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Abstract

Concentrated solar power plants (CSP) coupled with ther-
mal storage have the potential of being competitive with
conventional fossil fuel and hydro power plants, in terms
of dispatchability and provision of ancillary services. To
achieve this potential, the plant design has to be focused
on flexible operation, which is the main goal of the Pre-
FlexMS Horizon 2020 European research project. This
can be achieved by the integration of a Molten Salt Once
Through Steam Generator within the power unit, an inno-
vative technology with greater flexibility potential if com-
pared to steam drum boilers, currently the state of the art
in CSP. Given the focus on flexible operation, dynamic
modelling and simulation from the early design stages
is of paramount importance, to assess the plant dynamic
behaviour and controllability, and to predict the achiev-
able closed-loop dynamic performance, potentially sav-
ing money and time during the detailed design, construc-
tion and commissioning phases. The present paper aims
to demonstrate that it is possible to achieve this goal by
means of Modelica-based open-source libraries and tools.

Keywords: simulation, Modelica, solar power plants,
once-through boilers, open-source tools.

1 Introduction

During the 2015 United Nations Climate Change Con-
ference 195 countries agreed to reduce their green-house
gases production "as soon as possible”, in order to keep
the global warming below 2°C . Research on Concen-
trated Solar Power (CSP) plants is therefore of paramount
importance, since such plants could be able to fill the gap
between renewable and fossil energy sources, in terms of
predictability, flexibility and power production planning.
In this context, the PreFlexMS Horizon 2020 research
project aims to design a 100 MW, CSP power unit with
flexibility features comparable to state-of-the-art gas-fired
combined cycle plants, and to demonstrate it on a
scaleddown pilot plant. The two pillars of this
project are: the optimized operation of the plant based
on customized weather prediction and on the demand
on the electrical market, on one side, and a power unit
based on an innovative once-through molten-salt steam
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generation unit on the other side. The latter is expected to
provide much more flexible operation than the current
state of the art in CSP, i.e., steam-drum type steam gen-
erators.

Dynamic modelling and simulation is a key aspect of
the project. The plant dynamic behaviour and controllabil-
ity need to be assessed from the early design stages, and
it is essential to demonstrate that the achievable
closedloop performance of the plant is consistent with the
project goals, which ask for: a) an overall hot start-up
time of 30 minutes and b) ramping rates comparable to
state-of-the-art combined-cycle plants.

The goal of this paper is to describe the modelling ap-
proach that was taken in this project, and in particular to
demonstrate that object-oriented open standards and open
source tools are perfectly suited to carry out this task.

The paper is structured as follows. Section 2 introduces
the modelling methodology, language, model libraries and
simulation tools that were used in the project. The plant
subject of the study is described in Section 3; as to its
modelling, Section 4 discusses new device models that
were created for this project, while Section 5 discusses the
overall plant model. The simulation objectives and
methodology is presented in Section 6, while simulation
results are presented in Section 7. Finally, Section 8
concludes the paper.

2 Modelling methodology, libraries

and tools

The equation-based, object-oriented modelling approach
(EOOM) and the Modelica language have been employed
for this work. A general discussion of this topic goes
beyond the scope of this paper, the interested reader is
referred to (Mattsson et al., 1998; Tiller, 2001; Fritzson,
2014). We only stress two key points here: on one hand,
that dynamic models are described by means of declar-
ative descriptions, based on differential-algebraic equa-
tions, and of modular composition through a-causal phys-
ical connectors; on the other hand, that the Modelica lan-
guage used to code the model is a non-proprietary, tool-
independent standard.

