
Rand Model Designer’s Numerical Library

A. A. Isakov Yu. B. Senichenkov
Institute of Computer Science and Technology, Peter the Great St. Petersburg Polytechnic University, Russia

senyb@dcn.icc.spbstu.ru

Abstract
Numerical Libraries of visual simulation environments of
complex dynamic systems differ from those of specialized
collections of software implementations of numerical
methods by means of the heuristic control program designed
for automatic selection of numerical methods, accuracy
control, and identification the specific features of systems of
algebraic, ordinary differential and differential-algebraic
equations on a local trajectories of the event-driven dynamic
systems.

Keywords: dynamical and hybrid systems, component
«physical», «causal», and «agent»-based models, behavior
of event-driven complex dynamical systems, differential-
algebraic equations, numerical methods for NAE, ODE,
DAE

1 Introduction
Universal environments of visual simulation for complex
dynamic systems (Simulink + Toolboxes, Modelica – based
environments, Rand Model Designer, et cetera) are
employed for construction, reproduction and behavior
visualization of event-driven systems. Those come equipped
with particular numerical libraries, which differ from general
collections of professional numerical programs by means of
heuristic control programs (also known as calling programs)
for automatic selection of numerical methods.

Users of specialized collections, which are creating
control programs on their own, usually deal with solution of
a single system, or multiple systems, where system
properties are pre-determined, or are determined in the
modeling process. This allows users to pick out appropriate
methods experimentally.

 However visual environment users face exponentially
large number of tasks generated by the state machine model,
even when working with a simulation of a relatively small
event-driven system. Systems of equations correspond to a
particular state of a multi-component model and are built
automatically; while a numerical method is routinely
selected for those systems in the course of the process.

Reference article (Shampine et al., 2003) describes the
software package MATLAB ODE Suite (The MathWorks)
for numerical integration of event-driven dynamical
systems. While referenced research works (Shampine et al.,
2000; Shampine al., 1999) describe methods used for event
location and for solving systems of differential-algebraic
equations of high index.

Discussion on numerical problems in software
environments which use Modelica language, are described
in reference material (Fritzson, 2011; Sanfelice et al., 2010;
Navarro-López, 2011; Senichenkov et al., 2013).

Rand Model Designer environment (Kolesov et al., 2013;
Kolesov et al., 2014; Martin-Villalba et al., 2015; Kolesov
et al., 2015; Isakov, 2015) contains a traditional library of
software implementation of numerical methods (Fortran
programming language), and a control module (C ++
programming language), which allows selection of specific
solution methods for systems of equations on a given
trajectory. Numerical Library and control module –
hereinafter referred to as numerical library – are expressed
in a form of dynamic link library (dll). This library provides
the utmost rapid numerical solution for problems arising in
the "release” mode, as well as debugging and tracing in the
“debug” mode.

Open text software implementations of numerical
methods (ODEPACK, RADAU, DDASPK ... -
http://www.netlib.org) as well as solution algorithms of
NAE, ODE, DAE presented in reference materials (Forsythe
et al., 1977; Dongarra et al., 1979; Rice, 1981; George et
al., 1981; Pissanetzky, 1984; Ascher et al., 1998; Shampine
et al., 2003; Shampine et al., 2000; Shampine et al., 1999;
Hairer et al., 1987; Hairer et al., 1991, 1996; Hindmarsh,
1983; Shampine et al., 1997), were used to create a RMD
library. However, selected methods had to be modified and
supplemented with original algorithms.

In addition to solution of equations on trajectories, it is
also necessary to analyze the structure of the equations, to
simplify the construction of the system, eliminating the
variable “links”, to determine state "switch-points” of event-
driven systems, to ensure consistent initial conditions and to
reduce index for differential-algebraic equations, as well as
to determine the initial approximations for iterative methods.

Today visual simulation environments are preferred
(Isakov, 2014):
 to support object-oriented modeling (OMM) technology
 to utilize modeling languages that allow user to simply
describe most required tasks
 to comply with, not institutionalized, yet generally
established, standards, such as, for instance Unified
Modeling Language (UML) for discrete event-driven
systems (Rumbauth et al., 2005).

