the next equation could be assumed as con-
stitutive for the component:

po

pi
= Φc(ṁ,ω) (3)

where po and pi are the output and input pressures of
the compressor.

In the case of the computation of the specific enthalpy
increment there are several approximations in the litera-
ture. Under isentropic conditions (4) is used:
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Figure 2. Diagram of the compressor in Dymola tool. The
model implements the compressor map from one example of
ThermoPower library.

∆h ≈ ∆hs =

((
po

pi

) κ−1
κ

−1

)
cpTi (4)

where ∆hs is the enthalpy increment under isentropic
conditions, κ the isentropic exponent, cp is the specific
heat at constant pressure, and Ti gas inlet temperature.

In those cases in which the approximation ∆h ≈ ∆hs is
not acceptable (5) could be applied, where η is the isen-
tropic efficiency.

η(ṁ,ω) =
∆hs

∆h
(5)

Isentropic efficiency is a part of the compressor maps
too, depends on (ṁ,ω), and can be considered as another
constitutive equation for the component.

In general, compressor maps are formed by Φc(ṁ,ω),
η(ṁ,ω), among other data. These maps are obtained by
experimentation in steady state conditions assuming that
ṁ and ω are independent variables in the test. This ex-
perimentation produces data sets that not always perform
the best under dynamic simulations and transformation to
other independent variables set is recommended. Trans-
formation to beta lines independent variables is usually
applied for turbine specific simulation software.

Fig. 2 presents a schematic diagram in Dy-
mola showing the experiment simulated for the com-
pressor. The compressor model is implemented us-
ing isentropic approximations and isentropic efficiency,
using all components from Modelica.Fluid and
Modelica.Media. The gas used as medium is dry air
as ideal gas.

Fig. 3 shows the evolution of angular veloc-
ity of the shaft omega, and the mass flow rate
mdot_compressor are the simulated variables, un-
der the shown boundary conditions in which the
driving torque Tu_ext is the input. The com-
pressor is loaded by an inertia component from

Modelica.Mechanics.Rotational representing
the shaft whose initial angular velocity is computed by
Dymola. The torque positive ramp increments the angular
velocity under constant thermofluid boundary conditions.

2.2 Combustion Chamber
This component performs the combustion of pressurized
air with the fuel used. The usual fuel used in gas tur-
bines are hydrocarbons, with a general chemical formula
of CxHy. These reactions generate heat flow incoming
from enthalpy of combustion.

Dynamic modelling of chemical reactions in general is
clearly exposed in (Cellier, 1991), in the former modelling
language for the Dymola tool. The dominant time con-
stants of these kind of reactions are considerably smaller
than the lowest one from thermofluid and mechanic dy-
namics. When the chemical reaction models are regarded,
the DAE finally obtained for the complete gas turbine
model become too stiff. The stiffness is a numerical prop-
erty usually not welcome, but has to be accepted when it is
needed to know internal information of the reaction evolu-
tion. Due to the main objective of this model is to predict
thermal and mechanic dynamics, it was preferred to ne-
glect the chemical dynamical behaviour, considering it as
a non modelled dynamics. So, in this case, no composition
changes are assumed in this model.

In this way, using Modelica components, the model
used for the combustion chamber was a CV from
Modelica.Fluid (.Vessels.ClosedVolume), in
which a prescribed heat flow is injected, emulating the
heat flow incoming from continuous hydrocarbon burning
gas flow. The heat flow will be calibrated with experimen-
tal data from the facility, depending on the hydrocarbon
composition and flow rate. Fig. 4 shows the composition
diagram.

Further modelling work for this component will be re-
action modelling for the prediction of the composition
variation, when needed.

2.3 Turbine Module
There are two general types of turbines, the radial-flow
and axial-flow turbines, as detailed in (Bathie, 1996). In
industrial applications the turbine module is composed of
several submodules connected. But beyond the techni-
cal and engineering details behind turbines, the interest-
ing point is that it is a device with deep similarities in the
physical behaviour with the compressor. Although in this
case, the gas is expanded when passing through it making
mechanical work on the shaft.

For the previous reasons the turbine module is con-
sidered a FM in thermofluid modeling methodology, al-
though again, an internal steady state energy balance must
be formulated to link thermofluid and mechanical do-
mains. So, (2) applies for both: turbine and compressor.

In general, from first principles point of view, the math-
ematical model presented in section 2.1 is applied in the
turbine module, with the same requirement that the tur-
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Figure 3. Simulation of the compressor under constant thermofluid boundary conditions and a ramp in the driving torque.

Figure 4. Diagram of the combustor in Dymola tool. The model
implements a CV in which the air is heated by the combustion
enthalpy, estimated outside the component.

bine maps (Φc(ṁ,ω),η(ṁ,ω)) must be provided. These
maps are obtained usually from steady state measurements
under certain conditions (although in the turbine case the
word map is not used so frequently as in the compressor
case). So, from an object oriented point of view, could
be possible to define the physical model once for both,
the compressor and turbine module, in a partial base class
from which both could be inherited and parameterized by
their compression/expansion maps (Φc(ṁ,ω),η(ṁ,ω)).

