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Abstract
Three adaptive iterative minimax multi-robot system
learning algorithms are proposed under condition that ev-
ery observation obtained from robots is set-valued, i.e.,
it consists of several elements. The set-valued data are
caused due to a fact that robots in the system provide
different measurements in a single system observation.
The first idea underlying the algorithms is to use sets of
weights or imprecise weights of a special form for all el-
ements of training data. The second idea is to apply the
imprecise Dirichlet model for iterative updating the sets
of weights depending on the classification accuracy and
for assigning new weights to robots for improving classi-
fiers. The simplest first algorithm is a modification of the
SVM in order to take into account set-valued data. The
second algorithm is the AdaBoost with the modified SVM
under set-valued data. The third algorithm is the modifica-
tion of the AdaBoost with updating imprecise weights of
robots. The algorithms allow us to take into account the
set-valued observations in the framework of the minimax
decision strategy and to get optimal weights of robots to
improve the classification accuracy of the trained multi-
robot system.

Keywords: multi-robot system, SVM, classification, Ad-
aBoost, set-valued observations, sets of weights

1 Introduction
Multi-Robot Systems (MRS) have drawn increasing atten-
tion last time due to several factors including the ability
to perform complex tasks more efficiently compared to
single-robot systems (Navarro and Matia, 2013; Tan and
Zheng, 2013). In the MRS, robots are usually equipped
with several sensors used to acquire as much information
about the external world as possible. It is pointed out in
(Pronobis et al., 2008) that each sensor may capture a dif-
ferent aspect of the environment, however, alternative in-
terpretations of the information obtained by the same sen-
sor can also be valuable. One of the important problems of
the MRS learning is to integrate effectively multiple dis-
tributed sensor suites which may include GPS units, tem-
perature sensors, altimeters, imaging systems, etc. (Cow-
ley et al., 2004).

There are a lot of approaches for combining the multi-
sensor information in robotics system learning (see, for

example, (Du et al., 2012; Khamis et al., 2015; Ravet et al.,
2013; Yuksel et al., 2012)) which mainly exploit various
weighting schemes (in terms of probabilities or other mea-
sures) to differentiate the learning data sources and com-
bine them in accordance with predefined rules taking into
account the quality or reliability of data from different sen-
sors. However, the most approaches assume that there is a
large training set for learning and for assigning weights to
sensors. This assumption may be violated in many appli-
cations, especially, during an initial learning phase when
it is very difficult to estimate every robot or its sensors in
order to apply the available weighted schemes.

Two main strategies of MRS learning can be marked
out. The first strategy is when robots perform cooperative
classification based on the same meta-classifier trained
from training data obtained from sensors and from the
feedback provided by a human teacher. This strategy may
be useful during an initial learning phase when we do not
know how different robots behave in their team and how
reliable the sensor information provided by each robot.
The second strategy is when each robot trains its own clas-
sifier (Di Caro et al., 2013), using the features extracted
from a set of a locally available labeled examples, which
correspond to the sensor information acquired from the
robots’ specific viewpoint and exploiting the experience
from other robots.

The first strategy is studied in the present paper. We
consider a case when it is difficult or just impossible to
assign weights to separating sensors in order to combine
their suites by using weighting schemes. The main diffi-
culty in the joint use of training data from several sensors
during the initial learning phase is that we cannot consider
every sensor data as a separate training example. Let us
consider for example the temperature sensors which pro-
vide with the environment temperature from a set of robots
at some time moment. Every sensor provides with the in-
formation about the temperature of the same object ap-
proximately at the same time. Therefore, the set of tem-
perature measurements in this case should be regarded as
a single multi-viewed training example. Of course, we
can use, for instance, some middle temperature for train-
ing. However, this combination rule says that all robots
are identically reliable and accurate. This assumption is
too strong in order to be valid in many applications. The
initial learning phase is characterized by the lack of the
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corresponding knowledge. Therefore, we propose a learn-
ing algorithm which takes into account the above peculiar-
ities. It should be noted that only the initial learning phase
may be available in some applications, and the learning
algorithm proposed for this phase is entirely used in the
MRS learning.