Unification of the input language level only, as done for
discrete event-driven systems (UML – http://www.uml.org),
does not guarantee the same behavior in various
environments of the same hybrid event-driven dynamic

EUROSIM 2016 & SIMS 2016

953DOI: 10.3384/ecp17142953 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

system. Unification of the numerical libraries is required for
optimal performance. It is desirable to achieve the same
result as for the classified collections – when a given system,
solved by numerical methods from different collections, has
the same numerical solution for a predetermined comparison
criterion.

In this article, we have tried to describe thoroughly the
process of building, conversion, and numerical solution of
systems of equations generated by the state machine of the
hierarchical multicomponent event-driven model with
variable structure within the visual modeling environment of
the Rand Model Designer (RMD – www.mvstudium.com).

The Rand Model Designer (Kolesov et al., 2015) allows
the model to be built in a form of an isolated dynamic or
hybrid system, a hierarchical multi-component system of a
permanent structure with components with the "input-
output" external variables or components with "contact-
flow", and model with variable (dynamical) structure.

2 Description of the complex
dynamical systems behavior.
Classical dynamical systems

Local continuous activity (continuous activity of hybrid
automaton) could be expressed in form of:
 implicit dependencies on time
 linear and nonlinear algebraic equations (NAE)
 systems of ordinary differential equations in normal form
or in form of equations not resolved with respect to
derivatives (ODE)
 systems of differential-algebraic equations (DAE)

Each type of equations - NAE, ODE or DAE – has its
own set of methods with mandatory program AUTO.
Automatic mode is set by default, however user could
replace it by any other method from the corresponding
group.

Vector-matrix form of equations is preferred. It is
"standard" form of equations for specific numerical method,
which does not require further change when referring to a
particular software implementation of the method.

 However, especially in the early stages of design, user
rarely thinks about the choice of method, and rather writes
the equation in "free" form, which subsequently has to be
converted into a "standard" form.

For example, even the simplest form of behavior
description by way of scalar equations sequence with
substitutions requires Equations Analyzer to regularize
custom unknown variables and equations, to validate
procedure and substitutions accuracy, as well as to determine
“algebraic cycles”, i.e. hidden equations in those.

3 Consideration of solving systems
structure

Solving of large-scale systems of nonlinear algebraic
equations serves as the key task in the numerical simulation

of complex dynamic systems. This task is important in itself;
however, it becomes even more relevant in the context of
ensuring consistent initial conditions, solving differential-
algebraic equations, and implementing of the implicit
methods for solving ordinary differential equation systems.

Within the RMD environment, Newton's method is
utilized as a main method for solving systems of nonlinear
algebraic equations. However, this method requires
impeccable initial approximation. In the event of Newton's
method failure, the task of finding solution is reduced to the
task of minimizing a quadratic functional (Powell method).

The basic operation of the Newton’s method is solving
systems of linear algebraic equations at each iteration. When
using direct methods, it is important to pre-determine the
matrix structure and call a corresponding modification of the
method. Notably, RMD environment mostly relies on
various modifications of the Gauss method for fully filled,
band and sparse matrices

The implementation of the Gauss method for large sparse
systems MA28 (Pissanetzky, 1984) provides the possibility
of bringing the original system to block triangular form by
means of rows and columns rearrangements. Whereas,
bringing the original system to block-diagonal form, makes
it possible to solve systems in parallel.

In case of block-triangular systems, only systems
corresponding to diagonal blocks could have a natural
solution. Consequently, the solution rate increases, but the
question on optimal size of the diagonal block remains.
Oftentimes, in case of dealing with small blocks, system
solution overheads are inadequately high.

4 Standard description forms of
continuous activity

In RMD equation and substitution differ syntactically. By

default entry (, , ,)x f c k t y , where f - real-valued

function (also known as real function), is considered as

substitution, if variables },{ kc on the right side are declared

constant or parameters and value of variable y is determined
at the time of calculation of the substitution. Here
t ={Time,time} ,

where (Time) – global, and (time) – local time.
Equations are written in a scalar form (1):

(, , ,) 0

(, , , ,) 0

(, , , ,) 0

z q c k t z

f x y c k t

g x y c k t

 
 
 

 , (1)

or vector-matrix form (2):

(, , ,) 0, , nF x c k t x F  , (2)

and could be complemented by substitutions.

EUROSIM 2016 & SIMS 2016

954DOI: 10.3384/ecp17142953 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

RMD gives a possibility for the user to "see" the system,
which is being solved, in a designated window during the
model execution. This is not only imperative for multi-
component systems, with automatically built equations
(based on component equations with consideration of their
links), but also for the single-component systems, where
final equation may differ from the original one.

