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Abstract
Numerical Libraries of visual simulation environments of
complex dynamic systems differ from those of specialized
collections of software implementations of numerical
methods by means of the heuristic control program designed
for automatic selection of numerical methods, accuracy
control, and identification the specific features of systems of
algebraic, ordinary differential and differential-algebraic
equations on a local trajectories of the event-driven dynamic
systems.
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1 Introduction
Universal environments of visual simulation for complex
dynamic systems (Simulink + Toolboxes, Modelica – based
environments, Rand Model Designer, et cetera) are
employed for construction, reproduction and behavior
visualization of event-driven systems. Those come equipped
with particular numerical libraries, which differ from general
collections of professional numerical programs by means of
heuristic control programs (also known as calling programs)
for automatic selection of numerical methods.

Users of specialized collections, which are creating
control programs on their own, usually deal with solution of
a single system, or multiple systems, where system
properties are pre-determined, or are determined in the
modeling process. This allows users to pick out appropriate
methods experimentally.

 However visual environment users face exponentially
large number of tasks generated by the state machine model,
even when working with a simulation of a relatively small
event-driven system. Systems of equations correspond to a
particular state of a multi-component model and are built
automatically; while a numerical method is routinely
selected for those systems in the course of the process.

Reference article (Shampine et al., 2003) describes the
software package MATLAB ODE Suite (The MathWorks)
for numerical integration of event-driven dynamical
systems. While referenced research works (Shampine et al.,
2000; Shampine al., 1999) describe methods used for event
location and for solving systems of differential-algebraic
equations of high index.

Discussion on numerical problems in software 
environments which use Modelica language, are described 
in reference material (Fritzson, 2011; Sanfelice et al., 2010; 
Navarro-López, 2011; Senichenkov et al., 2013). 

Rand Model Designer environment (Kolesov et al., 2013; 
Kolesov et al., 2014; Martin-Villalba et al., 2015; Kolesov 
et al., 2015; Isakov, 2015) contains a traditional library of 
software implementation of numerical methods (Fortran 
programming language), and a control module (C ++ 
programming language), which allows selection of specific 
solution methods for systems of equations on a given 
trajectory. Numerical Library and control module – 
hereinafter referred to as numerical library – are expressed 
in a form of dynamic link library (dll). This library provides 
the utmost rapid numerical solution for problems arising in 
the "release” mode, as well as debugging and tracing in the 
“debug” mode. 

Open text software implementations of numerical 
methods (ODEPACK, RADAU, DDASPK ... - 
http://www.netlib.org) as well as solution algorithms of 
NAE, ODE, DAE presented in reference materials (Forsythe 
et  al.,  1977;  Dongarra et al., 1979; Rice, 1981; George et 
al., 1981; Pissanetzky, 1984; Ascher et al., 1998; Shampine 
et al., 2003; Shampine et al., 2000; Shampine et al., 1999; 
Hairer et al., 1987; Hairer et al., 1991, 1996; Hindmarsh, 
1983; Shampine et al., 1997), were used to create a RMD 
library. However, selected methods had to be modified and 
supplemented with original algorithms. 

In addition to solution of equations on trajectories, it is 
also necessary to analyze the structure of the equations, to 
simplify the construction of the system, eliminating the 
variable “links”, to determine state "switch-points” of event-
driven systems, to ensure consistent initial conditions and to 
reduce index for differential-algebraic equations, as well as 
to determine the initial approximations for iterative methods. 

Today visual simulation environments are preferred 
(Isakov, 2014): 
 to support object-oriented modeling (OMM) technology 
 to utilize modeling languages that allow user to simply 
describe most required tasks  
 to comply with, not institutionalized, yet generally 
established, standards, such as, for instance Unified 
Modeling Language (UML) for discrete event-driven 
systems (Rumbauth  et al., 2005). 

Unification of the input language level only, as done for 
discrete event-driven systems (UML – http://www.uml.org), 
does not guarantee the same behavior in various 
environments of the same hybrid event-driven dynamic 
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system. Unification of the numerical libraries is required for 
optimal performance. It is desirable to achieve the same 
result as for the classified collections – when a given system, 
solved by numerical methods from different collections, has 
the same numerical solution for a predetermined comparison 
criterion. 

