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Abstract
The Cauchy problem for a stiff system of ODEs is
considered. The explicit m-stage first order methods of
the Runge-Kutta type are designed with stability
domains of intermediate numerical schemes conformed
with the stability domain of the basic scheme.
Inequalities for accuracy and stability control are
obtained. A numerical algorithm based on the first-
order method and the five-stage fourth order Merson
method is developed. The algorithm is aimed at solving
large-scale systems of ODEs of moderate stiffness with
low accuracy. It has been included in the library of
solvers of the ISMA simulation environment.
Numerical results showing growth of the efficiency are
given.
Keywords:  Runge-Kutta methods, accuracy and sta-
bility control, conformed stability domains, stiff
problems

1 Introduction
Nowadays software for mathematical modelling and
simulation is widely used for describing different
processes in Chemical Kinetics, Electrotechnics and
other applications. Models often are defined via either
systems of ODEs or systems of PDEs. At that, systems
of PDEs can be transformed to systems of ODEs
applying discretization spatial derivatives. The greater
the discretization step, the higher dimension of
corresponding system of ODEs is. Furthermore, such
problems are often stiff. This paper presents the
algorithm of alternating order and step which is aimed
at solving large-scale stiff problems with low accuracy.
This algorithm has been included in the library of
solvers (Novikov and Shornikov, 2012) of the ISMA
simulation environment.

Consider the Cauchy problem for the stiff system of
ODEs

y  f (t y) y(t0)  y0 t0  t  tk ,  (1)
where, y and f are sufficiently smooth real N-
dimensional vector functions, t is an independent
variable. Eigenvalues of its Jacobi matrix are pure real.

It is well known that any initial value problem 
involving ODEs with higher derivatives can be reduced 
to this standard form. In (Hairer and Wanner, 1996; 
Novikov, 1997) for the solution of (1) the explicit 
Runge-Kutta methods 
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are presented, where ki, 1 ≤ i ≤ m, are stages of the 
method, αi, pmi, βij, 1 ≤ i ≤ m, 1 ≤ j ≤ i - 1, are 
numerical coefficients, defining accuracy and stability 
properties of scheme (2). Methods of form (2) are 
rather efficient on solving non-stiff problems. 
However, from the numerical results of solving stiff 
problems with integration algorithms based on explicit 
formulas which choose stepsize according to the 
required accuracy it follows that on the settling region 
(where derivatives of a solution are low) there is plenty 
of declined solutions. This is a result of appearing 
instability of a numerical scheme. 

Algorithms based on explicit methods with stability 
control of a numerical scheme can solve this problem. 
In this case previous errors are suppressed due to 
stability control, whereas new errors are low due to low 
values of solution derivatives. As a result, the practical 
accuracy is even greater than the accuracy, which is 
required. Further improvement of the efficiency can be 
reached on application of methods with conformed 
stability domains. 

In (Novikov, 1997) the algorithm for obtaining 
coefficients of stability polynomials is presented. The 
use of these coefficients allows to design explicit 
Runge-Kutta m-stage methods for m equal up to 13 
with defined form and size of a stability domain. It is 
also shown there that combining numerical formulas 
with different stability properties gives significant 
growth of performance. Transition from one numerical 
formula to another is performed according to stability 
criteria. At that, there is no explanation in (Novikov, 
1997) how to choose coefficients βij which affect 
stability of intermediate (inner) numerical schemes 
and, finally, the efficiency of the integration algorithm. 
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The authors just noted that the stability of intermediate 
formulas can be achieved, if βij are chosen sufficiently 
small. Below the method for choice of coefficients βij 
is offered. 

2 Numerical Schemes 
For simplicity, here is considered the Cauchy problem 
for autonomous system of ODEs 

0 0 0( ) ( ) ky f y y t y t t t         (3) 
but all the findings that are to obtained below stay true 
for non-autonomous problems, if the coefficients in (2) 
are defined by the formulas 
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To solve problem (3) the Runge-Kutta methods of the 
following form 
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 (5) 

can be applied, where ki = hf(yn,i-1), 1 ≤ i ≤ m, yn,0 = yn, 
and yn,i are defined by formulas (2). 

Introduce matrix Bm with elements bij (Novikov, 
1997) 
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where βij are coefficients of scheme (2) or (5). It is to 
be used in the remainder of this paper. 

