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Abstract 
Rand Model Designer is a modern tool for modeling and 
simulation hierarchical multicomponent event-driven 
dynamical systems. It utilizes UML-based object-
oriented Model Vision Language for designing 
dynamical and hybrid systems using modification of 
State Machines, and large-scale multicomponent 
systems: control systems with “inputs-outputs”, 
“physical” systems with “contacts-flows”, and novel 
variable structure component systems, particularly 
“agent” systems. This article provides a brief overview 
of the «Object-Oriented Modeling with Rand Model 
Designer 7» book contents (Kolesov et al., 2016), 
highlighting the differences between RMD and similar 
environments. 
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1 Introduction 
Object-oriented Modeling (OOM) is a modern 
technology of computer simulation (also referred to as 
computer modeling) widely used in scientific research, 
design of technical systems and analysis of business 
processes. OOM helps creating robust computer models 
in a faster and more cost efficient manner. 

Computer modeling practically emerged at the same 
time with an appearance of first computers. At that 
point, computer models were created manually using 
programming languages like Fortran or even Assembly. 
For instance, one of the authors happened to develop his 
first computer model – imitator of the hardware (yet to 
be developed) on the test stand – with machine 
commands of BESM-4. Conversely, the level of 
abstraction of any designed system is significantly 
higher than the level of abstraction of any programming 
language. Thus, at the time, developer had to keep 
conformity between the model and its program 
implementation in his own mind, which, evidently, had 
led to numerous errors. Oftentimes, programmers used 
own program implementations of numeral methods to 
reproduce behavior of continuous systems, though this 

approach led to questionable results. Partially this issue 
had been addressed by the use of professional libraries 
(1980-1983): LINPACK, EISPACK, LAPACK 
(computational methods in linear algebra), ODEPACK 
(numerical methods for solving ordinary differential 
equations). 

From 1950s, new high-level programming languages 
emerged, together with supporting software tools that 
created the executable computer models automatically. 
General Purpose Simulation System (GPSS) was one of 
the first modeling languages (Schriber, 1980). It was 
meant to be used as a simulator for queueing systems. 
This language is notable as it relied on object-oriented 
approach; however, this terminology was not used at 
that time. Transactions in the simulated system input 
were created as copies of the standard “Transaction” 
class, with different values of their attributes, and were 
destroyed after the execution. 

Simulation programming language Simula-67 was 
released in late 1960s (Dahl et al., 1969). Simula 
introduced classes, objects, inheritance and 
polymorphism. Regrettably, this revolutionary project 
did not become widespread in the field of simulation 
practice, mainly due to limited computing power and 
high OOM use overheads of those days. At that time, 
emphasis was put on single-component isolated 
mathematic models, transcribed as large and unique 
equation systems, while the need of increasing speed 
and accuracy of computation dominated over other 
problems, such as structuring and modification of 
models, for instance. These circumstances led to the 
significant delay, measured in decades, in full-scale 
application of object-oriented approach in modeling. 
Conversely, Simula-type objects are re-implemented in 
a range of object-oriented programming languages, such 
as C++, Java and Object Pascal that are still in use today. 

2 Matlab 
MATLAB suite, probably one of the best-known 
universal simulation environments, was developed in 
late 1970s. It provides an opportunity to describe an 
isolated single-component dynamic system in a vector-
matrix form, to call built-in solver for ordinary 
differential equations, as well as other solvers from 
professional systematic collections, and to visualize 
solutions in form of a time and phase diagrams. Despite 
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the fact that the models in MATLAB suite are described 
in algorithmic language, similar to Fortran, not in 
mathematical language, the suite development was a big 
step forward in the field, thus it justifiably gained the 
merited recognition.  

Although MATLAB suite was primarily oriented 
toward creation of traditional mathematical models, an 
additional package added the functionality of 
component-based modeling. In 1992, this package 
acquired its present name - Simulink (Dyakonov, 2013). 
Graphical language of Simulink package has been used 
already at the time of analog machines and is familiar to 
developers of control systems – it allows building model 
of standard blocks, which have real physical equivalents 
in technical devices. Equations – often disliked by 
engineers – give way when graphical language of blocks 
becomes the main tool of model description. Simulink 
subsystem uses block language to describe models and 
exempts engineers from the time-consuming process of 
compiling system of equations corresponding with the 
whole model. The system of equations is then passed on 
to MATLAB suite solvers and the result of numeric 
solution is passed to different “visualizer”.  

Visual simulation technology of the Simulink suite 
comes down to an assembly of models from readily 
available “blocks” - elements of standard libraries with 
adjustable parameters. In essence, we are talking about 
OOM, as those “blocks” are principally objects of 
library classes. Well-designed library of basic classes 
allows creation of more complex classes by using 
available proven designs as elements. Structural 
complexity of new classes is disguised under multi-level 
hierarchical structure, thus complex classes on higher 
levels appear as basic elements. However, MATLAB’s 
internal algorithmic language has to be used for any 
development or modification or of the abovementioned 
set of basic classes. 

