
Object-Oriented Modeling with Rand Model Designer

Yu. B. Kolesov 1 Yu. B. Senichenkov2
1Mv Soft, Russia, ybk2@mail.ru

2Institute of Computer Science and Technology, Peter the Great St. Petersburg Polytechnic University, Russia,
senyb@dcn.icc.spbstu.ru

Abstract
Rand Model Designer is a modern tool for modeling and
simulation hierarchical multicomponent event-driven
dynamical systems. It utilizes UML-based object-
oriented Model Vision Language for designing
dynamical and hybrid systems using modification of
State Machines, and large-scale multicomponent
systems: control systems with “inputs-outputs”,
“physical” systems with “contacts-flows”, and novel
variable structure component systems, particularly
“agent” systems. This article provides a brief overview
of the «Object-Oriented Modeling with Rand Model
Designer 7» book contents (Kolesov et al., 2016),
highlighting the differences between RMD and similar
environments.

Keywords: object-oriented modeling, visual
environment for modeling and simulation of event-
driven complex dynamical systems, dynamical and
hybrid systems, component “physical”, “causal”, and
“agent”-based models, behavior of event-driven
complex dynamical systems

1 Introduction
Object-oriented Modeling (OOM) is a modern
technology of computer simulation (also referred to as
computer modeling) widely used in scientific research,
design of technical systems and analysis of business
processes. OOM helps creating robust computer models
in a faster and more cost efficient manner.

Computer modeling practically emerged at the same
time with an appearance of first computers. At that
point, computer models were created manually using
programming languages like Fortran or even Assembly.
For instance, one of the authors happened to develop his
first computer model – imitator of the hardware (yet to
be developed) on the test stand – with machine
commands of BESM-4. Conversely, the level of
abstraction of any designed system is significantly
higher than the level of abstraction of any programming
language. Thus, at the time, developer had to keep
conformity between the model and its program
implementation in his own mind, which, evidently, had
led to numerous errors. Oftentimes, programmers used
own program implementations of numeral methods to
reproduce behavior of continuous systems, though this

approach led to questionable results. Partially this issue
had been addressed by the use of professional libraries
(1980-1983): LINPACK, EISPACK, LAPACK
(computational methods in linear algebra), ODEPACK
(numerical methods for solving ordinary differential
equations).

From 1950s, new high-level programming languages
emerged, together with supporting software tools that
created the executable computer models automatically.
General Purpose Simulation System (GPSS) was one of
the first modeling languages (Schriber, 1980). It was
meant to be used as a simulator for queueing systems.
This language is notable as it relied on object-oriented
approach; however, this terminology was not used at
that time. Transactions in the simulated system input
were created as copies of the standard “Transaction”
class, with different values of their attributes, and were
destroyed after the execution.

Simulation programming language Simula-67 was
released in late 1960s (Dahl et al., 1969). Simula
introduced classes, objects, inheritance and
polymorphism. Regrettably, this revolutionary project
did not become widespread in the field of simulation
practice, mainly due to limited computing power and
high OOM use overheads of those days. At that time,
emphasis was put on single-component isolated
mathematic models, transcribed as large and unique
equation systems, while the need of increasing speed
and accuracy of computation dominated over other
problems, such as structuring and modification of
models, for instance. These circumstances led to the
significant delay, measured in decades, in full-scale
application of object-oriented approach in modeling.
Conversely, Simula-type objects are re-implemented in
a range of object-oriented programming languages, such
as C++, Java and Object Pascal that are still in use today.

2 Matlab
MATLAB suite, probably one of the best-known
universal simulation environments, was developed in
late 1970s. It provides an opportunity to describe an
isolated single-component dynamic system in a vector-
matrix form, to call built-in solver for ordinary
differential equations, as well as other solvers from
professional systematic collections, and to visualize
solutions in form of a time and phase diagrams. Despite

EUROSIM 2016 & SIMS 2016

947DOI: 10.3384/ecp17142947 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

the fact that the models in MATLAB suite are described
in algorithmic language, similar to Fortran, not in
mathematical language, the suite development was a big
step forward in the field, thus it justifiably gained the
merited recognition.