In this article, we have tried to describe thoroughly the 
process of building, conversion, and numerical solution of 
systems of equations generated by the state machine of the   
hierarchical multicomponent event-driven model with 
variable structure within the visual modeling environment of 
the Rand Model Designer (RMD – www.mvstudium.com). 

The Rand Model Designer (Kolesov et al., 2015) allows 
the model to be built in a form of an isolated dynamic or 
hybrid system, a hierarchical multi-component system of a 
permanent structure with components with the "input-
output" external variables or components with "contact-
flow", and model with variable (dynamical) structure. 

2 Description of the complex 
dynamical systems behavior. 
Classical dynamical systems 

Local continuous activity (continuous activity of hybrid 
automaton) could be expressed in form of:  
 implicit dependencies on time 
 linear and nonlinear algebraic equations (NAE) 
 systems of ordinary differential equations in normal form 
or in form of equations not resolved with respect to 
derivatives (ODE) 
 systems of differential-algebraic equations (DAE) 
 

Each type of equations - NAE, ODE or DAE – has its 
own set of methods with mandatory program AUTO. 
Automatic mode is set by default, however user could 
replace it by any other method from the corresponding 
group. 

Vector-matrix form of equations is preferred. It is 
"standard" form of equations for specific numerical method, 
which does not require further change when referring to a 
particular software implementation of the method. 

 However, especially in the early stages of design, user 
rarely thinks about the choice of method, and rather writes 
the equation in "free" form, which subsequently has to be 
converted into a "standard" form. 

For example, even the simplest form of behavior 
description by way of scalar equations sequence with 
substitutions requires Equations Analyzer to regularize 
custom unknown variables and equations, to validate 
procedure and substitutions accuracy, as well as to determine 
“algebraic cycles”, i.e. hidden equations in those. 

3 Consideration of solving systems 
structure 

Solving of large-scale systems of nonlinear algebraic 
equations serves as the key task in the numerical simulation 

of complex dynamic systems. This task is important in itself; 
however, it becomes even more relevant in the context of 
ensuring consistent initial conditions, solving differential-
algebraic equations, and implementing of the implicit 
methods for solving ordinary differential equation systems. 

Within the RMD environment, Newton's method is 
utilized as a main method for solving systems of nonlinear 
algebraic equations. However, this method requires 
impeccable initial approximation. In the event of Newton's 
method failure, the task of finding solution is reduced to the 
task of minimizing a quadratic functional (Powell method). 

The basic operation of the Newton’s method is solving 
systems of linear algebraic equations at each iteration. When 
using direct methods, it is important to pre-determine the 
matrix structure and call a corresponding modification of the 
method. Notably, RMD environment mostly relies on 
various modifications of the Gauss method for fully filled, 
band and sparse matrices 

The implementation of the Gauss method for large sparse 
systems MA28 (Pissanetzky, 1984) provides the possibility 
of bringing the original system to block triangular form by 
means of rows and columns rearrangements. Whereas, 
bringing the original system to block-diagonal form, makes 
it possible to solve systems in parallel. 

In case of block-triangular systems, only systems 
corresponding to diagonal blocks could have a natural 
solution. Consequently, the solution rate increases, but the 
question on optimal size of the diagonal block remains. 
Oftentimes, in case of dealing with small blocks, system 
solution overheads are inadequately high. 

  

4 Standard description forms of 
continuous activity 

In RMD equation and substitution differ syntactically. By 

default entry ( , , , )x f c k t y , where f  - real-valued 

function (also known as real function), is considered as 

substitution, if variables },{ kc  on the right side are declared 

constant or parameters and value of variable y  is determined 
at the time of calculation of the substitution. Here
t ={Time,time} , 

where (Time) – global, and ( time ) – local time.   
Equations are written in a scalar form (1): 

 

( , , , ) 0

( , , , , ) 0

( , , , , ) 0

z q c k t z

f x y c k t

g x y c k t

 
 
 

       ,         (1) 

 
or vector-matrix form (2): 
 

( , , , ) 0, , nF x c k t x F  ,        (2) 

and could be complemented by substitutions. 
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RMD gives a possibility for the user to "see" the system, 
which is being solved, in a designated window during the 
model execution. This is not only imperative for multi-
component systems, with automatically built equations 
(based on component equations with consideration of their 
links), but also for the single-component systems, where 
final equation may differ from the original one. 