A key feature of the EOOM is that it promotes reusabil-
ity, while at the same time allowing for extensions and
customizations with a minimal effort. This was also
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the case for the present study, which relied on exist-
ing open-source model libraries. Besides the Modelica
Standard Library, which contains utility models as well
as the strategically important IAPWS IF97 water/steam
model, the ThermoPower and the IndustrialControlSys-
tem Modelica libraries were used. The first one is a library
for the modelling of thermal power plants, whose design
principles are discussed in (Casella and Leva, 2006) and
that has been used, adapted and validated extensively to
model various types of power generation and energy con-
version systems such as steam generators (Casella and
Leva, 2005), combined-cycle power plants (Casella and
Pretolani, 2006; Bartolini et al., 2012), nuclear power
plants (Cammi et al., 2011), cryogenic systems (Zanino
et al., 2013), and Organic Rankine Cycle systems (Casella
et al., 2013). The second one is the IndustrialControlSys-
tem library (Bonvini and Leva, 2012), containing detailed
models of industrial PID controllers endowed with fea-
tures such as anti-windup, output tracking, etc., that were
needed for the modelling of the control system.

Device models not found in ThermoPower had to be
adapted or written from scratch, see Section 4.

In principle, any Modelica-compliant simulation tool
can be used to analyze and simulate it. In this paper,
we discuss the results obtained by using the open-source
OpenModelica tool, to demonstrate that the dynamic mod-
elling and simulation task can be carried out using a com-
pletely open-source tool chain.

3 Plant Description

The subject of this study is an innovative 100 MW, Con-
centrated Solar Power (CSP) plant with thermal storage.
The solar field directs the solar radiation onto the receiver
tower, where a mixture of Sodium and Potassium nitrate
(commonly called hereafter molten salt (MS)) is heated
up to 565 °C and stored in a tank. The molten salt (MS)
acts both as Heat Transfer Fluid (HTF) and as Thermal
Energy Storage (TES). In the context of this study, whose
scope is limited to the power generation block, the hot MS
is considered as coming from a source point at constant
temperature.

The model represents the power unit, composed of the
steam generator system (SGS), the steam turbine, the feed-
water heaters train with a deaerator, and the plant control
system. The SGS is the core of the dynamic analysis,
while the turbine and the feedwater heaters provide the
correct boundary conditions for the boiler.

3.1 Innovative aspects

The main innovative aspect of the present plant is the in-
troduction of a Molten Salt Once-Through Steam Gener-
ator (OTSG) instead of a drum-type boiler, which repre-
sents nowadays the state of the art concerning CSP with
thermal storage. Such a system can provide a higher plant
flexibility, since the drum and its related large inertia and
thermo-mechanical stresses are absent.

The OTSG is a continuous flow path of Shell&Tube
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heat exchangers, whose mechanical design is optimized
in order to maximize the life-cycle of the whole boiler.
The MS flow is cooled down to the design value of 290 °C
while on the other side superheated steam is produced.

Another non-conventional issue is represented by the
hot fluid thermal inertia. Compared to once-through boil-
ers used in advanced combined-cycle (CC) plants, where
the thermal inertia of the hot fluid is negligible, the heat
capacity of the MS in this plant is the dominant thermal
storage in the process, so that the thermal coupling be-
tween the MS and the water/steam side and in general the
plant dynamic response is quite different from that of ex-
isting CC plants.

3.2 OTSG topology

As the plant is meant to operate in sliding pressure mode,
the joint effect of evaporation and bleed steam pressure
reduction would significantly decrease the MS OTSG out-
let temperature and the feedwater (FW) temperature at the
same time, during part-load operation. This phenomenon
is not acceptable, because it could lead to MS freezing,
which is a catastrophic fault. Thus, the process is designed
so that the MS outlet temperature is kept almost constant
as the plant load is reduced.

The key aspects of the heat exchangers topology are the
following (see Figure 1):

e the greater amount of feedwater mass flow en-
ters the OTSG at the economizer (ECO) cold end,
flows through the evaporator (divided into EVA1 and
EVA?2) and enters a phase separator. If the steam
quality at the EVA2 hot end is equal to one, then the
separator does not affect the steam thermodynamic
condition; otherwise, the saturated steam enters the
superheating section (SH) and the saturated liquid is
collected at the separator bottom and recirculated at
the OTSG inlet;

e a small amount of feedwater mass flow enters a MS
heater, and is then recirculated to the last high pres-
sure feedwater heater cold end;

e from the MS line point of view, the steam SH and
reheating (RH) sections run in parallel: the hot MS
mass flow entering the OTSG is split up in two
branches by means of a valve, and then mixed at the
evaporation section hot end;

e a by-pass valve on the last high pressure feedwater
heater offers another degree of freedom, useful to ob-
tain the desired feedwater temperature at OTSG inlet.