Study stability on the linear scalar Dahlquist 
equation 

0(0) 0y y y y t         (7) 
with complex λ, Re(λ) < 0 (Dahlquist, 1963). Applying 
the second formula of (5) to (7), get 
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In the notations Cm = (cm1, …, cmm)T and  
Pm = (pm1, …, pmm)T, the third relation of (8) can be 
written in the form  

m m mB P C     (9) 
where the elements of matrix Bm are defined by 
relations (6). For intermediate numerical schemes (4) 
we have 
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On βk = (βk+1,1, …, βk+1,k)T and ck = (ck1, …, ckk)T 
coefficients βij of numerical schemes (5) and the 
coefficients in the corresponding stability polynomials 
satisfy the equation  

1 1k k kB c k m         (11) 
From the comparison between (6) and (10) it 

follows that bki = ci-1,k-1, i.e. the elements of (k+1)-th 
column of matrix Bm equal to coefficients of stability 

polynomial Qk(z). Hence, if the coefficients of stability 
polynomials of basic and intermediate numerical 
schemes are defined, then the coefficients of methods 
(5) are unambiguously determined from linear systems 
(9) and (11) with upper triangular matrices Bi, 1 ≤ i ≤ 
m. 

Expansions of the exact and approximate solutions 
in the Taylor series in powers of h have the form 

2 3
1

1 11

2 3
22

( ) ( ) 0.5 ( )

( )

( ) ( ),

n n
m

n n j mjj

m
j mj nnj

y t y t hf h f f O h

y y b p hf

b p h f O hf



 



    

  

 




 (12) 

where the elementary differentials are computed on 
exact y(tn) and approximate yn solutions, respectively. 
Comparison between relations (12) under assumption 
that y(tn) = yn, shows that numerical formula (5) has the 
first order of accuracy, if 11

1m
j mjj

b p


 . Hence, to 
design m-stage methods of the first accuracy order, it is 
necessary to set cm1 = 1 in linear system (9). 

3 Conformation of Stability Domains 
Assume that the coefficients of the stability 
polynomials  

1
( ) 1 1k i

k kii
Q z c z k m


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are defined. Using approach from (Novikov and 
Rybkov, 2014), we choose coefficients of the 
polynomial so that the stability domain expands along 
the imaginary axis and becomes singly connected. It 
provides better stability properties to rounding errors 
whereas the stability interval length reduces 
insignificantly. 

For each k, 1 ≤ k ≤ m, γk represents the length of 
such a maximal interval [γk, 0], that for any z ∈ [γk, 0] 
inequality |Qk(z)| ≤ 1 satisfies. Taking into account, that 
z = hλ, in (13) for all Qk(z), 1 ≤ k ≤ m we replace h with  
(hγk / γm). As a result, formula (13) may be written as 
follows 
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The replacement of h with (hγk / γm) means that the 
approximate solution obtained by intermediate 
schemes (5) is computed at points (tn + c'k1h),  
1 ≤ k ≤ m ‒1, instead of (tn + ck1h), 1 ≤ k ≤ m ‒ 1. In 
this case the maximal stepsize, obtained according to 
the stability requirements of the basic scheme is also 
maximal for intermediate numerical formulas.  

Determine coefficients of methods (5) as follows. 
First, using (Hairer and Wanner, 1996) we compute 
coefficients of polynomials (13), satisfying some 
defined properties. Further, compute coefficients of 
polynomials (14) applying corresponding substitution 
of variables. Taking into account, that elements of (k + 
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1)-th column of matrix Bm coincide with coefficients of 
the stability polynomials Q'k(z), form matrix 
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  (15) 

Using in (11) vector c'k = (c'k1, …, c'kk)T instead of ck, 
we unambiguously determine all coefficients of 
methods (5) with conformed stability domains from 
linear system (9) and (11). 

