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Abstract
In the paper we propose to use network-centric

approach for a control task. Robots are described as

cyber-physical objects that consist of two parts:

mechatronic and informational. All cyber-physical

objects are connected with each other using special

multiprotocol nodes - devices that can route data

between different types of computer networks

(Ethernet, WiFi, 3G, LTE). Such network is described

by hypergraph model, where central node is a hybrid

cloud computer. While all robots are connected

together, logical and computational tasks for cyber-

physical objects are processed by this high

performance node like in the central control system.

Without a connection with central node robot switches

into a multiagent mode.

Keywords: cyber-physical object, network-centric

control, cloud robotics

1 Introduction

Modern trends in industrial technology include

theoretical and applied research aimed at finding

effective methods to control distributed dynamic

systems. This research has particular importance for

scientific foundations of field robotics that were greatly

improved in recent years by the cyber-physical ideas.

In this paper we provide constructive analysis focused

on possibilities of application of cyber-physical

approach to robots’ motion planning and coordination

to achieve control objectives in spatially and

temporally undefined conditions. Proposed approach is

based on multi-invariant actor-information

representation and cooperative interaction of all

components that describes a robotics system both on

the physical (local or actor-based) and informational

(knowledge or ontological-based) levels which are

implemented using distributed resources of private

cloud computing environment as IaaS and Hadoop.

Actor-based representation (model) of each physical

objects or artificial machine (robot) has specific

attributes including name, data stack and parameters.

The model describes environmental characteristics of

mechanical, sensor, navigation and computer-

communication components, the local interaction of

which takes place onboard the robot and is needed to 

achieve declared control objectives. An informational 

model is proposed to represent common system 

characteristics, objective features, and robot as mobile 

carrier of specific operations. It is shown that system 

control requirements may be reduced to a “constraint 

satisfaction” problem. The decision of such problem is 

expressed by two sets of entities: a set of operations 

performed by robots of the group, and a set of 

messages that are generated by the informational 

model and delivered to each robots of the group using 

network infrastructure. 

2 Cyber-Physics Approach 

Complex engineering tasks concerning control for 

groups of mobile robots are not yet sufficiently 

developed. In our work, we use cyber-physical 

approach, which extends the range of engineering and 

physical methods for a design of complex technical 

objects by researching the informational aspects of 

communication and interaction between objects and 

with an external environment. 

It is appropriate to consider control processes with 

cyber-physical perspective because of the necessity for 

spatio-temporal adaptation to changing goals and 

characteristics of the operational environment. Thus 

the priority task is to organize the reliable and high-

performance system of information exchange between 

all entities involved in the realization of all 

requirements. Hereinafter, by cyber-physical object we 

mean an open system for the information exchange 

processes. Data in such system is transmitted through 

the computer networks, and its content characterizes 

the target requirements achieved through execution of 

physical and mechanical operations, energy being 

supplied by the internal resources of the object 

(Figure 1). 

An example of a cyber-physical object is a mobile 

robot that does complex spatial movement, controlled 

by the content of the received information messages 

that have been generated by a human-operator or other 

robots that form a multi-purpose operation network. 

An ontological model of informational open cyber-

physical object may be represented by different 

formalisms, such as a set of epistemic logic model 
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operations parameterized by data of local 

measurements or messages received from other robots 

via computer connection. 

 

Figure 1. Physical and cyber physical motion 

According to Figure 2, cyber-physical model of control 

system can be represented as a set of components, 

including following units: 

 information about the characteristics of the 

environment (Observation), 

 analysis of the parameters of the current state for 

the controlled object (Orientation), 

 decision-making according to the formal purpose 

of functioning (Decision), 

implementation of the actions that are required to 

achieve the goal (Action). 

The interaction of these blocks using information 

exchange channels allows us to consider this network 

structure as a universal platform, which allows us to 

use various approaches, including the use of algorithms 

and feedback mechanisms or reconfiguration of the 

object’s structure for the goal’s restrictions entropy 

reduction or the reduction of the internal processes’ 

dissipation. 