Contrary to the bottoming cycle of a modern combined
cycle, feedwater heaters are needed in order to provide a
sufficiently high water temperature at the OTSG inlet and
to prevent the MS from freezing.

The result is a non-conventional steam Rankine cycle,
with a high number of recirculation flows interacting in a
non-trivial way, thus making the dynamic simulation a key
factor during system and control design.
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Figure 1. OTSG and high pressure feedwater train topology,
patent pending EP 15290109.6-1610

4 Device modelling

As a first step, all the physical devices of the system are
modelled, by means of both re-used and custom models.

4.1 Re-used components

The dynamic properties of a thermal power system are
mainly given by the heat exchangers design, in terms
of heat exchange surface, volumes and metal masses.
These parameters are set within the FlowIDFV compo-
nent of the ThermoPower library, which represents by
means of 1D finite volumes method the hot and cold paths
of each heat exchanger. The two equivalent tubes are con-
nected through the model of a thin metal wall, where the
heat exchanger mass is concentrated. Finally, the hea-
tExchangeTopology component lets the user set the flow
path displacement, such as co-current, counter-current and
Shell&Tube (Boni, 2013).

Other simple components have been taken directly
from the ThermoPower library, such as liquid and steam
valves, pressure drops, and pumps, and they are con-
nected between each others through standard Modelica
stream connectors (Franke et al., 2009). The water/steam
thermodynamic properties are given by the IF97 tables of
the Modelica standard library.

4.2 Custom component models

The complexity and non-standard features of the power
unit required the development of custom models of spe-
cific components, in order to represent in the best way
possible their physical behaviour.

4.2.1 Separator

At the end of the evaporation section, a two-phase cy-
clone separator guarantees that only saturated or super-
heated steam enters the superheating section, so that no
liquid drops can reach the turbine inlet. Since from the
geometrical point of view this device is a high and nar-

DOI: 10.3384/ecpl7142934

Proceedings of the 9th EUROSIM & the 57th SIMS

row cylinder with a small cross sectional area and the inlet
flange positioned in the upper part, it can be assumed that
the thermal contact between the liquid possibly present in
the lower part and the wet/dry steam is negligible.

The four main equations describing the dynamics of
the separator are thus the mass and energy balances over
the liquid and steam volumes, assuming as states the liq-
uid level /, the liquid enthalpy #;, the pressure p and the
vapour enthalpy #,.

The outlet steam condition can be either saturated or
superheated, depending on the steam quality at the evap-
orators outlet. The following equation guarantees that no
wet steam enters the SH:

hv,out = max(hw hv.,sat (P)) (1)

4.2.2 Feedwater heater

A feedwater heater is a particular heat exchanger where
the steam extracted from the turbine condenses on a tubes
bundle. The feedwater flow inside the bundle sets the
amount of steam that actually condenses: the lower the
feedwater mass flow, the lower the condensing mass flow.

The mechanical design of such an heat exchanger usu-
ally assumes three different heat exchange zones:

1. a desuperheating section, where the bleed steam
from the turbine is brought to saturation condition.
Since the bled steam is not always superheated, this
zone could be missing, especially in low pressure
heaters train;

2. a condensing section, where the bleed steam and
the drained subcooled liquid coming from the higher
pressure heaters mix up and condense;

3. a subcooling section, where the condensate is sub-
cooled.

Such a structure has been modelled as three heat ex-
changers in series, once more making use of the compo-
nent FlowIDFV of the ThermoPower library, as shown
in Figure 2. A valve downstream the steam subcooling
section controls the condensate level inside the condens-
ing section by means of a PI controller, discharging the
drained flow into the next, lower pressure heater.