4 Accuracy and Stability Control 
We use the estimation of local truncation error δn,1 to 
control accuracy of the first order methods. Applying 
(12) we get that for the m-stage method it has the form  
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where cm2 is the coefficient at z2 in stability 
polynomial (8). Estimation εn,1 of the error can 
be computed using the formula  

1 2[(0 5 ) ( )]( )
1

n m i j i jc k k
i j m i j
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The graph of a solution of a stiff problem can be 
divided into two types of regions. The first one is the 
settling region (where values of solution derivatives are 
low), and the second one is the transition region (where 
values of solution derivatives are high). Taking this 
into account, to increase the performance of 
calculations we proceed as follows. We apply 

,1 2 2 2 1[(0 5 ) ]( )n mc k k          (17) 

to make an over-cautious estimation. As k1 linearly 
depends on integration stepsize, omission of inequality 
of ||ε'n,1|| ≤ ε leads just to one additional computation of 
the right part of (3). Here, ε is the absolute or relative 
tolerance of calculations, ||·|| is some norm in RN. 
Taking into account, that 

2 3
1 1( ) ( )n nnhf y k h f O hf    , 

the final decision on accuracy we make checking 
inequality ||ε''n,1|| ≤ ε, where 

1 2 1 1(0 5 )( ( ) )n m nc hf y k      .  (18) 
We derive the inequality for stability control 

similarly to (Hairer and Wanner, 1996). To 
obtain this inequality we apply method (5) to 
problem (3) on  
f(y) = Ay + b, where A and b are  
N-dimensional matrix and vector with constant 
elements, respectively. As the result, we can 
estimate maximal eigenvalue λn

max of Jacobi 
matrix ∂f(yn)/ ∂y of (3) using the formula 
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Then, inequality for stability control for m-stage 
method (5) has form hλn

max ≤ |γm|, where |γm| is stability 
interval length of the m-stage scheme. 

5 First Order Method 
For numerical solution of Cauchy problem (1) we 
consider the explicit five-stage Runge-Kutta method 
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        (20) 

where y and f are real N-dimensional vector functions, t 
is an independent variable, h is the integration step, k1, 
k2, k3, k4, and k5 are stages of the method, p1, p2, p3, p4, 
p5, β21, β31, β32, β41, β42, β43, β51, β52, β53, β54 are 
numerical coefficients, defining accuracy and stability 
properties of (20). 

We choose coefficients of (20) so that it has the first 
accuracy order and the extended stability domain. The 
stability domain of a method with the maximal length 
of the stability interval is almost multiconnected. We 
design polynomials of the first, second, third, fourth, 
and fifth degree so that the corresponding them 
methods have singly connected stability domains with 
the stability interval close to the maximal possible one 
(see Figure 1). 

Applying the algorithm from (Novikov and Rybkov, 
2014), we get coefficients 

11 21 31 41 51 1,с с с с с      

22 0.128025128205128,с   
 

32 330.152092927269786, 0.00580524400854353,с с   
 

42 430.160464544241005, 0.00827164513740441,с с   

44 0.000133419220894335,с   
 

52 530.164341322127141,  0.00948975952580473,с с   
6

54 55 0.000223956930863224, =1.85097275222353 10 .с с  
 

At that, 
1 2 3
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2, 7.79, 17.46,
30.99, 48.39.
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Writing and resolving linear systems (9) and 
(11) using (15), we obtain the coefficients of 
method (20) 

EUROSIM 2016 & SIMS 2016

975DOI: 10.3384/ecp17142973       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



21 31
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To control accuracy of the numerical formula we 
use estimations (17) and (18). The stability interval 
length of numerical scheme (20) of the first accuracy 
order equals 17.46. Therefore, for its stability control 
we can apply inequality hλn

max ≤ 17.46, where hλn
max is 

defined by formula (19). 

 
Figure 1. Stability domain of method (20). 

6 Merson Method 
The fourth accuracy order Merson method (Merson, 
1957) 
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  (21) 

is one of the most efficient and widely used explicit 
Runge-Kutta methods. The fifth computation of 
function f does not result in the fifth order of accuracy, 
but allows to extend the stability interval length to 3.5 
and estimate truncation error δn,4 using stages ki, i.e. 

4 1 3 4 5(2 9 8 2 ) / 30.n k k k k       
We apply inequality ||δn,4|| ≤ 5ε5/4 for accuracy 

control. The inequality is obtained assuming that the 
global error accumulated with local truncation errors 
(Novikov, 1997). Despite the fact that the inequality 
for accuracy control is obtained on a linear equation, it 
shows high reliability on solving non-linear problems. 

Now let us derive the inequality for stability control. 
Applying to k3 – k2 the first order Taylor's formula with 
the remainder term written in the Lagrangian form, we 
have 

3 2 2 1[ ( ) / ]( ) / 6,nk k h f y k k      
where vector μn is computed in some vicinity of 
solution y(tn). Taking into account, that 
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can be used for stability control of (21), where 3.5 is 
the approximate length of stability interval (see 
Figure 2). Let εn,4 = δn,4/5. Then inequalities εn,4 ≤ 5ε5/4 
and vn,4 ≤ 3.5 can be applied respectively for accuracy 
and stability control of scheme (21). 