Centralized solutions allow using universal means 

for the organization of information exchange to 

integrate different technologies for both observed and 

observable components of the controlled system. The 

parameters and the structure of such control system can 

quickly be adjusted according to the current 

information about the internal state of the object and 

the characteristics of the environment, which are in a 

form of digital data. These features open up the new 

prospects for the development of intelligent cyber 

physical systems that will become in the near future an 

integral part of the human environment in the 

information space of so-called “Internet of Things”. 

According to the estimates (Zaborovsky et al., 2014), 

network-centric cyber-objects in the global information 

space of the Internet will fundamentally change the 

social and productive components of people's lives.
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Figure 2. Cyber-physical interpretation of the John Boyd's OODA loop 

The selection of cyber physical systems as a special 

class of designed objects is due to the necessity of 

integrating various components responsible for 

computing, communications and control processes 

(«3C» – computation, communication, control). 

Therefore, the description of the processes in such 

systems is local and the change of its state can be 

described by the laws of physics, which are, in its most 

general form, a deterministic form of the laws of 

conservation of, for example, energy, mass, 

momentum, etc. The mathematical formalization of 

these laws allows us to determine computationally the 

motion parameters of the physical systems, using 

position data on the initial condition, the forces in the 

system and the properties of the external environment. 

Although the classical methodology of modern 

physics, based on abstraction of “closed system” is 

significantly modified by studying the mechanisms of 

dissipation in the so-called “open systems”, such aspect 

of reality as the information is still not used to build the 

control models and to describe the properties of 

complex physical objects. In the modern world, where 

the influence of the Internet, supercomputers and 

global information systems on all aspects of the human 

activity becomes dominant, accounting an impact of 

information on physical objects cannot be ignored, for 

example, while realizing sustainability due to the 

information exchange processes. The use of cyber 

physical methods becomes especially important while 

studying the properties of systems, known as the 

“Internet of Things”, in which robots, network cyber-

objects and people interact with each other by sharing 

data in the single information space for the 

characterization of which are used such concepts as 

“integrity”, “structure”, “purposeful behavior”, 

“feedback”, “balance”, “adaptability”, etc. 

The scientific bases for the control of such systems 

have become called Data Science. The term “Big Data” 

describes the process of integration technologies for 

digital data processing from the external physical or 

virtual environment, which are used to extract useful 

information for control purposes. However, the 

realization of the Data Science potential in robotics 

requires the creation of new methods for use of the 

information in control processes based on sending data 

in real time at the localization points of moving objects 

(the concept of “Data in motion”). 

3 Heterogeneous Platform for Cloud 

Robotics 

The priority field of the development of science and 

technology are information and communications 

technologies and telematics services that are the 

foundation of modern infrastructure of the 

supercomputing engineering platform (Zaborovsky et 

al., 2014). The effectiveness of such a platform is 

ensured by cloud computing services that are 

implemented on the basis of hybrid supercomputing 

systems to effectively solve actual scientific and 

technical problems, including the following tasks: 

control of cyber-physical objects, predictive modeling 

and information security. The purpose of this paper is 

to solve the problem of the integration hybrid 

supercomputing resources in the control loop for a 

group of mobile robots, so called cyber-physical 

objects. 

The base idea for the implementation of cloud 

technologies in the robotics is based on the paradigm 

of digital physics (“it from bit doctrine”) (Wheeler, 

1989), which implies that for robots the whole universe 

is measurable and computable. It means that if an 

object of the real “physical” world cannot be converted 

to the information from a sensor, for the robot and its 

control system such an object does not exist. So the 

key function of the robot’s control system is to process 
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data received from sensors into the commands for 

actuators of the robot. For a number of situations, when 

such processing should not be performed in real time, it 

can be performed remotely in the cloud. The 

application of cloud for the solution for modern 

robotics tasks is called “cloud robotics” (Kehoe et al., 

2015). The use of this approach reduces the processing 

load on each robot in the group and increases the 

efficiency of all cyber-physical objects by increasing 

the duration of battery life and reducing the 

redundancy of robots’ characteristics for its tasks. 