One of the most efficient and popular methods for the
MRS classification learning is the support vector machine
(SVM). Another efficient method is the AdaBoost pro-
posed in (Freund and Schapire, 1997). Therefore, we pro-
pose a modification of the AdaBoost with SVMs of a spe-
cial form as weak learners, which takes into account the
fact that training data in the MRS are obtained from a set
of unknown robots or their sensors. Moreover, we modify
also SVMs such that imprecise judgements about robots
can be incorporated into the SVM in order to improve
the classification performance of the MRS. The main idea
underlying the proposed modifications is the following.
Training data from every robot are viewed as training ex-
amples, but their weights are replaced by some sets of
weights such that every training example can be regarded
as a set-valued data. Then we apply the robust minimax
strategy in order to find an optimal decision function sepa-
rating set-valued observations from different classes. The
sets of weights are derived from the imprecise available
information about robots. Moreover, we propose a dou-
ble adaptive algorithm. The first adaptation is performed
by the AdaBoost through changes of observation weights.
The second adaptation is updating of the weight sets of
set-valued observations in accordance with a number of
correctly classified measurements from every robot at ev-
ery iteration of the AdaBoost. The second adaptation is
implemented by means of the imprecise Dirichlet model
(Walley, 1996). In fact, we propose three algorithms for
learning the MRS. The simplest one is just a modifica-
tion of the SVM in order to take into account set-valued
data. The second algorithm is the AdaBoost with the mod-
ified SVM under set-valued data. The third algorithm is
the modification of the AdaBoost with updating imprecise
weights of robots. The complexity of the algorithms do
not differ from the complexity of the corresponding stan-
dard SVM and AdaBoost algorithms.

2 Formal Problem Statement and
SVM

Suppose that we have observations or measurements
from all sensors of T robots at every time moment
k. After time moment n, we get the training set S =
{(A1,y1), ...,(An,yn)}, where Ak is a matrix having T
rows x(k)1 , ...,x(k)T , k = 1, ...,m, and m columns such that
the row x(k)j is a vector of all measurements (features)
obtained from the j-th robot. We assume that there are
two classes (the binary classification) and yi ∈ {−1,1}.
The learning aim is to construct an accurate classifier
c : Rm·T → {−1,1} that maximizes the probability that

c(Ai) = yi for i = 1, ...,n.
One of the ways for classification is to find a real valued

separating function f (x,w,b) having parameters w and b
such that w = (w1, ...,wm) ∈ Rm and b ∈ R, for example,
f (x,w,b) = 〈w,x〉+b. Here 〈w,x〉 denotes the dot prod-
uct of two vectors w and x. We also denote w= (w,b). We
assume for simplicity that, after the learning phase, every
robot uses the separating function f (x,w,b). Though we
can also apply the function f (A,w,b) which is defined for
matrix A in the case of the inter-robot transfer learning.

One of the simplest ways for solving the classification
problem is to replace every column of Ak by a number, for
example, by the mean value of all elements of the column,
and to apply the standard SVM.

In order to give a short description of the well-
known SVM, we replace the set S by a set S∗ =
{(x∗1,y1), ...,(x∗n,yn)}. Here x∗i is the vector of replaced
values for every feature. Let φ be a feature map Rm→ G
such that the data points are mapped into an alternative
higher-dimensional feature space G. In other words, this
is a map into an inner product space G such that the inner
product in the image of φ can be computed by evaluating
some simple kernel K(x∗i ,x∗j) =

(
φ(x∗i ),φ(x∗j)

)
such as

the Gaussian kernel. The SVM minimizes the empirical
risk measure with a smoothness or penalty term 〈w,w〉/2:

R(w) =
1
2
〈w,w〉+C

n

∑
i=1

l(yi,x∗i ,w). (1)

Here C is the tuning “cost” parameter C which balances
the trade-off between the empirical risk measure and the
penalty term (Scholkopf and Smola, 2002); l(yi,x∗i ,w) is
the classification loss function. The so-called hinge loss
function is used in SVM, i.e., l(y,x,w) = max(0,1− y ·
f (w,φ(x))). Hence, the SVM classifier can be represented
in the form of the following convex optimization problem
with slack variables ξi, i = 1, ...,n:

min
ξ ,w

R(w) = min
ξ ,w

(
1
2
〈w,w〉+C

n

∑
i=1

ξi

)
(2)

subject to

ξi ≥ 0, yi (〈w,φ(x∗i )〉+b)≥ 1−ξi, i = 1, ...,n. (3)

The quantity Cξi is the “penalty” for any data point x∗i
that either lies within the margin on the correct side of the
hyperplane (ξi ≤ 1) or on the wrong side of the hyperplane
(ξi > 1).

Instead of minimizing the primary objective function
(2) with constraints (3), we use a dual programming prob-
lem:

max
α

(
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jK(x∗i ,x
∗
j)

)
(4)
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subject to

n

∑
i=1

αiyi = 0, 0≤ αi ≤C, i = 1, ...,n. (5)

Here αi, i = 1, ...,n, are Lagrange multipliers or opti-
mization variables in (4)-(5). After substituting the ob-
tained solution into the expression for the decision func-
tion f , we get the “dual” separating function

f (x) =
n

∑
i=1

αiyiK(x∗i ,x)+b. (6)

The parameter b is defined by using support vectors x∗i
from the following equation

b = y j−
n

∑
i=1

αiyiK(x∗i ,x
∗
j). (7)

3 SVM by Set-Valued Training Data
The above approach for dealing with the training set S
by replacing it with S∗ cannot be used in the high-noise
regime and by a rather small training set when robots pro-
vide scattered measurements. Therefore, in order to de-
velop a robust classification procedure, we propose an-
other approach for dealing with the training set S.

Let us consider a set of empirical expected risk mea-
sures R(w) such that every measure from the set corre-
sponds to a row, say x(k)j , of the matrix Ak. Then there
exists an upper bound for R(w), which is defined as

R(w) = max
x(k)i ∈Ak,k=1,...,n

n

∑
i=1

l(yi,x
(k)
i ,w). (8)

Here the expected risk is maximized over all x(k)i from Ak,
k = 1, ...,n. The upper bound R(w) corresponds to the ro-
bust or pessimistic strategy in the sense that we select the
“worst” elements x(k)0 from Ak.

Suppose that there are rows x(k)0 ∈Ak for all k = 1, ...,n,
which provide the largest value of the expected risk. Then
we can assign non-zero weights to the rows such that
weights of other vectors x(k)i 6= x(k)0 become to be zero.
This implies that the problem of maximization of the ex-
pected risk over rows of A1, ...,An can be transformed to
a problem of maximization of the expected risk over a set
of weights. This transformation can be regarded as the
uncertainty trick, i.e., we transform training data with the
uncertainty of robot measurements to training data with
the weight or probabilistic uncertainty.

Therefore, we extend the training set by rows x(k)i such
that the extended training set has now N = T ·n elements,
but these elements have different weights. Let us denote a
vector of new weights as π = (π1, ...,πN). Introduce also
a set of indices Ik = {1+(k−1)T, ...,T +(k−1)T}. We
only know about π that the sum of weights of all rows

from Ak is ∑i∈Ik πi = 1/n because every element of the
initial training set has the weight or the probability 1/n.
This implies that the set P produced by all possible dis-
tributions π is convex, and there is an upper bound for
R(w), which is written as

R(w) = max
π∈P

n

∑
k=1

∑
i∈Ik

πil(yi,x
(k)
i ,w). (9)

It is important to point out that we did not simply ex-
tend the training set. By adding new elements to the train-
ing set, we change weights of the elements. At that, the
weights of new elements are only partly known, and they
belong to the set P .