3 Unified Modeling Language 
In late 1990s OOM, essentially, has had a major 
breakthrough in modeling practice, due to the 
introduction of the Unified Modeling Language (UML) 
(Booch et al., 2006) and the language for physical 
systems modeling Modelica (Modelica Association, 
2012) reinforced with corresponding modeling software 
tools. 

UML language is used to design specifications of 
complex software and hardware systems at the early 
stages of development. Its importance for discrete-event 
simulation lays foremost in canonization of concepts of 
object-oriented approach in software development, as it 
became de-facto standard of object-oriented approach. 
Moreover, these concepts were combined with 
exceptionally convenient and descriptive state diagrams 
(machines), invented in 1980’s by D. Harel. UML 
language is easily extendable to simulate continuous-
discrete (hybrid) systems. One indication of UML 

popularity could be seen in introduction of the State 
Flow subsystem, which supports state diagrams, to the 
Matlab suite.  

4 Modelica language 
Modelica language solved the problem of component 
simulation automation in the components with non-
directional connections use. External variables of 
Simulink model components are referred to as 
“entrance” and “exit”, which underlines the principal 
implication of the information transmission direction. 
However, in many application areas, there is no 
direction of external variables, for instance, the direction 
of currents and voltage symbols in electric circuits are 
rather conventional. Connection of external variables of 
different blocks in electrical circuits simply means the 
equality of the voltages and the equality of the sum of 
currents to zero. This fact fundamentally changes the 
method of constructing the final equations, which, in 
turn, leads to substantial problems. Modelica authors 
overcame these difficulties through introduction of 
components with non-directional connections, which in 
effect, broadened the range of application areas for 
computer simulation. Previously complex models were 
built using a limited set of basic components that could 
not be created in input simulating language, however 
today Modelica allows creating component libraries for 
electrical, hydraulic, mechanical, and other physical 
systems utilizing language’s own capabilities. 
Nowadays, user could build any complex structure, 
where final equations for the structure are automatically 
generated, similarly to block models of Simulink. 
Moreover, Modelica classes could be inherited, defined 
and redefined. 

5 Tools classification 
Currently, there is a number of modeling tools, which 
support full OOM technology without narrowing focus 
to any of the application areas. These tools are divided 
in two groups: 

1) tools focused on UML and its essential part - 
state machine formalism (hybrid automation); 

2) tools focused on Modelica language 
(mechanisms supporting technology of “physical 
modeling”). 

First group includes environments like Ptolemy 
(University of California, Berkeley, USA) (Ptolemaeus, 
2014), AnyLogic (The AnyLogic Company, Saint 
Petersburg) (Karpov, 2005) and Rand Model Designer 
(MVSTUDIUM Group, MvSoft and Peter the Great St. 
Petersburg Polytechnic University) (Kolesov et al., 
2006; Kolesov et al., 2013). Additionally this group 
should also include the ever-developing Matlab that is 
now a complex system of components (MATLAB + 
Simulink + StateFlow + ToolBoxes). Matlab could be 
categorized as an object-oriented only with certain 
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provisions – OOM technology is fully supported only by 
the StateFlow subsystem within Matlab. However, this 
does not prevent Matlab from holding the leading role 
in modern applied simulation. 

Second group includes environments developed 
within European project “Modelica”, such as Dymola, 
Open Modelica, and MathModelica etc. For the purpose 
of this work, we consider OOM technology-based 
environments to be the most potential and thus we shall 
focus this discussion only on those. 

Table 1. Object-Oriented approach. 

Object-Oriented approach 
Simulink+Tollboxes no 
Modelica-based tools yes 
Ptolemy II yes 
RMD yes 

 
Modern simulating environment that claims to be 
universal has to allow development of the following 
models, in frameworks of the OOM technology: 

 single-component continuous models 
 single-component discrete-event models 
 single-component hybrid models 
 multi-component models with continuous, 

discrete or hybrid components and oriented connections 
(block models) 

 multi-component models with continuous, 
discrete or hybrid components and  non-oriented 
connections (physical models) 

 multi-component models with variable 
composition of components and variable connection 
structure 

Table 2. Universality. Definition. 

Universality 
Dynamical and hybrid 
systems («isolated») 

Models  with 
«input/output» 
components («causal») 

Models  with 
«contact/flows» 
components 
(«physical») 

Models with variable 
structure («agent-
based») 

 

Table 3. Universality. Usage. 

Universality 
 Tollboxes (Simulink) yes 
Modelica-based tools yes 
Ptolemy II no 
RMD yes 

 

Undeniably, if the model has only two components and 
each one has own state machine with only to states – 
combined state machine will have for states, and every 
combined state will have an own corresponding system 
of equations to solve. Whereas, for components with 
non-directional connections, construction of aggregate 
system of equations cannot be reduced to a simple 
mechanical unification of component equations, typical 
for components with directed connections, and in 
general, requires a very complex analysis and 
transformation of equations. Matlab suite allows 
working with physical models, though only within 
frameworks of basic component sets. 

Table 4. Compliance with UML. 