User has to be notified about the Equation Analyzer 
operations: namely about allocation and regularization of 
required variables and equations. The process of allocation 
and regularization of variables and equations, as well as the 
one of determination of the equations structure is called 
structural analysis in RMD. It uses a bit-block system 
matrix, which indicates the occurrence of the unknown 
variables in the equation. The structural matrix for large 
systems takes a lot of memory space, while the structural 
analysis of the system takes a lot of time. This is especially 
true if system of equations is underdetermined and if 
conditions require finding a non-degenerate structural 
subsystem of maximum size. Oftentimes, at the early stages 
of building a new model, user needs Customer Support to 
eliminate underdetermined information.  

Linear equations brought to the vector-matrix form 
 

     ;      A t x t b t   (3) 

 
are divided into the equations with fully filled, band and 
sparse matrix systems. 

For systems with a fully-filled matrices, software 
implementation of the Gauss method with an assessment of 
the condition number of LINPACK package (Dongarra et 
al.,  1979) (DGECO, DGESL) is used, for band matrices – 
subprograms (DGBCO, DGBSL). For systems with sparse 
matrices (Isakov, 2014) variation of the Gauss method 
(Pissanetzky, 1984) was realized, which provided the 
possibility of reducing a matrix to a block triangular form. It 
has been concluded that preliminary matrix reduction to 
block triangular form is justified for numerous technical 
tasks across various fields. Moreover oftentimes the final 
system turns out to be in a block-diagonal form, which 
makes it possible to solve systems in parallel. Taking into 
consideration specific properties of the diagonal blocks 
particular numerical methods may be employed when 
dealing with those. In particular, blocks where unit size 
equals one could be regarded as equations with a single 
variable, thus employing appropriate methods (Forsythe et 
al., 1977). 

Nonlinear equations 
 

( , , , ) 0F x c k t               (4) 

 
are solved with the Newton's method. In the RMD 
environment, in Newton's method, frequency of 
recalculation of the Jacobian matrix may vary, depending on 

the speed of convergence. Moreover method failure results 
in call in for the Powell method. 

Ordinary differential equations with relation to the first 
derivative are recorded in scalar or vector form (5): 

 

0 0( , , , ),    (0) ; , , ndx
F x c k t x x x x F

dt
   .    (5) 

 
Normal form, with relation to the second derivatives, is 

permitted  (6) 
 

2

0 0 02

0

( , , , ),    (0) ; ;

, ,

t

n

d x dx
F x c k t x x V

dt dt

x x F

  


     (6) 

 
for the implementation of numerical methods that use it as 
the initial form (Hairer et al., 1987). 
 

Differential-algebraic equations (7) 
 

0( , , , , ),    (0)
dx

F x c k t x x
dt

                                    (7) 

 
are reduced to a semi-explicit form (8) 
 

0

0

, (0)

( , , , , ) 0, (0)   

dx
x x x

dt
F x x c k t x x

    

   

,                         (8) 

 
if those are not recorded in the following form (9) 
 

0

0

( , , , , ), (0)

( , , , , ) 0; , , , ,   n

dx
F x y c k t x x

dt

G x y c k t x x y G F

  

  

.          (9) 

 
It is possible to use explicit methods for the semi-explicit 

form (Hairer et al., 1987), resolving a nonlinear algebraic 
equations systems as required by a suitable method of NAE 
group. 

Additional (in comparison with the solution of 
differential equations) operation is required when solving 
differential-algebraic equations – ensuring consistent initial 
conditions (utilizing suitable methods of NAE group).  

The ability to successfully use the semi-explicit form 
depends on the properties of the Jacobi matrix. It is possible 
to use certain methods from the DAE group, for high index 
equation systems, if the system does not require conversion 
(Hairer et al., 1996). Alternatively it is possible to 
differentiate the equation to reduce the index.   

Differentiation could be done symbolically, as in math 
suites, designated for symbolic computation (also known as 
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algebraic computation). Or alternatively, differentiation 
could be done numerically, as in visual modeling 
environments. Character differentiation block is planned to 
be implemented in Rand Model Designer in the near future. 
Meanwhile, differentiation is carried out by means of “linear 
differentiator”.   