The key base component of the feedwater model is the
steam condenser, called NusseltCondenser. 1t is mod-
elled as a cavity where the steam fraction coming from
the drained and the bleed flows condenses. As for the sep-
arator, the four main equations describing the dynamics
of the separator are the liquid and steam mass and energy
balances, assuming as states the liquid level /, the liquid
enthalpy Ay, the pressure p and the vapour enthalpy #,.
Thanks to the min and max operators and assuming that
the liquid entering the cavity goes directly into the liquid
pool at the shell bottom, the energy balances can cover
also the cases where the entering steam is wet, usually at
part load.
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Figure 2. Object diagram of a feedwater heater

The tube bundle on which steam condensation takes place
is divided into N,, finite volumes, as the Distribuited Heat
Transfer (DHT) connectors in Figure 2 shows. This means
that the total condensate mass flow and heat flux is the sum
of the single contributions of each volume. The equations
for the i — th volume read:

S

Qi = max |:07 L (Tsat - Tcl) +Wwe i (hv - hv,sat):| (2)
Ny / ,
Qi

Wei= m 3)
condState; = setState_pT (p, T;.;) 4)
he; = min[specificEnthalpy(condState;), iy su] (5)

Tvi — Tyar
Ii=——F— 6
: 3 (6)

where the subscript "c" refers to the condensate condition
and "w" to the metal tubes. Thus:

Ny

Qflux = Zi:l Wc,ihc,i (7
Ny

Qcond = Zi:l Qi €))
Ny

Weond = Zi:l wi ©))

where Q.4 refers to the heat power entering the metal
wall, weonq the actual condensate flow and Q f,,, the global
enthalpic flux entering the liquid pool through by means
of the condensate.

During some transients the liquid enthalpy could be-
come greater than the saturated liquid enthalpy, so that a
little amount of liquid evaporates. Hence, the following
term has been added within the mass balances:

_xpVi

Wey =

(10)

ey

where x; is the steam fraction in the liquid volume and 7,
is an equivalent rising time, a tuning parameter.

4.2.3 Deaerator

The deaerator is a component of paramount importance
within a steam cycle. Its main function is to extract from
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the feedwater flow the incondensable gases, which would
chemically react at high temperature compromising the
lifetime of high-temperature components such as the SH
and the high pressure turbine.

It is worth noticing that the presence of incondensable
gases and the steam blown away through the discharge
valve can be omitted entirely from the model, due to their
very modest quantities, while the hydraulic and thermal
effects the deaerator has on the rest of the cycle must be
taken into account, due to its large size.

The most efficient working condition for such a compo-
nent is the thermodynamic equilibrium between steam and
water, since it promotes the gases dissolution from feed-
water mass flow. Under the assumption that the design
and the local control system of this device guarantee the
optimal condition, it can be modelled as a parallelepiped-
shaped vessel at thermodynamic equilibrium, where all
the entering flows mix up.

Assuming as states the pressure p and the mixture en-
thalpy £, the main model equations are the mass and en-
ergy balances on the device. The liquid level can be de-
rived from the steam quality, as follows:

h—h sa
l:H(l— p x>:H(1— p Lsat ) (11)
Pv,sat Py sat hv,sat - hl sat
4.2.4 MS fluid model

The MS has been represented as an extension of the Mod-
elica.Media.Interfaces. PartialPureSubstance class. Ref-
erences value for enthalpy, density and temperature have
been set according to the specific MS thermo physical
properties. Density and specific heat capacity are consid-
ered as linear functions of the temperature.

5 Plant modelling

The complete plant model is composed by the four macro
components described in Sec. 3. Thanks to the encapsu-
lation feature of the Modelica language, each component
can be easily replaced with more or less detailed ones,
without modifying the rest of the system. Since there are
several possible plant operational modes that have been
tested, this aspect hugely reduced the time spent for test
cases setup.