Although MATLAB suite was primarily oriented
toward creation of traditional mathematical models, an
additional package added the functionality of
component-based modeling. In 1992, this package
acquired its present name - Simulink (Dyakonov, 2013).
Graphical language of Simulink package has been used
already at the time of analog machines and is familiar to
developers of control systems – it allows building model
of standard blocks, which have real physical equivalents
in technical devices. Equations – often disliked by
engineers – give way when graphical language of blocks
becomes the main tool of model description. Simulink
subsystem uses block language to describe models and
exempts engineers from the time-consuming process of
compiling system of equations corresponding with the
whole model. The system of equations is then passed on
to MATLAB suite solvers and the result of numeric
solution is passed to different “visualizer”.

Visual simulation technology of the Simulink suite
comes down to an assembly of models from readily
available “blocks” - elements of standard libraries with
adjustable parameters. In essence, we are talking about
OOM, as those “blocks” are principally objects of
library classes. Well-designed library of basic classes
allows creation of more complex classes by using
available proven designs as elements. Structural
complexity of new classes is disguised under multi-level
hierarchical structure, thus complex classes on higher
levels appear as basic elements. However, MATLAB’s
internal algorithmic language has to be used for any
development or modification or of the abovementioned
set of basic classes.

3 Unified Modeling Language
In late 1990s OOM, essentially, has had a major
breakthrough in modeling practice, due to the
introduction of the Unified Modeling Language (UML)
(Booch et al., 2006) and the language for physical
systems modeling Modelica (Modelica Association,
2012) reinforced with corresponding modeling software
tools.

UML language is used to design specifications of
complex software and hardware systems at the early
stages of development. Its importance for discrete-event
simulation lays foremost in canonization of concepts of
object-oriented approach in software development, as it
became de-facto standard of object-oriented approach.
Moreover, these concepts were combined with
exceptionally convenient and descriptive state diagrams
(machines), invented in 1980’s by D. Harel. UML
language is easily extendable to simulate continuous-
discrete (hybrid) systems. One indication of UML

popularity could be seen in introduction of the State
Flow subsystem, which supports state diagrams, to the
Matlab suite.

4 Modelica language
Modelica language solved the problem of component
simulation automation in the components with non-
directional connections use. External variables of
Simulink model components are referred to as
“entrance” and “exit”, which underlines the principal
implication of the information transmission direction.
However, in many application areas, there is no
direction of external variables, for instance, the direction
of currents and voltage symbols in electric circuits are
rather conventional. Connection of external variables of
different blocks in electrical circuits simply means the
equality of the voltages and the equality of the sum of
currents to zero. This fact fundamentally changes the
method of constructing the final equations, which, in
turn, leads to substantial problems. Modelica authors
overcame these difficulties through introduction of
components with non-directional connections, which in
effect, broadened the range of application areas for
computer simulation. Previously complex models were
built using a limited set of basic components that could
not be created in input simulating language, however
today Modelica allows creating component libraries for
electrical, hydraulic, mechanical, and other physical
systems utilizing language’s own capabilities.
Nowadays, user could build any complex structure,
where final equations for the structure are automatically
generated, similarly to block models of Simulink.
Moreover, Modelica classes could be inherited, defined
and redefined.

5 Tools classification
Currently, there is a number of modeling tools, which
support full OOM technology without narrowing focus
to any of the application areas. These tools are divided
in two groups:

1) tools focused on UML and its essential part -
state machine formalism (hybrid automation);

2) tools focused on Modelica language
(mechanisms supporting technology of “physical
modeling”).

First group includes environments like Ptolemy
(University of California, Berkeley, USA) (Ptolemaeus,
2014), AnyLogic (The AnyLogic Company, Saint
Petersburg) (Karpov, 2005) and Rand Model Designer
(MVSTUDIUM Group, MvSoft and Peter the Great St.
Petersburg Polytechnic University) (Kolesov et al.,
2006; Kolesov et al., 2013). Additionally this group
should also include the ever-developing Matlab that is
now a complex system of components (MATLAB +
Simulink + StateFlow + ToolBoxes). Matlab could be
categorized as an object-oriented only with certain

EUROSIM 2016 & SIMS 2016

948DOI: 10.3384/ecp17142947 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

provisions – OOM technology is fully supported only by
the StateFlow subsystem within Matlab. However, this
does not prevent Matlab from holding the leading role
in modern applied simulation.

Second group includes environments developed
within European project “Modelica”, such as Dymola,
Open Modelica, and MathModelica etc. For the purpose
of this work, we consider OOM technology-based
environments to be the most potential and thus we shall
focus this discussion only on those.