Compliance with UML 
Simulink+Tollboxes no 
Modelica-based tools partial 
Ptolemy II yes 
RMD yes 

 
Modelica language supports “physical modeling”, 

however it uses own concept of objects that does not 
match the one of UML language; it also uses special 
constructions to describe discrete events in hybrid 
models. Rather complex analysis of aggregate system of 
equations is conducted at the stage of model 
compilation; however, it could only be applied for a 
limited class of hybrid models, where the number of 
unknown variables and solved equations does not 
change with switching. 

Modeling practice indicates that state machine of 
UML language is more convenient and graphical when 
it comes to the description of discrete-event and hybrid 
models than the description provided by the authors of 
Modelica language. Furthermore, numerous practically 
meaningful hybrid models are difficult to handle when 
using Modelica language. Besides, within the limits of 
Modelica’s approach it is rather problematical to model 
systems with variable composition naturally. 

6 Rand Model Designer 
 

 
 
The Rand Model Designer tool attempts to combine the 
strengths of both directions: supporting the “physical 
modeling” suggested in Modelica language, while using 
object paradigm and states machine of UML language. 
Although, this design comes with an atonement - the 
need to implement part of the analysis of aggregate 
system of equations at the stage of model execution with 
every switch. It occurs that this analysis could be 
conducted by dint of “linear complexity” algorithms, 
and thus RMD – created industrial models, based on 
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components with non-directed connections, 
successfully work in real time. Differences of the input 
language of RMD environment – Manipulative Visual 
Language (MVL) language – and Modelica language 
are analyzed in (Martin-Villalba et al., 2014; Kolesov et 
al., 2014).  

RMD environment features are briefly summarized 
below: 

a. Elementary continuous behavior models 
Continuous behavior may be represented in the form of 
implicit time dependencies, nonlinear algebraic 
equations (NAE), ordinary differential equations 
(ODE), and differential-algebraic equations (DAE). 
Equations are inputted by the user though the equation 
editor, similar to one in "mathematical" suites (Figure 
1).  
 

 
Figure 1. Example of continuous behavior. 

Usage of both scalar and vector-matrix forms is 
possible. Alternatively, equations may be inputted in a 
block form, as it is done in the Simulink environment. 
SysLib database (Figure 2), which contains Simulink 
blocks, helps those users who are accustomed to a 
graphic description the continuous behavior. 

b. Discrete and hybrid behavior models 
Models with discrete and hybrid behavior are usually 
described using hybrid automata. Hybrid machines 
within RMD are UML state machines without parallel 
(orthogonal) activities (Figure 3). 

Behavior charts feature “orthogonal” time. Many 
models with hybrid behavior require basing the 
selection of the next state on fairly complex calculations 
within the time gap. In particular, this may require 
modeling of additional dynamic systems, auxiliary to 
the core model. Thus, this simulation should be carried 
out in its own hybrid time, which is “orthogonal” to the 
principal time and is infinitely prompt – “instant”. 
Modeling of additional systems may be carried out in 
parallel, should the hardware capabilities suffice. 
Furthermore, RMD includes an option for keeping the 
specifications of any complex model as a class, and 

consequently consider abovementioned class’s behavior 
as "elementary" piecewise continuous state machine 
activity (Figure 4). 

 

Figure 2. Library of “a la Simulink” blocks. 

 
 

Figure 3. Behavior chart with UML notation. 

c. Multi-component models with oriented 
components 

Hierarchical multi-component models with components 
with the "input-output" and internal hybrid automata 
(with attributed continuous activities in form of 
equations or class instance activities, corresponding to 
complex subsystems models) demonstrate fairly 
complex behavior, which is best described by a 
component hybrid machine composition, with an 
extremely large number of states. It is not considered 
necessary to create this composition in an explicit form, 
as an appropriate state behavior could swiftly be created 
for the implementation of a specific event, 
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Figure 4. State activity as behavior of model converted 
into class. 

d. Multi-component models with non-oriented 
components 

Inheriting Modelica’s technology for creating the multi-
component model with oriented components (external 
variables such as "contact-flow") RMD introduces two 
significant additions: 
 component hybrid automata may have 

continuous behavior, expressed as equation systems of 
any size and any type (NAE, ODE, DAE); 
 equations, corresponding to component hybrid 

automata are created "on the fly" during the 
implementation, rather than at the compilation stage. 

e. Multi-component models with variable 
structure 

Construction of the variable structure models or models 
with “dynamic” components became possible owing to 
the introduced ability to create the equation for the 
whole model composition of component hybrid 
automata. Thus it is possible to create "agent-based 
models", as the component type (oriented or non-
oriented) becomes irrelevant (Figures 5 and 6). 
 

 
 

Figure 5.  Initial structure of a component model. 

Rand Model Designer version 7 allows creation of all 
the above mentioned types of models, based on the 
OOM technology. Trial version of RMD 7 is available 
at www.mvstudium.com.  
Information about new book (Figure 7) you may find at 
http://www.labirint.ru/books/539673/ . 

 

 
Figure 6. Structure of the model after the fifth event. 

 

 
 

Figure 7. New book «Object-Oriented Modeling with 
Rand Model Designer 7». 
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