5.1 OTSG model

The OTSG model follows the process flow diagram of
Figure 1. Six heat exchanger models are connected via
stream connectors, within a base class model that contains
the common OTSG fluid and control signal interfaces.

Two important aspects concerning the pressure drops
representation have to be highlighted:

e the MS pressure drops are neglected. As the MS is
always in liquid state, its density and specific heat
capacity are hardly influenced by the fluid pressure;
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Figure 3. Object diagram of the OTSG

e the steam/water pressure drops are taken into ac-
count through the ThermoPower component Wa-
ter.PressDrop at the inlet or the outlet of each heat
exchanger. This approach have two main advantages:
first, the coupling between mass and energy balances
is reduced, so that the resulting algebraic loops are
easier to be solved; secondly, each heat exchanger is
independent from the equations system point of view,
so that the resulting symbolic manipulation produces
a more efficient simulation code.

The blue lines in the figure refer to the water/steam
flows, the red lines to the MS flows and the yellow lines to
the control signals. The water/steam pressure drop com-
ponents are the blue rectangular boxes in between the heat
exchangers, while the gain block splits the MS mass flow
as required between SH and RH branches. Heat exchang-
ers and flow lines parameters have been taken from de-
sign Process Flow Diagrams (PFD) and heat exchangers
datasheets.

5.2 Turbine model

The turbine model was built by connecting several Ther-
moPower components Water.SteamTurbineStodola, each
representing a turbine section with many stages, and
accounting for feedwater heater steam extractions and
for leakage and sealing flows. The model parameters
(Stodola’s law flow coefficient and isentropic efficiency)

DOI: 10.3384/ecpl7142934

Proceedings of the 9th EUROSIM & the 57th SIMS

have been extrapolated from the PFDs. Finally, all the tur-
bine sections are connected through mechanical interfaces
representing the common turbine shaft.

5.3 Feedwater preheaters train

The power plant layout features a high pressure and a low
pressure feedwater heater train, with the deaerator in be-
tween. The feedwater models have been connected to re-
produce the topology reported in Sec. 3.

5.4 Plant control system

Once the single devices have been tuned and tested, the
overall open-loop system dynamics has been thoroughly
analysed, in order to develop a control architecture and
controller tunings that were able to meet the control re-
quirements.

More specifically, the model was numerically linearized
at different operating load levels. The linearized mod-
els allowed to compute step responses, input-output trans-
fer functions and frequency responses (Bode diagrams),
as well as the Relative Gain Array (RGA) matrix, which
allowed to investigate the couplings between the differ-
ent control loops. This analysis led to the definition of
a decentralized control strategy based on PID controllers
and static feed-forward set-point compensation. Figure 4
shows the block diagram of one of these controllers, which
are also defined by Modelica code.

»

valveBP_dynamic

product

aas
Ol
s ValveBP_PV » Pl ¢ > o G —Pp valveBP_CS

T=Ta_valveBP

»

Figure 4. Object diagram of the high-pressure feedwater heaters
by-pass control loop

5.5 Complete plant model

All the macro components can be aggregated in a single
global system model, representing the whole power unit
of the CSP plant. In Figure 5 the complexity of the system
is evident, thus only the high-pressure part of the plant has
been considered. This simplification does not affect the
analysis results: the big size of the deaerator, in fact, dy-
namically decouples the high pressure from the low pres-
sure part of the plant.

6 Simulation objectives - methodology

The simulation campaign aims to demonstrate that such a
complex system can be simulated with open-source tools
(e.g. OpenModelica). In particular, three different test
cases have been analysed:

e A - nominal load: simulation of the nominal plant
regime, to check the static correctness of the model;
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TABLE 1. Machine Features

Laptop Workstation
CPU Intel(R) Core(TM) i7-4810MQ Intel(R) Xeon(R) E5-2650 v3
Clock 2.8 GHz 2.3 GHz
RAM 8 GB 72 GB

ple, we report the total mechanical power output and the
temperatures of the feedwater and molten salt at the OTSG
cold end, which should never go below 245 °C during the
hot start-up transient. The power set-point is closely fol-
lowed by the actual value, with a small glitch when the
operating mode of the evaporator is switched from wet
operation with recirculation to dry, once-through mode.
The MS temperature is always above the safety lower limit
and the feedwater temperature closely follows its set-point
(Figure 6).