Now we can construct a modification of SVM taking
into account the robust strategy, which is formulated as
the following minimax optimization problem:

min
w

R(w) = min
w

max
π∈P

R(w). (10)

Let us fix variables w and consider only a problem with
variables π ∈P by fixed w. The upper bound for R(w)
can be found by solving the optimization problem:

R(w) = max
π∈P

n

∑
k=1

∑
i∈Ik

πil(yi,x
(k)
i ,w) (11)

subject to

∑
i∈Ik

πi =
1
n
, k = 1, ...,n,

n

∑
k=1

∑
i∈Ik

πi = 1. (12)

The above constraints stem from the weights 1/n of ini-
tial training elements and from the sum of weights of all
rows. It should be noted that the above optimization prob-
lem is linear and the following dual optimization problem
can be written:

R(w) = min

{
c0 +

1
n

n

∑
k=1

ck

}
(13)

subject to c0, ck ∈ R, k = 1, ...,n,

c0 +
n

∑
k=1

ck1(i ∈ Ik)≥ l(yi,x
(k)
i ,w), i = 1, ...,N. (14)

Here c0, ck are new optimization variables; 1(D) is the
indicator function taking the value 1 if D is true. If we
assume that sensor measurements are different for every
training example, then the last constraints can be simpli-
fied as

c0 + ck ≥max
i∈Ik

l(yi,x
(k)
i ,w). (15)

Substituting the above constraint into the objective
function, we get the upper expected risk

R(w) = min

{
n

∑
k=1

max
i∈Ik

l(yi,x
(k)
i ,w)

}
. (16)
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Substituting the hinge loss function into the objec-
tive function, adding the standard Tikhonov regularization
term in order to restrict the class of admissible solutions
and simplifying the problem, we get

R(w) = min

(
1
2
〈w,w〉+C ·

n

∑
k=1

ξk

)
(17)

subject to
ξk ≥ 1− yk · f (φ(x(k)i ),w), (18)

i ∈ Ik,ξk ≥ 0, k = 1, ...,n. (19)

The corresponding dual optimization problem (the La-
grangian) with variables αi can be simply obtained

max

(
−1

2

n

∑
k=1

n

∑
t=1

∑
i∈Ik

∑
j∈It

αiα jykytK(x(k)i ,x(k)j )

+
n

∑
k=1

∑
i∈Ik

αi

)
(20)

subject to
n

∑
k=1

∑
i∈Ik

αiyi = 0, (21)

0≤ ∑
i∈Ik

αi ≤C, αi ≥ 0, i ∈ Ik, k = 1, ...,n. (22)

If we compare the above optimization problem with the
standard SVM, then we can see that variables αi are re-
stricted in a different way (see constraints (22)).

If we assume that all points of intervals produced by
using a grid are different, i.e., they are unique for every
interval, then the objective function (20) can be rewritten
as

max

(
−1

2

N

∑
i=1

N

∑
j=1

αiα jyiy jK(x(k)i ,x(k)j )+
N

∑
i=1

αi

)
. (23)

The constraint (21) can be rewritten in the same way

N

∑
i=1

αiyi = 0, αi ≥ 0, i ∈ Ik, (24)

0≤ ∑
i∈Ik

αi ≤C, k = 1, ...,n. (25)

The separating function is of the form:

f (x) =
n

∑
k=1

∑
i∈Ik

αiyiK(x∗i ,x)+b. (26)

It can be seen from the above that the obtained SVM
does not differ from the standard SVM with N training
elements except for the last constraints where Lagrange
multipliers are grouped in accordance with the robot in-
formation. When we have one robot, then Ik = {k}, N = n,
and we get the standard SVM considered in the previous
section.