User has to be notified about the Equation Analyzer
operations: namely about allocation and regularization of
required variables and equations. The process of allocation
and regularization of variables and equations, as well as the
one of determination of the equations structure is called
structural analysis in RMD. It uses a bit-block system
matrix, which indicates the occurrence of the unknown
variables in the equation. The structural matrix for large
systems takes a lot of memory space, while the structural
analysis of the system takes a lot of time. This is especially
true if system of equations is underdetermined and if
conditions require finding a non-degenerate structural
subsystem of maximum size. Oftentimes, at the early stages
of building a new model, user needs Customer Support to
eliminate underdetermined information.

Linear equations brought to the vector-matrix form

     ; A t x t b t  (3)

are divided into the equations with fully filled, band and
sparse matrix systems.

For systems with a fully-filled matrices, software
implementation of the Gauss method with an assessment of
the condition number of LINPACK package (Dongarra et
al., 1979) (DGECO, DGESL) is used, for band matrices –
subprograms (DGBCO, DGBSL). For systems with sparse
matrices (Isakov, 2014) variation of the Gauss method
(Pissanetzky, 1984) was realized, which provided the
possibility of reducing a matrix to a block triangular form. It
has been concluded that preliminary matrix reduction to
block triangular form is justified for numerous technical
tasks across various fields. Moreover oftentimes the final
system turns out to be in a block-diagonal form, which
makes it possible to solve systems in parallel. Taking into
consideration specific properties of the diagonal blocks
particular numerical methods may be employed when
dealing with those. In particular, blocks where unit size
equals one could be regarded as equations with a single
variable, thus employing appropriate methods (Forsythe et
al., 1977).

Nonlinear equations

(, , ,) 0F x c k t  (4)

are solved with the Newton's method. In the RMD
environment, in Newton's method, frequency of
recalculation of the Jacobian matrix may vary, depending on

the speed of convergence. Moreover method failure results
in call in for the Powell method.

Ordinary differential equations with relation to the first
derivative are recorded in scalar or vector form (5):

0 0(, , ,), (0) ; , , ndx
F x c k t x x x x F

dt
   . (5)

Normal form, with relation to the second derivatives, is

permitted (6)

2

0 0 02

0

(, , ,), (0) ; ;

, ,

t

n

d x dx
F x c k t x x V

dt dt

x x F

  


 (6)

for the implementation of numerical methods that use it as
the initial form (Hairer et al., 1987).

Differential-algebraic equations (7)

0(, , , ,), (0)
dx

F x c k t x x
dt

 (7)

are reduced to a semi-explicit form (8)

0

0

, (0)

(, , , ,) 0, (0)

dx
x x x

dt
F x x c k t x x

    

   

, (8)

if those are not recorded in the following form (9)

0

0

(, , , ,), (0)

(, , , ,) 0; , , , , n

dx
F x y c k t x x

dt

G x y c k t x x y G F

  

  

. (9)

It is possible to use explicit methods for the semi-explicit

form (Hairer et al., 1987), resolving a nonlinear algebraic
equations systems as required by a suitable method of NAE
group.

Additional (in comparison with the solution of
differential equations) operation is required when solving
differential-algebraic equations – ensuring consistent initial
conditions (utilizing suitable methods of NAE group).

The ability to successfully use the semi-explicit form
depends on the properties of the Jacobi matrix. It is possible
to use certain methods from the DAE group, for high index
equation systems, if the system does not require conversion
(Hairer et al., 1996). Alternatively it is possible to
differentiate the equation to reduce the index.

Differentiation could be done symbolically, as in math
suites, designated for symbolic computation (also known as

EUROSIM 2016 & SIMS 2016

955DOI: 10.3384/ecp17142953 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

algebraic computation). Or alternatively, differentiation
could be done numerically, as in visual modeling
environments. Character differentiation block is planned to
be implemented in Rand Model Designer in the near future.
Meanwhile, differentiation is carried out by means of “linear
differentiator”.

