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Abstract

The SimInTech environment developed in Russia

enables using the end-to-end design of the algorithmic

part of APCS for nuclear power plants (NPP), including

the all-mode mathematical modeling of production

process dynamics, debugging and optimizing control

algorithms on an object model, generating functional

software (FSW) as well as developing interfaces of the

operator control panel. The article describes some of the

main methods and approaches applied for the collective

development of NPP APCS FSW. The implementation

of the method during the development of APCS for

Balokovo NPP-1 reactor compartment is presented as an

example.

Keywords: model-oriented design, automated control

system, algorithms, mathematical modeling, video

frames

1 Introduction

A nuclear power plant, a ship with the NPP on board, and

a submarine are all examples of the most complicated

technical facilities produced by man. Designing a new

NPP is always connected with a large scope of research

and engineering activities, a group effort of specialist

teams, the co-operation of several companies, and

iterative calculations including those relating to

optimization and search. In the process of NPP

construction, external operating conditions should be

considered along with the processes occurring inside the

plant.

Automatic control systems (ACS) are an important

NPP component that must comply with numerous, often

contradictory, requirements. Control systems should

feature a certain processing speed and a backup, ensure

quality control and the required level of layered

protection. Also, an option of manual control over

production processes, an impactless mode-to-mode

switch-over, the output of diagnostic information to the

“upper” level, archiving signals with a specified stroke

and others should be provided. It can be stated that all the

specialists involved in the creation of APCS algorithms 

should know and understand thoroughly the physics of 

the phenomena, dynamics and technology of NPP 

processes. 

As microprocessor technology develops, the rate of 

application of microprocessors in control circuits is 

increased; presently, we can discuss not only the control 

algorithms but also the functional software of ACS, 

which presents a non-trivial engineering problem. The 

complexity lies in the fact that not many process 

engineers can program, while programmers have a very 

little idea about technology. In general, process engineers 

articulate the ideas of algorithms in the language closest 

to them (including the functional block diagram 

language), whereas programmers interpret and 

implement these ideas in the way they have understood 

them, in a set of programs for specific equipment and the 

target operating system. At the same time, a large 

discrepancy may inadvertently appear between the 

software implementation conducted by the programmer 

and the initial ideas of the process engineer. It has to be 

eliminated at the stage of complex debugging and/or 

commissioning activities, which results in an increase in 

project costs and in a considerable loss of time. 

In recent years, the model-oriented design (MOD) of 

control systems has been developed to a great degree 

(Voggenberger, 2005; Jakubowski, 2006; Dupleac, 

2009) and has reached the level of a de facto standard to 

meet when generating FSW for ACS. Creating a 

mathematical model to describe the dynamics of a 

facility under design in a sufficient way forms the basis 

for the model-oriented approach. In the context of 

nuclear engineering, the MOD approach would be 

deemed optimal if it were not for technical complexities 

involved in its implementation, i.e. it is extremely 

difficult to create an all-mode model of NPP dynamics 

that would describe the dynamical characteristics of the 

facility in a satisfactory enough manner, it also represents 

single-purpose software that requires the application of 

design codes (thermo-hydraulic, neutronic, electrical, 

etc.). 
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Figure 1. Hardware-Software Complex General View

  

Figure 2. Design Diagram of the Primary Circuit Model
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Figure 3. Example of a Functional Block-Diagram 

Design codes are individual programs that have been 

developed for many years in design bureaus. 

Historically, they have not been developed for the 

purpose of integration and concurrent calculations with 

the use of any CAD of ACS algorithms. The SimInTech 

environment al-lows eliminating the problems relating to 

facility models and the integration of control algorithms 

thanks to its modular architecture, available interfaces to 

different design codes, and the relative simplicity of 

connection among new codes. The above fact has 

enabled the implementation of the “end-to-end” de-sign 

of the algorithmic part of APCS (Baum, 2012; Kozlov, 

2005), i.e. control algorithms designed by technologists 

in the form of functional block-diagrams that are 

checked, debugged, and verified on an adequate model 

of facility dynamics are transmitted by the method of 

automatic generation of a code to the target sys-tem in 

the control equipment. As a result, prior to the stage of 

commissioning works, we obtain a product with verified 

FSW that is ready to be installed on the facility and 

requires virtually no adaptation or alteration. 

Methods to Develop APCS FSW in 

SimInTech 

The experience of applying the SimInTech environment 

to different pro-jects of mathematical modeling of NPP 

dynamics (Parshikov, 2013; Bezlepkin, 2013; Bolnov, 

2014) and developing control algorithms evidentiates the 

main methods and techniques required for the 

development of ACS FSW. SimInTech authors believe 

that the sequence below can be of most use: 

 stating the problem, identifying modeling and 

control boundaries, generating a list of 

equipment and signals, decomposing the 

facility into sub-systems, identifying boundary 

conditions; articulating agreement by the 

names of signals and variables; 

 creating autonomous models of the physical 

processes occurring in the facility (models of 

processes of different physical nature, models 

of typical and unique pieces of equipment, 

models of actuators and devices, models of 

sensors, instruments);  

 integrating the models into a complex model of 

dynamics of the facility; 

 designing control algorithms for the facility in 

the form of functional block-diagrams, 

designing and modeling control panels and 

consoles; 

 calculating concurrently and modeling facility 

dynamics and control system; testing and 

debugging the algorithms on the model, 

selecting and optimizing regulator coefficients; 

 designing an analysis of the transient modes for 

normal operation and checking the operation of 

the automatic control algorithms; 

 modeling design-basis and beyond-design-

basis accidents as well as similar transient 

processes along with applying different 

equipment failures; adapting the algorithms; 

 transmitting the control algorithms to the 

controllers, remotely debugging their 

implementation on the model; 

 testing control equipment using testing devices 

which connect the mod-el as a simulator of the 

controlled facility by means of the inverse 

(digital-analog) transformation. 
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2 Applying SimInTech to Create 