4 A Modification of the AdaBoost
One of the efficient learning algorithms is the AdaBoost
(Freund and Schapire, 1997). However, it is used for pre-
cise observations when the training set consists of point-
valued examples. In order to improve the classification
performance of the MRS, we propose a modification of
the AdaBoost algorithm for the case of set-valued obser-
vations.

AdaBoost is a general purpose boosting algorithm that
can be used in conjunction with many other learning al-
gorithms to improve their performance via an iterative
process. According to the AdaBoost, identical weights
h = (1/n, ...,1/n) are initially assigned to all examples.
In each iteration, the weights of all misclassified exam-
ples are increased while the weights of correctly classi-
fied examples are decreased (see Algorithm 1). As a con-
sequence, the weak classifier is forced to focus on the
difficult examples of the training set by performing ad-
ditional iterations and creating more classifiers. Further-
more, a weight ϕt is assigned to every individual classifier.
This weight measures the overall accuracy of the classi-
fier. Higher weights are assigned to more accurate clas-
sifiers. The weight distribution h(t) is updated using the
rule shown in Algorithm 1. The effect of this updating rule
is to increase weights of misclassified examples and to de-
crease weights of correctly classified examples. Thus, the
weights tend to concentrate on “hard” examples. The final
classifier c is a weighted majority vote of T weak classi-
fiers. We assume below that classifier ct is the weighted
SVM.

Algorithm 1 The AdaBoost algorithm

Require: Q (number of iterations), S (training set)
Ensure: ct ,ϕt , t = 1, ...,Q

1: t← 1; hi(1)← 1/n; i = 1, ...,n
2: repeat
3: Build classifier ct using weights h(t)
4: e(t)← ∑i:ct (xi)6=yi hi(t)
5: if e(t)> 0.5 then
6: Q← t−1
7: exit Loop
8: end if
9: ϕt ← 1

2 ln
(

1−e(t)
e(t)

)
10: hi(t +1)← hi(t) · exp(−ϕtyict(xi))
11: t← t +1
12: until t > Q
13: c(x) = sign

(
∑

Q
i=1 ϕtct(x)

)
In order to modify the AdaBoost, we first provide a

weighted version of the problem (20)-(22), namely, we
suppose now the following condition for weights of ob-
servations:

∑
i∈Ik

πi = hk, k = 1, ...,n,
n

∑
k=1

hk = 1. (27)
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The dual problem for computing R(w) in this case is

R(w) = min

(
c0 +

n

∑
k=1

ckhk

)
(28)

subject to c0, ck ∈ R, k = 1, ...,n, and (14).
It is simply to prove that the primal optimization prob-

lem for minimizing the upper expected risk is

R(w) = min

(
1
2
〈w,w〉+C ·

n

∑
k=1

hkξk

)
(29)

subject to (19).
The corresponding dual optimization problem with

variables αi differs from (20)-(22) only by constraints

0≤ ∑
i∈Ik

αi ≤ hkC, αi ≥ 0, i ∈ Ik, k = 1, ...,n, (30)

where the upper bound for αi is determined now by the
weight hk.

In order to use the AdaBoost, we define how to make
decision about a class of a set-valued observation. A rea-
sonable way is to apply one of the most popular strategy.
According to the strategy, the set Ak belongs to a class y
if at least a half of its elements x(k)j belong to the class y,
i.e., there holds

y∗k = arg max
y∈{−1,1}

∑
i∈Ik

1(c(x(k)i ) = y). (31)

It is important to note that the proposed boosting al-
gorithm deals with the extended training set consisting of
N elements, but weights are modified only for set-valued
observations, i.e., there are no restrictions for weights of
elements from every set-valued observation except for the
restriction (27).