Table 1. Object-Oriented approach.

Object-Oriented approach
Simulink+Tollboxes no
Modelica-based tools yes
Ptolemy II yes
RMD yes

Modern simulating environment that claims to be
universal has to allow development of the following
models, in frameworks of the OOM technology:

 single-component continuous models
 single-component discrete-event models
 single-component hybrid models
 multi-component models with continuous,

discrete or hybrid components and oriented connections
(block models)

 multi-component models with continuous,
discrete or hybrid components and non-oriented
connections (physical models)

 multi-component models with variable
composition of components and variable connection
structure

Table 2. Universality. Definition.

Universality
Dynamical and hybrid
systems («isolated»)

Models with
«input/output»
components («causal»)

Models with
«contact/flows»
components
(«physical»)

Models with variable
structure («agent-
based»)

Table 3. Universality. Usage.

Universality
 Tollboxes (Simulink) yes
Modelica-based tools yes
Ptolemy II no
RMD yes

Undeniably, if the model has only two components and
each one has own state machine with only to states –
combined state machine will have for states, and every
combined state will have an own corresponding system
of equations to solve. Whereas, for components with
non-directional connections, construction of aggregate
system of equations cannot be reduced to a simple
mechanical unification of component equations, typical
for components with directed connections, and in
general, requires a very complex analysis and
transformation of equations. Matlab suite allows
working with physical models, though only within
frameworks of basic component sets.

Table 4. Compliance with UML.

Compliance with UML
Simulink+Tollboxes no
Modelica-based tools partial
Ptolemy II yes
RMD yes

Modelica language supports “physical modeling”,

however it uses own concept of objects that does not
match the one of UML language; it also uses special
constructions to describe discrete events in hybrid
models. Rather complex analysis of aggregate system of
equations is conducted at the stage of model
compilation; however, it could only be applied for a
limited class of hybrid models, where the number of
unknown variables and solved equations does not
change with switching.

Modeling practice indicates that state machine of
UML language is more convenient and graphical when
it comes to the description of discrete-event and hybrid
models than the description provided by the authors of
Modelica language. Furthermore, numerous practically
meaningful hybrid models are difficult to handle when
using Modelica language. Besides, within the limits of
Modelica’s approach it is rather problematical to model
systems with variable composition naturally.

6 Rand Model Designer

The Rand Model Designer tool attempts to combine the
strengths of both directions: supporting the “physical
modeling” suggested in Modelica language, while using
object paradigm and states machine of UML language.
Although, this design comes with an atonement - the
need to implement part of the analysis of aggregate
system of equations at the stage of model execution with
every switch. It occurs that this analysis could be
conducted by dint of “linear complexity” algorithms,
and thus RMD – created industrial models, based on

EUROSIM 2016 & SIMS 2016

949DOI: 10.3384/ecp17142947 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

components with non-directed connections,
successfully work in real time. Differences of the input
language of RMD environment – Manipulative Visual
Language (MVL) language – and Modelica language
are analyzed in (Martin-Villalba et al., 2014; Kolesov et
al., 2014).

RMD environment features are briefly summarized
below:

a. Elementary continuous behavior models
Continuous behavior may be represented in the form of
implicit time dependencies, nonlinear algebraic
equations (NAE), ordinary differential equations
(ODE), and differential-algebraic equations (DAE).
Equations are inputted by the user though the equation
editor, similar to one in "mathematical" suites (Figure
1).

Figure 1. Example of continuous behavior.

Usage of both scalar and vector-matrix forms is
possible. Alternatively, equations may be inputted in a
block form, as it is done in the Simulink environment.
SysLib database (Figure 2), which contains Simulink
blocks, helps those users who are accustomed to a
graphic description the continuous behavior.

b. Discrete and hybrid behavior models
Models with discrete and hybrid behavior are usually
described using hybrid automata. Hybrid machines
within RMD are UML state machines without parallel
(orthogonal) activities (Figure 3).

Behavior charts feature “orthogonal” time. Many
models with hybrid behavior require basing the
selection of the next state on fairly complex calculations
within the time gap. In particular, this may require
modeling of additional dynamic systems, auxiliary to
the core model. Thus, this simulation should be carried
out in its own hybrid time, which is “orthogonal” to the
principal time and is infinitely prompt – “instant”.
Modeling of additional systems may be carried out in
parallel, should the hardware capabilities suffice.
Furthermore, RMD includes an option for keeping the
specifications of any complex model as a class, and

consequently consider abovementioned class’s behavior
as "elementary" piecewise continuous state machine
activity (Figure 4).