Let)(txx  be the function, derivative of which is to
be determined. Consider the following equation

0
~)0(~),~(

~
xxxxK

dt

xd 


. (10)

For sufficiently large positive K solution to this additional
equation tends to the specified function, while solution
derivative tends to function derivative (if the derivative is
"stable") (Emeljanov et al., 1997). Regrettably, even for the
stable problems, error in the boundary layer may be
excessive. However, experience has shown that for many
models, even considerable errors in the boundary layer
(arising from the unreliable initial conditions) are
acceptable. It is important to keep in mind this source of
potential errors.

5 Discrete dynamic and hybrid
systems

RMD uses hybrid simulated time – continuous periods
alternating with short time slots, where events are put in order
(Kolesov et al., 2013; Kolesov et al., 2014). Discrete dynamic
and hybrid systems are described by means of hybrid machines,
equipped with a hybrid time.

To solve difference equations (11) a hybrid machine with an
"empty" continuous activity and discrete actions is created

1 0

1

: (); 0,1,...; (0)

: ; ,

k k

n
k k

Z F Z k Z Z

Z Z F Z





  


 
. (11)

The hybrid machine with continuous activities in the form of
equations is essentially a generalization of classical
dynamical systems, with all the inherent difficulties of
numerical behavior reproduction - Zeno effect and sliding
modes.

Hybrid machines within RMD are UML state machines
without parallel (orthogonal) activities (Rumbauth et al.,
2005), which relate to additional numerical tasks, namely
determination of the “switch points”, or event location, set
by the operator “When”, resulting in a state change.
Operator “When” may contain variables of any type, thus the
main operational method for event localization is the method
of bisection interval.

In case the event is associated with real variables and
equality to a predetermined value, it is possible to formulate
and solve the problem of finding a root on a given trajectory.
For example, LSODAR program of ODEPACK – a
collection of solvers for the initial value problem for

ordinary differential equation systems (Hindmarsh, 1983).
includes a root finding capability. However, it is difficult to
determine the significance of this problem, due to the lack of
data on the use frequency of operators “after”, “signal”,
“when” complex system models.

6 Component systems with «inputs-
outputs»

While components with “input-output” that have internal
state machines produce exponentially large number of
possible final systems, there are no major obstacles in
creating those. Whatever way the components are
connected, the structure of the component equations
essentially does not change, if only left side variables of the
substitutions that are defined as exit variables may become
unknown variables of the new algebraic equations.
When using components with “input-output” the problem of
differentiation of input variables is simplified, if they satisfy
the differential equations within the components where they
are formed. It is enough to pass the calculated value of the
derivative to the right component.

7 Component systems with «contacts-
Flows»

Components with “contact-flow” are utilized for “physical”
simulation, where they generate an additional problem related
to internal hybrid automata.

When using components with “input-output”, if component
equations for unknown variables are differential equations, then
they remain differential equations in relation to the same
variable also in resulting system for corresponding state in
composition of component hybrid automata.

When using components with “contact-flow”, if component
equations for unknown variables are differential equations
(differential variables) then in the resulting system they may
turn into algebraic equations for composition of component
hybrid automata. In result user’s initial differential variables
become algebraic. That is due to the concept of index of system
of algebraic-differential equations (Hairer et al., 1996).
Equation Analysers of visual simulation environments heave to
be able to recognize the systems with high index and transform
those in order to lower the index. This, in turn, requires
differential equations. Some programs (Hairer et al., 1996)
could solve systems of low index without reducing it, but
recognition of such system remains a problem.

Resulting hybrid automaton of the whole model or the
composition of component hybrid automata has a very large
number of states even for relatively small models and requires
significant efforts to form all the possible equations at the stage
of compilation, in case of components with “contact-flow”.

There are no restrictions on state equations of component
automata in RMD, but the equations for realized composition
states of component automata are being built at the time of
model execution. It is an attempt to avoid building large number
of resulting systems and practically to take into account the
frequency of their appearance at a certain trajectory, while at
the stage of execution only of system of realized states.

EUROSIM 2016 & SIMS 2016

956DOI: 10.3384/ecp17142953 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

8 Component systems with variable
structure

Processes of birth and death, queuing analysis, agent-based
models all deal with dynamically changing number of objects
(components), that are appearing and being destroyed leading
to connections between them appearing and being destroyed. In
this case the number of states of hybrid automaton of the whole
model and the number of corresponding behaviours (systems of
equations) becomes variable. Components may have any type
of external variables e.g. “contact-flow”. For instance electric
stations that have dynamic number of consumers, systems with
reservation.