Researches in the field of cloud technologies in 

robotics are relevant and have been particularly active 

in recent years. For example, Rapyuta platform should 

be noted (the RoboEarth Cloud Engine). It allows 

robots to share knowledge, through a centralized 

knowledge base, avoiding duplication of information. 

Rapyuta is a cloud platform, in which the robots can 

create their own computing environments to perform 

intensive data processing. These created environments 

may be used with one or more robots simultaneously. 

This work is realized using the cloud based on 

modified OpenStack platform that is installed on 

heterogeneous high-performance computers containing 

SIMD and MIMD processors. 

In this work, we offer the following solutions: a 

central server located on a secure heterogeneous cloud 

receives data from sensors of all available cyber-

physical objects (mobile robots), processes the data and 

commands from the operator, and sends control 

commands to cyber-physical objects. The developed 

cloud software performs a decomposition of the 

complex target, which is set by operator, into the 

simple operation, transmits them to mobile robots, and 

checks their implementation, as well as provides 

synchronization of commands execution when it is 

needed. The use of the heterogeneous computing 

environment allows effectively realize a wide range of 

tasks, including processing of streaming data from 

cyber-physical objects (e.g., video or lidar data). An 

actor approach resolves the problem of dividing a 

whole system into several parallel streams allowing the 

horizontal and vertical scaling of the developed system. 

A functional hierarchical scheme of cloud computing 

environment is shown in Figure 3. 

As part of this work a following concept was 

developed: each robot or cyber-physical object consists 

of mobile hardware and software part, so called 

“agent” and virtual “avatar” represented by a set of 

computational processes that are implemented in 

heterogeneous cloud computing environment, and are 

interacting with the agent using wireless high-speed 

networks. Such operating model of cyber-physical 

objects, in which onboard computing resources are 

supplemented by cloud computing environment’s 

services, can solve a variety of control tasks, and 

provide a number of important benefits, including: 

 advanced class of algorithms for control and 

operations planning because of integrating all 

available information resources from cyber-

physical objects, 

 ability to store and to structure large volume of 

sensory data, 

 common data space and situational awareness of 

all agents in the system, 

 possibility of rapid change in avatar algorithms 

(reboot avatar of cyber-physical object in real 

time), interaction between avatars through the 

high-speed data network in the cloud environment. 

4 Practical Task: Constructing a 

Joint Map Task 

We’ve considered one of resource-intensive tasks for 

the robotic group control. This task is to build and 

maintain the relevance of the joint map of the 

surrounding environment. The appearance of a 

controlled object is shown in Figure 4. An example of 

the proposed solution is shown in Figure 5.  

Data from the lidar comes into onboard computer, 

which attaches to it a timestamp and the current 

position obtained from the navigation system. The 

resulting data are pre-filtered and sent to a high-

performance cloud environment for further processing, 

synthesis and storage. Joint point cloud is formed in 

heterogeneous high-performance cloud environment 

using received lidar data with a timestamp and 

coordinates: 

 an area of the existing joint point cloud is selected 

using coordinate information; 

 common fragments in new and existing data are 

allocated; 

 calculated translation and rotation matrix for the 

new point cloud; 

 new point cloud is merged with the existing one 

and the resulting area of the joint point cloud is 

filtered. 

Further, a global joint point cloud received from all 

mobile cyber-physical objects is vectorized. A map 

marked-up for passability is formed for each of robots 

in terms of its characteristics. It is possible to consider 

not only geographically but also telematic terrain 

characteristics, for example, a connection availability 

in a certain area. 

All action of mobile cyber-physical objects are 

planned in high-performance cloud environment using 

marked-up maps. For example, when the operator sets 

the end point for the mobile robot, the route is laid 

within the permissible area defined by the marked-up 

map. During the movement of the robot the global joint 

point cloud and the map based on it are constantly 

updated. In this case, if the route goes beyond the 
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known area it will be corrected while new point cloud 

data will appear. 

 

 

Figure 3. A functional hierarchical scheme of cloud computing environment 

A fragment of generated route is transmitted to the 

onboard computer, which carries out the local control 

of the deviation between the current position and the 

desired trajectory. When the desired trajectory cannot 

be realized, the onboard computer requests new data 

from the high-performance computing environment. 