Let )(txx   be the function, derivative of which is to 
be determined. Consider the following equation 

 

0
~)0(~),~(

~
xxxxK

dt

xd 


.                          (10) 

 
For sufficiently large positive K  solution to this additional 
equation tends to the specified function, while solution 
derivative tends to function derivative (if the derivative is 
"stable") (Emeljanov et al., 1997). Regrettably, even for the 
stable problems, error in the boundary layer may be 
excessive. However, experience has shown that for many 
models, even considerable errors in the boundary layer 
(arising from the unreliable initial conditions) are 
acceptable. It is important to keep in mind this source of 
potential errors. 

5 Discrete dynamic and hybrid 
systems 

RMD uses hybrid simulated time – continuous periods 
alternating with short time slots, where events are put in order 
(Kolesov et al., 2013; Kolesov et al., 2014). Discrete dynamic 
and hybrid systems are described by means of hybrid machines, 
equipped with a hybrid time. 

To solve difference equations (11) a hybrid machine with an 
"empty" continuous activity and discrete actions is created 

 

1 0

1

: ( ); 0,1,...; (0)

: ; ,

k k

n
k k

Z F Z k Z Z

Z Z F Z





  


 
.          (11) 

 
The hybrid machine with continuous activities in the form of 
equations is essentially a generalization of classical 
dynamical systems, with all the inherent difficulties of 
numerical behavior reproduction - Zeno effect and sliding 
modes.  

Hybrid machines within RMD are UML state machines 
without parallel (orthogonal) activities (Rumbauth et al., 
2005), which relate to additional numerical tasks, namely 
determination of the “switch points”, or event location, set 
by the operator “When”, resulting in a state change. 
Operator “When” may contain variables of any type, thus the 
main operational method for event localization is the method 
of bisection interval. 

In case the event is associated with real variables and 
equality to a predetermined value, it is possible to formulate 
and solve the problem of finding a root on a given trajectory. 
For example, LSODAR program of ODEPACK – a 
collection of solvers for the initial value problem for 

ordinary differential equation systems (Hindmarsh, 1983). 
includes a root finding capability. However, it is difficult to 
determine the significance of this problem, due to the lack of 
data on the use frequency of operators “after”, “signal”, 
“when” complex system models. 

6 Component systems with «inputs-
outputs» 

While components with “input-output” that have internal 
state machines produce exponentially large number of 
possible final systems, there are no major obstacles in 
creating those. Whatever way the components are 
connected, the structure of the component equations 
essentially does not change, if only left side variables of the 
substitutions that are defined as exit variables may become 
unknown variables of the new algebraic equations. 
When using components with “input-output” the problem of 
differentiation of input variables is simplified, if they satisfy 
the differential equations within the components where they 
are formed. It is enough to pass the calculated value of the 
derivative to the right component. 

7 Component systems with «contacts-
Flows» 

Components with “contact-flow” are utilized for “physical” 
simulation, where they generate an additional problem related 
to internal hybrid automata. 

When using components with “input-output”, if component 
equations for unknown variables are differential equations, then 
they remain differential equations in relation to the same 
variable also in resulting system for corresponding state in 
composition of component hybrid automata. 

When using components with “contact-flow”, if component 
equations for unknown variables are differential equations 
(differential variables) then in the resulting system they may 
turn into algebraic equations for composition of component 
hybrid automata. In result user’s initial differential variables 
become algebraic. That is due to the concept of index of system 
of algebraic-differential equations (Hairer et al., 1996). 
Equation Analysers of visual simulation environments heave to 
be able to recognize the systems with high index and transform 
those in order to lower the index. This, in turn, requires 
differential equations. Some programs (Hairer et al., 1996) 
could solve systems of low index without reducing it, but 
recognition of such system remains a problem. 

Resulting hybrid automaton of the whole model or the 
composition of component hybrid automata has a very large 
number of states even for relatively small models and requires 
significant efforts to form all the possible equations at the stage 
of compilation, in case of components with “contact-flow”. 