Fig. 5 shows a schematic diagram in Dymola showing
the experiment simulated for the turbine module. The tur-
bine module model implemented used isentropic approx-
imations using all components from Modelica.Fluid
and Modelica.Media. The gas used is dry air as ideal
gas. Fig. 5 shows the inertia component representing the
shaft inertia, over which a torque ramp is applied trying to
simulate a disturbance.

Fig. 6 depicts the evolution of angular veloc-
ity of the shaft omega, and the mass flow rate
mdot_compressor. Both are the simulated variables,
under the unique boundary condition that is the driving
torque Tu_ext. This torque emulates a brake acting on

Figure 5. Diagram of the turbine in Dymola tool. The model
implement the turbine map from one example of ThermoPower
library.

the shaft. As in the compressor case, the initial value for
the angular velocity of the shaft is computed by Dymola.
The torque negative ramp decrements the angular velocity
under constant thermofluid boundary conditions.

3 Computational Causality And Con-
ditions for Numerical Convergence

Dymola tool will apply several symbolic manipulation al-
gorithms to formulate the DAE of the turbine-set, and to
define the set of algebraic equations to successfully find
initial conditions. This section presents a simplified set of
equations for the initialization of the DAE, formerly pre-
sented and ordered by hand trying to find the minimum
number of algebraic loops. That is, computational causal-
ity has been calculated manually and the variables be-
tween brackets ([ ]) represent the computed variable from
that equation.
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Figure 6. Simulation of the turbine under constant thermofluid boundary conditions and a ramp in the driving torque acting over
the inertia.

The known variables are {ω, pt,o, pc,i} and the un-
knowns are {ṁ,τc,τt ,∆hc,∆ht , ω̇}. Where subscripts ’c’,
’t’, ’o’, ’i’ stand for: compressor, turbine, outlet and inlet,
respectively. Parameters are: {ηmec,c,ηmec,t ,J}. Proper-
ties: {Φc,ηc,Φt ,ηt}.

The ordered list of equations:

pt,o

pc,i
= Φc([ṁ],ω)Φt([ṁ],ω) (6)

[∆hc] = ηc(ṁ,ω) (7)

ṁ∆hc = [τc]ωηmec,c (8)

[∆ht ] = ηt(ṁ,ω) (9)

ṁ∆ht = [τt ]ωηmec,t (10)

τc + τt = J [ω̇] (11)

Only in the first equation from the list, (6), an algebraic
loop appears involving the compressor and turbine maps.
Usually is a non-linear equation that must be solved by
numerical methods, although it is important to note that
the maps should be tested for numerical convergence of
this equation.

Actually the choice of known variables is similar to that
of the dynamic initial value problem (IVP) formulated, so
the testing of convergence of (6) should be mandatory.

The model presented in section 2 based in
Modelica.Fluid and Modelica.Media is more
complex and the causality analysis performed by Dymola
could vary, but the conclusion about the necessary good
numerical behaviour of compression and expansion maps
applies too, beside new others.

4 First Principles Compression and
Expansion Maps

4.1 Compression Case
Compression maps are usually obtained from steady state
measurements or data from manufacturer. When those
maps are not available, first principle solutions may be
implemented. In (Greitzer, 1976; Gravdahl and Egeland,
1997, 1999; Gravdahl et al., 2000, 2004) a description of
the physical principles used in the deduction of a generic
compression map are presented and more references for
deeper details can be found. Based on these, may be con-
cluded that ∆hs in (4) could be approximated under some
assumptions by (12).

∆hs = σr2
2ω

2 − r2
1
2
(ω −αṁ)2 − k f ṁ2 (12)

Under isentropic conditions, the main contribution of
this formulation is that ∆hs is formulated as an algebraic
relation with a second-degree polynomial in ṁ, that let us
easily rearrange (12) to obtain an explicit relation for ṁ,
obtaining (13). This choice avoids non linear algebraic
loops in (6).

ṁ =
αωr2

1 ±
√

D(b,ω)

2a2
(13)

where:

D(b,ω) = α
2
ω

2r4
1 −4a2

(
a01ω

2 +b
)

(14)

b(Φc,cpi,Ti) =

(
Φ

κ−1
κ

c −1
)

cpiTi (15)

In (12), (13) and (14) a new set of six parameters ap-
pears: {σ , α , r1, r2, k f , a01, a2} where only the first
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five are independent, being {a01, a2} dependent of them.
Please, note that b depends on the boundary conditions for
the case of a compressor model. For more details, please
read section 7.

The conditions for model validity are defined in equa-
tions (16) and (17), and the model will be singular if un-
fulfilled any of both. This is convenient to consider in the
initialization code.