In such a case, creation of equations “on the go” becomes
the only available means of creating equations. Fast algorithms
of final system composition according to component equations
and algorithms for connection equations for such models
become one of the most important tasks.

9 Debugging
RMD has a debugger for conventional tracing debugging at

the level of input language. The user cannot control the work of
numerical methods on continuous sections by using debugger,
but the user can use file “Tracing” that if required will hold
fairly sufficient details about functioning of numeric
algorithms, collected by using “print” operators provided by
developers. It should be noted that the source texts of numerical
libraries of visual simulation environments are not available to
the users of visual simulation environments even if those are
inevitable modifications of open specialized collections. This
makes «trace.txt» file problematic to understand and to work
with.

The more useful instruments are dynamic windows that are
connected with the built and modified system of equations
being solved at the moment: Final system, Structure Matrix,
Jacobi’s Matrix, Eigenvalues of the Jacobi’s Matrix.

It is difficult to use all available information mainly because
the user is creating own or using ready components with local
equations, and receives information about automatically created
resulting system, moreover large size systems are difficult to
analyse.

Almost all the visual simulation environments face the
problem of transformation of collected information into
intuitive tips that help comprehending the behaviour properties
of the whole model, indicate possible ways of model
transformation in order to improve performance provide
required precision and satisfy requirements for memory.

10 Timeline
The duration of continuous sections of trajectories is

determined by the frequency of occurrence of events leading to
a change in behaviour. Change of behaviour is usually
accompanied by overhead costs for initialization of software
implementation of numerical method. Selection of time
progress step at each continuous section is determined by
external circumstances and features of the problem being
solved in combination with features of the selected method.

For example in case of solving nonlinear algebraic
equations by iterative methods, internal step is determined only
by external circumstances while taking in account the
limitations associated with the choice of the initial
approximation in form of solution from the previous step.

 In case of differential equations, the internal step may
considerably depend on the choice of the method. The rigidity
of differential equations system can become an insurmountable
obstacle for explicit methods. The problems with rapidly
oscillating solutions are challenging for almost all methods if
output information is needed with a large enough time step.
Trying to increase step when solving rigid problems beyond
minor boundary level contradicts with the need to save time for
event localization.

In RMD the information about problem features on
trajectory and costs of numerical solution is available in the
“Timeline” tool. The user selects a desired constant advance
step of model time and time interval to observe the model
behaviour, and receives integral characteristics: time spent on
execution of discrete actions, time spent on integration at
continuous sectors, time spent on matching initial conditions
when solving differential-algebraic equations.

11 Testing
Testing numerical libraries of the visual simulation

environments also has specific characteristics.
Generally the libraries are sets of software implementations

of numerical methods from open collections, modified
according to the requirements of the environment: agreements
on the acceptable forms of user equations, necessary
information about behaviour visualization, information
collected for processing the results of computational
experiments with the model. The modifications lead to both
errors and overhead costs. Both require testing that can be done
by using existing collections of testing examples.

However, the information about overhead costs that occur
as a result of model decomposition into components followed
by aggregation of into single hybrid system of the whole model
by the environment is considered to be of the most importance.
At this point hybrid models of large size that can be built by
hands and whose characteristics are known in advance are
considered to be of the highest value. If decomposition of such
models is possible by using components that are available in the
environment, then it is possible to assess the overhead costs that
occur when resulting hybrid automata are built by the
environment. Besides the assessment of overhead costs it also
becomes possible to compare the accuracy of solutions on
trajectories. The authors are not aware of any test methods
allowing verification of hybrid systems, besides a few minor
attempts that manage to provide symbolic solution

(http://www.maplesoft.com/products/maplesim).

References
U.M Ascher and L.R. Petzold. Computer methods for ordinary

differential equations and differential-algebraic equations.
SIAM. Philadelphia, 1998.

J.J. Dongarra, C.B. Moler, J.R. Bunch, and G.W..Stewart.
LINPACK Users’ Guide, Philadelphia, 1979.

EUROSIM 2016 & SIMS 2016

957DOI: 10.3384/ecp17142953 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

S.V. Emeljanov and S. K. Korovin. New types of feedbacks. M.:
Science, 1997.

G. Forsythe., M. Malcolm, and C. Moler. Computer methods for
mathematical computations. Prentice-Hall, Englewood Cliffs,
New Jersey, 1977.