5 Imprecise Updating Weights of
Robots

So far we have considered the “worst” pessimistic case
when we assumed almost total ignorance about the weight
distribution over the robot measurements, i.e., we have
assumed for the k-th local set of weights denoted as Pk
the restriction ∑i∈Ik πi = hk. Now we propose an adaptive
algorithm for reducing the local sets of weights and for
incorporating an additional information about weights of
robots, which is defined by the classification errors at ev-
ery iteration of learning. A main idea underlying the adap-
tive algorithm is to apply the imprecise Dirichlet model
(IDM) proposed in (Walley, 1996) for updating local sets
of weights at every step. This idea is close to an algo-
rithm proposed in (Utkin, 2015), which uses the IDM in
the AdaBoost in order to avoid a problem of overfitting.

Suppose that, after constructing a classifier on the ba-
sis of n set-valued observations at the t-th iteration of the

boosting, we have r(t)i correctly classified and n− r(t)i mis-
classified measurements from the i-th robot, i = 1, ...,T .
This information allows us to update the local sets. It is
reasonable to assume that if there are many misclassified
measurements, then the set of weights P

(t)
k should be in-

creased in order to make a robust decision. Moreover, it
should be increased for robots whose measurements are
misclassified.

In order to use the above information, we briefly con-
sider the IDM. Let U = {u1, ...,uT} be a set of pos-
sible outcomes u j. Assume the standard multinomial
model: n observations are independently chosen from U
with an identical probability distribution Pr{u j} = p j for
j = 1, ...,T , where each p j ≥ 0 and ∑

T
j=1 p j = 1. Then

the IDM is defined in (Walley, 1996) as the set of all
Dirichlet distributions over probabilities p1, ..., pT whose
parameters are s and mean values q=(q1, ...,qT ) such that
q belongs to the T -dimensional unit simplex denoted as
S(1,T ). The hyperparameter s determines how quickly
upper and lower probabilities of events converge as statis-
tical data accumulate. Smaller values of s produce faster
convergence and stronger conclusions, whereas large val-
ues of s produce more cautious inferences.

We propose to consider correctly classified measure-
ments of the i-th robot as possible outcomes ui. Then,
according to Walley’s IDM, we can write the bounds for
the probability of r(t)i correctly classified measurements as
follows:

r(t)i

D(t)+ s
≤ pi ≤

r(t)i + s
D(t)+ s

, i = 1, ...,T, (32)

where D(t) =∑
T
i=1 r(t)i is the total number of correctly clas-

sified measurements at the t-th iteration.
Note that we have r(t)i =D(t) = 0 before iterations of the

boosting. Hence, 0 ≤ pi ≤ 1. If we multiply the bounds
on hk(t), then we get bounds for probabilities from the set
P

(t)
k , i.e., there holds

r(t)i hk(t)
D(t)+ s

≤ π
(t)
ki ≤

(
r(t)i + s

)
hk(t)

D(t)+ s
, i = 1, ...,T. (33)

Here π
(t)
ki is the weight of the i-th robot measurement in

the k-th observation at the t-th iteration such that
T

∑
i=1

π
(t)
ki = hk(t), k = 1, ...,n. (34)

Denote for simplicity

Gi =

(
r(t)i + s

)
D(t)+ s

, Fi =
r(t)i

D(t)+ s
, i = 1, ...,T. (35)

Then the dual optimization problem for computing
R(w) at the t-th iteration is

min

(
c0 +

n

∑
k=1

hk(t)

(
ck +

T

∑
i=1

(gkiGi−dkiFi)

))
(36)
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subject to c0, ck ∈ R, gk j ≥ 0, dk j ≥ 0, j = 1, ...,T , k =
1, ...,n, and

c0 +
n

∑
k=1

ck1(i ∈ Ik)+
n

∑
k=1

T

∑
j=1

(gk j−dk j)1(Ik( j) = i)

≥ l(yi,x
(k)
i ,w), i = 1, ...,N. (37)

Here Ik( j) is the j-th element of Ik. Let us write the
Lagrangian by assuming that l(yi,x