ω ≥ ωmin(b) = 2

√
a2b

α2r4
1 −4a2a01

(16)

ṁ ≥ ṁmin(b) =
αωminr2

1
2a2

(17)

4.2 Expansion Case
For the turbines, similar equations should be derived. A
typical extended case is the Stodola turbine model, with
results presented in section 2.3, in a simplified way to
avoid the general approach described in section 3, ex-
pressed by (18) and (19).

ṁ = K
√

pi

Ti
(1−Φ2

c) (18)

ηt = ηt(Φc,ω,Ti) (19)

Where K is a parameter. These explicit expressions of
ṁ and ηt avoid the algebraic loops previously referred.

5 Simulation Results
The composition diagram of the compressor-turbine sys-
tem Modelica model is shown in Fig. 7. For the compres-
sor model, the above explained first principles approxima-
tion for the compressor map from (12) to (17) has been
implemented. For the turbine module, the Stodola model
has been applied based on (18) and (19).

The experiment which results are shown in Fig. 8
consists of applying a sequence of ramps for input heat
power to the combustor, equivalent to gas mass flow rate
ramps. A step for external torque is applied from the be-
ginning, emulating a cold start-up to reach initial con-
ditions inside the validity region of the model. These
ramps are represented in u_ThermalPowerPercent
and u_TorquePercent as variables representing the
percentage of the total thermal power injected and the
torque applied to the axis. The variables returned
from the simulation are: f the frequency of the axis,
mdot_compressor the mass flow rate of air through
the compressor and T_Combustor the temperature in-
side combustor. It can be observed a (non-linear) first or-
der behavior for the three simulated variables when as-
suming the input ramps as quasi-steps, due to the short
up/down times. Different time constants and steady state
gains must be found for each operation point and step
applied. As shown, T_Combustor rises at the time of
torque negative edge due to the decreasing change in mass

Figure 7. Diagram of the compressor-turbine system in Dymola
tool. First principles compressor map and Stodola turbine mod-
els have been used. For both inputs (heat flow into combustor
and torque for cold start-up) a combination of ramps are used.

flow rate, that increases residence time of fluid in the com-
bustion chamber. This figure shows the exhaust flue gases
temperature T_Out_Turbine, which is different from
the temperature in the combustor.

From a control point of view, due to the restrictions of
the model validity region imposed by the presented equa-
tions, only input thermal power may be used as manipu-
lated variable and the torque may be used as disturbance.

6 Conclusions
A gas turbine dynamic model composed of different com-
ponents has been presented. The main objective of the
model is to be used in real time simulations and control ap-
plications. Only the main dynamics of a gas turbine need
to be predicted in a wide operation range and with the min-
imum complexity to obtain a dynamic inverted model to
be used inside the controllers. An analysis is presented on
computational causality in the initialization and the IVP
with concluding requirements for numerical convergence.
A proposal for compression and expansion maps, derived
from first principles are presented, to be used when un-
availability of data from manufacturer and avoiding the
formation of algebraic loops. Some simulation experi-
ments are performed and the results shown.

Acknowledgment
The authors gratefully acknowledge the funding support
from CIEMAT Research Centre, EU 7th Framework Pro-
gramme (Theme Energy 2012.2.5.2) under grant agree-
ment 308912 - HYSOL project - Innovative Configura-
tion of a Fully Renewable Hybrid CSP Plant, the National
R+D+i Plan Project DPI2014-56364-C2-2-R of the Span-
ish Ministry of Economy and Competitiveness and ERDF
funds.

EUROSIM 2016 & SIMS 2016

931DOI: 10.3384/ecp17142926       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



Figure 8. Input variable and simulation results for the model in Fig. 7.
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7 Appendix
From (Gravdahl and Egeland, 1999) and its references, the
remaining equations and parameters for the model are ex-
posed below. All the parameters are in table 1. Slip factor
σ in (12) is a parameter that depends on the construction
but is assumed to be minor but close to 1. The expression
used is (20). Parameter α is defined by (21).

σ = 1−2/Nb (20)

α =
Acot(β1b)

Air1ρi
(21)

The total friction factor k f in (22) is the overall friction
factor from all friction losses.

k f =
4 f l

2Dρ2
i A2

i sin2(β1b)
(22)

For friction factor expression any of the bibliography
can be used, although the Blasius’ formula is one of the
most frequently used (23). In this case, f has been consid-
ered a parameter for the sake of simplicity.

f = 0.3164Re−0.25 (23)

The dependent parameters {a01, a2} are defined by (24)
and (25).

a01 =
r2

1
2
−σr2

2 (24)

a2 =
α2r2

1
2

+ k f (25)

Table 1. Models Parameters

Parameter Magnitude

Nb Number of compressor blades
f Friction factor
l Mean channel length in the compressor
D Mean hydraulic diameter

for the compressor
A Section of the circle with diameter D
Ai Inlet section of the compressor
ρi Inlet air density

β1b Backswept inlet vane angle
r2 Impeller outer radius
r1 Impeller inner radius
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