Hardware-Software Complex of 

Automatic Regulation Facilities of 

Normal Operation Systems of 

Reactor Compartment 

The hardware-software complex of the automatic 

regulation facilities of the normal operation systems of 

the reactor compartment provides the automatic 

regulation of the main process parameters of the first 

circuit: the coolant pressure in the primary circuit above 

the reactor core, the water level in the pressure 

compensator, makeup pump flow rates and other 

parameters. HSC also generates signals for complex 

measurements of such process parameters as the 

maximum mean coolant temperature in the primary 

circuit circulation loops, a difference of the primary 

circuit saturation temperature and the maximum 

temperature in the hot threads of loops, the material 

balance of the coolant for flushing-makeup of the 

primary circuit and others. Some rather strict 

requirements were specified for the system in terms of 

processing speed (algorithm stroke and parameter 

archiving – no longer than 20 ms), the number of 

registered and archived signals (over 15,000) and 

development periods (less than a year). 

SimInTech has been used as the basis for developing 

a mathematical model of primary circuit dynamics 

(calculated by means of the TPP code), control and 

regulation algorithms, archiving server algorithms, a set 

of video frames and a system with analog input (see 

Figure 1). The code generator and executive environment 

included into SimInTech allowed the controllers to be 

programmed under the QNX real-time operating system, 

remote debugging of algorithm execution in the 

controllers to be carried out, and signals to be archived 

and displayed in video frames. The peculiarities of 

applying SimInTech to create HSC ARF RC are 

presented by implementing it in an integral design 

software environment for the upper and lower levels, 

including archiving system and system adjustment video 

frames: 

 algorithm stroke – 10 ms; 

 registration of 7,500 signals in the archiving system; 

 back-up of the controllers and input/output channels; 

 regulator parameter input system. 

The project dealt with the challenge of modernizing 

the available automatic regulation facilities of the reactor 

compartment along with replacing the APCS equipment 

implemented on a basically different hardware platform. 

Available control algorithms presented as a text and 

block-diagram images were used as reference data. The 

sequence for creating automatic regulation facilities 

included: 

1. Developing a mathematical model of the reactor 

compartment in a scope sufficient for debugging the 

algorithms and the primary adjustment of the control 

regulators (Figure 2). 

2. Developing design diagrams of the algorithms and 

regulators (see Figure 3). 

3. Testing the algorithms on the mathematical model 

of NPP RC, calculating all the required modes of 

operation (reactor start and shutdown, primary 

circuit heating-up and cooling-down, reactor power 

increase and reduction, nominal mode of operation). 

4. Developing the algorithms for input-output signals 

digital processing – checking the authenticity of a 

signal, diagnosing the transducer off-scale sweep or 

breakout, the overrun of the tolerable speed of a 

signal change, filtration, signal conversion to a 

physical value and the required units of 

measurement. 

5. Binding process signals to input-output blocks, 

generating the initial code automatically, 

programming the controllers, testing and debugging 

the execution of the algorithms on the controllers. 

6. Testing ARF devices on the facility model. 

7. Programming archiving servers, developing the 

algorithms of control channel “equalization” 

(setting the slave channel in compliance with the 

status of the master control channel in case of a 

restart of the controller). 

8. Developing a set of video frames including the 

illumination of the in-put of regulator parameters in 

the process of operating the controller (Figure 4). 

This stage of commissioning works demonstrated an 

almost total absence of considerable errors– they 

were eliminated at the preliminary stages of 

developing and testing the algorithms. 

 

3 Conclusions

Applying the SimInTech environment allowed the

process engineers, programmers and test-operators of

APCS to combine their efforts in an integral system,

which led to a considerable (up to two-fold) reduction of

the time required for developing a general software and

hardware-software solution; it also minimized a number

of errors in algorithm designing due to their elimination

in the process of debugging on the facility model.

The application of this method in subsequent projects

and in similar works by other teams has demonstrated the

major practical advantage achieved due to the end-to-end

design of control algorithms using the model-oriented

approach. It is important to emphasize that the method

developed on the basis of fully domestic tools provides

as follows:

 exclusion of distortions in design solutions and their

wrong interpretation by different groups of FSW

designers (the minimization of the human factor);
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Figure 4. Example of Video Frame 

 visualizing and debugging control system algorithms 

(reductions in the time for testing and debugging the 

instrument operation algorithm); a functional block-

diagram is both a design model and a component part 

of FSW documentation; 

 automated design testing of control system 

algorithms using mathematical models of the 

controlled object (reductions in labor costs allocated 

to programmers and process engineers); 

 data systematization and structuring as per control 

system algorithms during the whole life cycle of the 

facility: from the development of the terms of 

reference up to the operational period. 
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