L = PLANT
™ controller

90

Figure 5. Object diagram of the high-pressure part of the power
unit, used for daily start-up simulation

® B - load ramps: simulation of a series of load ramps
to check the precision and robustness of the devel-
oped control system. The model is initialized at
100% load, brought to 60% with a slow negative
ramp and then back to 100% by ramps having a 10%
amplitude and a 10%/min slope;

Pmec [MVV]

e C - plant hot start-up: simulation of the daily power

- - set-point
plant hot start-up. For numerical reasons, the model ‘  [——actual measure
is first initialized at 40% load and brought to the ini- 100 5 10 15
tial load level of 20% with a slow negative ramp. Time [min]
Then, during the actual start-up simulation the load
is brought back to 100% in 9 minutes. 290
The models have been compiled and simulated on a 280l -
Linux workstation and on a Windows laptop, whose fea-
tures are reported in Table 1. The sizes of the three models
are summarized in Table 2. 270¢
7 Simulation performance S0l
~
The thorough description of the simulated transients goes
beyond the scope of this paper. For the sake of the exam- 250
TABLE 2. Test case models information 240+ U/\f\
_TMS
_TFW
no. no. 230 , , ,
Case States  Variables 0 5 10 15

Time [min]
A 254 6945
B 254 6982
C 301 7554

Figure 6. Mechanical power, MS and feedwater temperatures
during hot start-up
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TABLE 3. Simulation performance

CPU compilation no. integration CPU integration
Case . .
time [s] steps time [s]

Linux Windows Linux Windows Linux Windows
A 5.7 32 2898 3062 161 170
B 5.5 19 11030 10768 670 636
C 6.7 22 6404 6635 410 390

The test campaign confirms the capability of OpenMod- Acknowledgment

elica to compile and simulate correctly complex models
with a high number of states and variables. Table 3 reports
the simulation performance for all the three test cases con-
sidered. The numerical algorithm employed is DASSL,
without equidistant grid result interpolation, and with a
relative tolerance of 107°.

8 Conclusions

The results presented in this paper demonstrate that it is
possible to tackle the detailed, system-level dynamic mod-
elling and simulation of innovative power generation sys-
tem for use in solar thermal power plants, using exclu-
sively open modelling languages and simulation tools.

Modelica was chosen as the modelling language, since
itis a tool-independent language that can also be used with
open-source simulation tools, and for which many open-
source modelling libraries are currently available.

The plant model was developed by extensively re-using
basic models from the open-source ThermoPower library,
with some adaptations and extensions. This model was
first used to carry out extensive open-loop dynamic anal-
ysis, which allowed to design appropriate control strate-
gies. The control system model was then also imple-
mented in Modelica, using the IndustrialControlSystems
open-source library, allowing to validate the closed-loop
performance in non-trivial scenarios such as the hot start-
up of the plant.

Both open-loop and closed-loop transients have been
simulated by means of the open-source OpenModelica
tool. The simulation performance is satisfactory: the sim-
ulation code is compiled from the Modelica source code
in a few seconds, and the most demanding closed-loop
transient is simulated in about ten minutes. Most of the
simulation time (about 75%) is actually spent computing
the water-steam properties, since the accurate but compu-
tationally demanding TAPWS IF97 model is used for that
purpose. Given the on-going developments of the Open-
Modelica tool, it is expected that much better performance
could be achieved in the near future.

Last, but not least, the choice of open-source tools also
allowed to freely share the model among the different
partners of the PreFlexMS Horizon 2020 project, both in
source-code form and as compiled executables, without
any constraints due to software licensing issues.
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