(k)
i ,w) is the hinge loss

function. It is of the form:

L =
1
2
〈w,w〉+C · c0 +C

n

∑
k=1

ckhk(t)−
n

∑
k=1

T

∑
i=1

gkiλi

−
n

∑
k=1

T

∑
i=1

dkiµi +C
n

∑
k=1

hk(t)
T

∑
i=1

(gkiGi−dkiFi)

−
n

∑
k=1

T

∑
i=1

(βki +αki)(c0 + ck +gki−dki)

−
n

∑
k=1

T

∑
i=1

αki(1− yk f (φ(x(k)i ),w)). (38)

Here αki, µi, λi, i = 1, ...,T , k = 1, ...,n, are Lagrange
multipliers. The saddle point can be found by setting the
derivatives equal to zero. After simplifying, we obtain the
following optimization problem:

max

(
−1

2

n

∑
k=1

n

∑
l=1

T

∑
i=1

T

∑
j=1

αkiαl jyiy jK(x(k)i ,x(l)j )

+
n

∑
k=1

T

∑
i=1

αki

)
(39)

subject to
n

∑
k=1

T

∑
i=1

αkiyk = 0, (40)

T

∑
i=1

(βki +αki) =Chk(t), k = 1, ...,n, (41)

CFi ≤
n

∑
k=1

(βki +αki)≤C
n

∑
k=1

Gi. (42)

Let us introduce new variables γik = (βki +αki)/C.
Then the above constraints except for the first one are
rewritten as

Fi ≤
n

∑
k=1

γki ≤ Gi,
T

∑
i=1

γik = hk(t), (43)

αki ≤Cγki, i = 1, ...,T, k = 1, ...,n. (44)

In sum, we have derived a new optimization problem
for computing the optimal values of αki and γik. It is very
interesting to see that constraints for γki repeat the con-
straints for πi. This is an important property of the ob-
tained optimization problem. The optimal solution at the
t-th iteration will be denoted as α

(t)
ki .

The separating function at the t-th iteration is of the
form:

f (t)(x) =
n

∑
k=1

T

∑
i=1

αk
(
i
t)ykK(xi

(k)
,x)+b(t). (45)

After substituting the optimization problem (39)-(44)
into the AdaBoost (Step 3 of Algorithm 1), we get the
double adaptation. The first one is the updating of weights
of observations. The second adaptation is the change of
the sets of weights Pk

(t).

6 Conclusions
Three adaptive minimax SVM-based algorithms have
been proposed in the paper. The first one can be regarded
as a special case of the second algorithm. The second one
can be also regarded as a special case of the third algo-
rithm. The main peculiarity of the algorithms is that they
use sets of weights instead of their precise values which
are usually applied in many classification algorithm. The
sets of weight are caused by the introduced transformation
of uncertain set-valued training data from many robots to
training data with the weight uncertainty in the form of
these sets. The second peculiarity of one of the algorithms
is that it is based on the use of Walley’s imprecise Dirich-
let model which allows us to reduce the sets of weights by
repeating the classification procedure many times. An im-
portant property of the IDM is that it takes into account the
prior total ignorance about weights before getting observa-
tions. The third peculiarity of the algorithms is their adap-
tivity. The sets of weights assigned to robots are adopted
to classifiers. The fourth peculiarity is that the algorithms
are robust because they use the minimax strategy for deal-
ing with the weighted empirical risk measure under sets of
weights.

It should be noted that the quadratic optimization prob-
lems which have to be solved for constructing the pro-
posed classifiers are similar to the standard SVM opti-
mization problems. Their difference is in additional lin-
ear constraints that, in fact, restrict sets of weights. In
spite of the optimization problem simplicity, the standard
software developed for the SVM in many packages, un-
fortunately, cannot be used. Therefore, the corresponding
software has to be developed for implementing the pro-
posed algorithms.
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