In this work we use a point cloud library (PCL) and 

apply its existing methods. So one of the possible 

methods for point cloud vectorization is a mesh 

triangulation. 

On the first step the point cloud is filtered to reduce 

the load on the compute nodes. Next, the triangulation 

is performed on the basis of data obtained. Depending 

on the degree of filtration it is possible to reduce the 

amount of data in more than ten times, while retaining 

sufficient accuracy of the model. An example of the 

proposed vectorization is shown in Figure 6. 

5 Information Exchange in Network-

Centric Control System 

Main purpose of computer networks in network-centric 

control system is to transfer data between mobile 

robots (agents) and their virtual avatars. For working 

out effective transfer methods it is necessary to 

represent, what is the network, what processes proceed 
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in it and what influences its performance. To answer 

these questions it is necessary to develop a network 

model. 

 

Figure 4. Appearance of controlled mobile robot 

 

Figure 5. An example of using the cloud environment to 

control a group of robots: constructing joint map 

Network-centric control system can be considered as 

data flows from various agents to their avatar 

applications. In our works (Ilyashenko et al., 2014; 

Ilyashenko et al., 2015; Muliukha et al., 2015) we 

consider the preemptive priority queueing system with 

two classes of packets. The packets of class 1 (2) arrive 

into the buffer according to the Poisson process with 

rate 1  ( 2 ). The service time has the exponential 

distribution with the same rate   for each class. The 

service times are independent of the arrival processes. 

The buffer has a finite size k  (  k1 ) and it is 

shared by both types of customers. The absolute 

priority in service is given packets of the first class.  

Unlike typical priority queueing considered system is 

supplied by the randomized push-out mechanism. If the 

buffer is full, a new coming customer of class 1 can 

push out of the buffer a customer of class 2 with the 

probability  . Note that if  = 1 we retrieve the 

standard non-randomized push-out. 

 

 

Figure 6. An example of the point cloud vectorization 

using PCL library 

The summarized entering stream will be the 

elementary with intensity 21   . If we’ll trace 

only the general number of packets in system, then 

simplified one-data-flow model would be kMM /1//  

type. The special modification of standard Kendel 

notation intended for priority queueing was proposed 

by G.P.Basharin. In the modified system the general 

structure of a label and sense of its separate positions 

remains however in each position the vectorial 

symbolic is used. There is an additional symbol j

if , 

where i  specifies priority type (0 – without a priority, 

1 – relative, 2 – absolute), and j  specifies a type of the 

pushing out mechanism (0 – without pushing out, 2 – 

the determined pushing out). 

We have analyzed received data and concluded that 

the computer network is modelled by means of 

queueing with the finite buffer size and the probability 

push-out mechanism in a combination with an absolute 

priority. The offered effective computing algorithm 

allows network engineers and designers to estimate 

possible variants of network traffic load. In overload 

networks, then   21 , the dependence of 

loss priority from variable  is not linear and even not 

monotonous function. In that case the network with an 

absolute priority gives a maximum of advantages to the 

most important types of packets. Our algorithm and 

network model is flexible and in comparison with a 

relative priority. 
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Queuing theory describes the process of information

exchange in a network-centric robot group control

system and ensures the required quality of service for

each information flow between the agent and its virtual

avatar. The proposed model for information exchange

was used in practice in the framework of space

experiments Kontur and Kontur-2 (Zaborovsky et al.,

2015).

6 Conclusions

This paper proposes a network-centric approach to the

description of the control system for a group of mobile

robots.

Under this approach, each mobile robot is regarded

as cyber-physical object, consisting of a mobile agent,

and a virtual avatar that operates in a high performance

heterogeneous cloud.

The use of network-centric approach allows to take

an advantage of the combination of multi-agent and

centralized control.

A necessary condition for the functioning of such a

control system is the availability of reliable and high-

speed communication channels between the agent and

its avatar.

The reliability of these channels is ensured by using

heterogeneous networks (LTE / Wi-Fi / 3G and etc.).

The required level of quality of service provided by

prioritizing traffic based on the model of queuing

theory.
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