Figure 2. Library of “a la Simulink” blocks.

Figure 3. Behavior chart with UML notation.

c. Multi-component models with oriented
components

Hierarchical multi-component models with components
with the "input-output" and internal hybrid automata
(with attributed continuous activities in form of
equations or class instance activities, corresponding to
complex subsystems models) demonstrate fairly
complex behavior, which is best described by a
component hybrid machine composition, with an
extremely large number of states. It is not considered
necessary to create this composition in an explicit form,
as an appropriate state behavior could swiftly be created
for the implementation of a specific event,

EUROSIM 2016 & SIMS 2016

950DOI: 10.3384/ecp17142947 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Figure 4. State activity as behavior of model converted
into class.

d. Multi-component models with non-oriented
components

Inheriting Modelica’s technology for creating the multi-
component model with oriented components (external
variables such as "contact-flow") RMD introduces two
significant additions:
 component hybrid automata may have

continuous behavior, expressed as equation systems of
any size and any type (NAE, ODE, DAE);
 equations, corresponding to component hybrid

automata are created "on the fly" during the
implementation, rather than at the compilation stage.

e. Multi-component models with variable
structure

Construction of the variable structure models or models
with “dynamic” components became possible owing to
the introduced ability to create the equation for the
whole model composition of component hybrid
automata. Thus it is possible to create "agent-based
models", as the component type (oriented or non-
oriented) becomes irrelevant (Figures 5 and 6).

Figure 5. Initial structure of a component model.

Rand Model Designer version 7 allows creation of all
the above mentioned types of models, based on the
OOM technology. Trial version of RMD 7 is available
at www.mvstudium.com.
Information about new book (Figure 7) you may find at
http://www.labirint.ru/books/539673/ .

Figure 6. Structure of the model after the fifth event.

Figure 7. New book «Object-Oriented Modeling with
Rand Model Designer 7».

References
G. Booch, I. Jacobson, and J. Rumbaugh. UML 2.0, Saint

Petersburgh, Piter, 2006.

Claudius Ptolemaeus, Editor. System Design, Modeling, and
Simulation using Ptolemy II, Ptolemy.org, 2014. –
http://ptolemy.org/books/Systems.

O.J. Dahl, B. Murhaug, and K. Nigard. Simula-67. Common
Base Language. - М: Mir, 1969.

V.Dyakonov. Simulink: manual for self-tuition. – М: DMK-
Press, 2013.

Yu. Karpov. Introduction in modeling and simulation with
AnyLogic 5 – Saint Petersburgh: BHV-Petersburg 2005.

C. Martin-Villalba, A. Urquia, Y. Senichenkov, and Y.
Kolesov. Two approaches to facilitate virtual lab
implementation. Computing in Science and Engineering,
16(1): 79-86, 2014.

Modelica Association, Modelica® - An Unified Object-
Oriented Language for Systems Modeling, Language
Specification version 3.3. Modelica Association, 2012. -
https://www.modelica.org (accessed in 2013).

EUROSIM 2016 & SIMS 2016

951

Tools of the first group – those that are based on
UML – support all the aforementioned model types
except for “physical models”. This is due to the
exponential growth of number of states in a state
machine that corresponds to the whole model.

DOI: 10.3384/ecp17142947 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Yu. Kolesov and Yu. Senichenkov. Modeling of systems.
Dynamical and hybrid systems. Saint Petersburg, BHV,
2006

Yu. Kolesov and Yu. Senichenkov. Mathematical modeling of
hybrid dynamical systems, Saint Petersburgh: Publishing of
Polytechnic University, 2014.

Yu. Kolesov and Yu. Senichenkov. Object-Oriented
Modeling with Rand Model Designer 7. Saint Petersburg,
Prospect, 2016.

T. J. Schriber. Modeling and simulation in GPSS. — М:
Mashinostroenie, 1980.

EUROSIM 2016 & SIMS 2016

952DOI: 10.3384/ecp17142947 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Yu. Kolesov, Yu. Senichenkov, A. Urquia, and C. Martin-
Villalba. Hybrid systems in Modelica and MvStudium.
Humanities and Science University Journal, 8: 102-111,
2014.

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