P. Fritzson. Introduction to Modeling and Simulation of Technical
and Physical Systems with Modelica, Wiley-IEEE Press, 2011.

A. George and W-H J. Liu. Computer solution of large sparse
positive define systems. Prentice-Hall, Englewood Cliffs, Inc,
New Jersey, 1981.

E Hairer, S. P. Norsett, and G. Wanner. Solving ordinary
differential equations I. Nonstiff Problems. Springer-Verlag,
1987.

E. Hairer and G. Wanner. Solving ordinary differential equations
II. Stiff and Differential-algebraic Problems. Springer-Verlag,
1996.

A. C. Hindmarsh. ODEPACK, A Systematized Collection of ODE
Solvers, in Scientific Computing, R. S. Stepleman et al. (eds.),
North-Holland, Amsterdam, IMACS Transactions on Scientific
Computation, 1: 55-64, 1983.

A. A. Isakov, Yuri B. Kolesov, and Yuri B. Senichenkov. A new
tool for visual modelling – Rand Model Designer 7. IFAC-
PapersOnLine 48(1): 661-662, 2015.

A.A. Isakov OpenMVLShell visual environment. In Yu. B.
Kolesov, and Yu. B. Senichenkov. Mathematical modeling of
hybrid dynamical systems. St. Petersburg, Peter the Great
Polytechnic University, 2014.

Yu. B. Kolesov and Yu. B. Senichenkov. Object-oriented modeling
with Rand Model Designer. The papers of annual scientific
conference. St. Petersburg, Peter the Great Polytechnic
University, 6-12, 2015.

Yu. B. Kolesov and Yu. B. Senichenkov. Mathematical modeling.
Component technologies. St. Petersburg, Peter the Great
Polytechnic University, 2013

Yu. B. Kolesov and Yu. B. Senichenkov. Mathematical modeling
of hybrid dynamical systems. St. Petersburg, Peter the Great
Polytechnic University, 2014.

J. Lygeros, C. Tomlin, and S. Sastry. Hybrid systems: Modeling,
analysis and control.
http://inst.cs.berkeley.edu/~ee291e/sp09/handouts/book.pdf,
2008.

C. Martin-Villalba, A. Urquia, Y. Senichenkov, and Y. Kolesov.
Two approaches to facilitate virtual lab
implementation. Computing in Science and Engineering 16 (1):
78 – 86, 2014.

Eva M Navarro-López,and Rebekah Carter. Hybrid automata: an
insight into the discrete abstraction of discontinuous systems.
Int. J. Syst. Sci. 42(11): 1883-1898 2011.

S. Pissanetzky. Sparse matrix technology. Academic Press Inc.
London, 1984.

J. R. Rice. Matrix computations and mathematical
software. McGraw-Hill Book Company, New York, 1981.

J. Rumbauth, I. Jacobson and G. Booch. The unified modeling
language. Reference manual. Second edition. Addison-Wesley,
2005.

Ricardo G. Sanfelice and Andrew R. Teel. Dynamical properties
of hybrid systems simulators. Automatica 46(2): 239-248, 2010.

Y. Senichenkov. Numerical modeling of hybrid systems. St.
Petersburg, Peter the Great Polytechnic University, 2004.

Y. Senichenkov, Y. Kolesov, and D. Inikhov. Rand Model
Designer in Manufacturing Applications , IFAC-PapersOnLine:
Manufacturing Modelling, Management, and Control, 7(1):
1572-1577, 2013.

L.F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with
Matlab. Cambridge University Press, 2003.

L.F. Shampine and S. Thompson. Event location for ordinary
differential equations. Comput. Math. Appl., 39:43-54, 2000.

L.F. Shampine, M.W. Reichelt, and J.A. Kierzenka. Solving index-
1 DAEs in Matlab and Simulink. SIAM review, 41: 538-552,
1999.

L.F. Shampine and Mark W. Reichelt. The MATLAB ODE Suite.
SIAM Journal on Scientific Computing, 18(1): 1-22, 1997.

Lena Wunderlich. Analysis and numerical solution of structured
and switched differential-algebraic systems. Berlin: TU Berlin,
Fakultät II, Mathematik und Naturwissenschaften (Diss.), 2008.

EUROSIM 2016 & SIMS 2016

DOI: 10.3384/ecp17142x Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

958

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