There are no restrictions on state equations of component 
automata in RMD, but the equations for realized composition 
states of component automata are being built at the time of 
model execution. It is an attempt to avoid building large number 
of resulting systems and practically to take into account the 
frequency of their appearance at a certain trajectory, while at 
the stage of execution only of system of realized states. 
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8 Component systems with variable 
structure 

Processes of birth and death, queuing analysis, agent-based 
models all deal with dynamically changing number of objects 
(components), that are appearing and being destroyed leading 
to connections between them appearing and being destroyed. In 
this case the number of states of hybrid automaton of the whole 
model and the number of corresponding behaviours (systems of 
equations) becomes variable. Components may have any type 
of external variables e.g. “contact-flow”. For instance electric 
stations that have dynamic number of consumers, systems with 
reservation. 

In such a case, creation of equations “on the go” becomes 
the only available means of creating equations. Fast algorithms 
of final system composition according to component equations 
and algorithms for connection equations for such models 
become one of the most important tasks. 

9 Debugging 
RMD has a debugger for conventional tracing debugging at 

the level of input language. The user cannot control the work of 
numerical methods on continuous sections by using debugger, 
but the user can use file “Tracing” that if required will hold 
fairly sufficient details about functioning of numeric 
algorithms, collected by using “print” operators provided by 
developers. It should be noted that the source texts of numerical 
libraries of visual simulation environments are not available to 
the users of visual simulation environments even if those are 
inevitable modifications of open specialized collections. This 
makes «trace.txt» file problematic to understand and to work 
with. 

The more useful instruments are dynamic windows that are 
connected with the built and modified system of equations 
being solved at the moment: Final system, Structure Matrix, 
Jacobi’s Matrix, Eigenvalues of the Jacobi’s Matrix. 

It is difficult to use all available information mainly because 
the user is creating own or using ready components with local 
equations, and receives information about automatically created 
resulting system, moreover large size systems are difficult to 
analyse. 

Almost all the visual simulation environments face the 
problem of transformation of collected information into 
intuitive tips that help comprehending the behaviour properties 
of the whole model, indicate possible ways of model 
transformation in order to improve performance provide 
required precision and satisfy requirements for memory. 

10 Timeline 
The duration of continuous sections of trajectories is 

determined by the frequency of occurrence of events leading to 
a change in behaviour. Change of behaviour is usually 
accompanied by overhead costs for initialization of software 
implementation of numerical method. Selection of time 
progress step at each continuous section is determined by 
external circumstances and features of the problem being 
solved in combination with features of the selected method. 

For example in case of solving nonlinear algebraic 
equations by iterative methods, internal step is determined only 
by external circumstances while taking in account the 
limitations associated with the choice of the initial 
approximation in form of solution from the previous step. 

 In case of differential equations, the internal step may 
considerably depend on the choice of the method. The rigidity 
of differential equations system can become an insurmountable 
obstacle for explicit methods. The problems with rapidly 
oscillating solutions are challenging for almost all methods if 
output information is needed with a large enough time step. 
Trying to increase step when solving rigid problems beyond 
minor boundary level contradicts with the need to save time for 
event localization. 

In RMD the information about problem features on 
trajectory and costs of numerical solution is available in the 
“Timeline” tool. The user selects a desired constant advance 
step of model time and time interval to observe the model 
behaviour, and receives integral characteristics: time spent on 
execution of discrete actions, time spent on integration at 
continuous sectors, time spent on matching initial conditions 
when solving differential-algebraic equations. 

11 Testing 
Testing numerical libraries of the visual simulation 

environments also has specific characteristics. 
Generally the libraries are sets of software implementations 

of numerical methods from open collections, modified 
according to the requirements of the environment: agreements 
on the acceptable forms of user equations, necessary 
information about behaviour visualization, information 
collected for processing the results of computational 
experiments with the model. The modifications lead to both 
errors and overhead costs. Both require testing that can be done 
by using existing collections of testing examples. 

However, the information about overhead costs that occur 
as a result of model decomposition into components followed 
by aggregation of into single hybrid system of the whole model 
by the environment is considered to be of the most importance. 
At this point hybrid models of large size that can be built by 
hands and whose characteristics are known in advance are 
considered to be of the highest value. If decomposition of such 
models is possible by using components that are available in the 
environment, then it is possible to assess the overhead costs that 
occur when resulting hybrid automata are built by the 
environment. Besides the assessment of overhead costs it also 
becomes possible to compare the accuracy of solutions on 
trajectories. The authors are not aware of any test methods 
allowing verification of hybrid systems, besides a few minor 
attempts that manage to provide symbolic solution 

(http://www.maplesoft.com/products/maplesim). 
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