As estimation of eigenvalue vn,4 = hλn
max is rough, 

stability control is used to limit integration stepsize and 
to switch between methods. 

 
Figure 2. Stability domain of method (21). 
The predicted step hn+1 is computed as follows. Step 
hac, that is chosen according to the requirements of 
accuracy, is computed using formula hac = q1hn, where 
hn is the latest accepted stepsize, and q1, taking into 
account relation εn,4 = O(hn

5), defined by 
q1

5εn,4 ≤ ε. We compute step hst, that is chosen 
according to the stability requirements, using hst = q2hn, 
where q2, is defined by q2vn,4 = 3.5 as vn,4 = O(hn). 
Then, the predicted step hn+1 is computed using the 
formula 

1 max[ , min( , )].ac st
n nh h h h   

The given formula stabilizes stepsize over the settling 
region, where stability has the defining role. 

7 Integration Algorithm 
The algorithm of alternating order and step can be 
easily formulated on a base of the developed methods. 
It chooses the most efficient scheme on an each step. 
Calculations are always begun with the Merson method 
as it is more accurate. Switch to the first order method 
with conformed stability domains is performed on 
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omission of vn,4 ≤ 3.5. Transition to the Merson method 
is performed, if vn,1 ≤ 3.5 satisfies. 

The norm in inequality for accuracy control is 
computed using the formula 

1

| |
|| || max ,

| |
i

ii N
ny r



 




 

where i is a component number, r is a positive 
parameter. If inequality ||yn

i|| ≤ r satisfies for i-th 
component of a solution, absolute tolerance rε is 
controlled, otherwise, relative tolerance ε. On 
calculations r was assumed to be equal to 3. 

8 Medical Akzo Nobel Problem 
We chose the Medical Akzo Nobel problem (Mazzia 
and Magherini, 2008) to test our method. The Akzo 
Nobel research laboratories formulated this problem in 
their study of the penetration of radio-labeled 
antibodies into a tissue that has been infected by a 
tumor. This study was carried out for diagnostic as well 
as therapeutic purposes. 

In (Mazzia and Magherini, 2008) there is considered 
a reaction diffusion system in one spatial dimension: 

2
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u u kuv
t x

 
 

 
, v kuv

t


 


,  (22) 

which originates from the chemical reaction A + B → 
C. Here, A, the radio-labeled antibody, reacts with 
substrate B, the tissue with the tumor, and k denotes 
the rate constant. The concentrations of A and B are 
denoted by u and v, respectively. 

Making necessary transformations and defining y(t) 
by y = (u1, v1, u2, v2,…, uN, vN)T it is possible to write 
(22) in the form 

2( ) (0) 0 20Ndy f t y y g y R t
dt

         , (23) 

Here, the integer N is a user-supplied parameter. The 
function f  is given by 
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where 

3 22( 1) /j j c    , 4 2( 1) /j j c    , 1 j N  , 

1 / N  , 1( ) ( )y t t  , 2 1 2 1N Ny y    , 2Ng R , 

 0 0 00 0 0 Tg v v … v       . 

The function φ(t) = 2 at 0 < t ≤ 5 and φ(t) = 0 at 
5 < t ≤ 20. Values for the parameters k, v0, and c are 
100, 1, and 4, respectively. Graph of the time and space 
dependencies of u and v is shown in Figure 3. 

9 Numerical Results 
Calculations were performed on Intel(R) Core(TM)  
i3-5010U CPU with double precision. The parameter N 

was equal 200 that means that the system to be solved 
involved 400 equations. 

The stiffness ratio of the Medical Akzo Nobel 
problem approximately equals 106. The graph of 133rd 
component of the solution is shown in Figure 4. 
 

 
Figure 3. u and v as functions of time and space. 

Below IS, IW, and IF represent, respectively, total 
numbers of steps, declined solutions (due to omission 
of the defined absolute tolerance), and computed right 
parts of the problem. 

The algorithm of alternating order and step based on 
the first order method with conformed stability 
domains and the Merson method with accuracy and 
stability control gives the following results. For the 
defined absolute tolerance equal to 10‒4 we have 
IS = 11 505, IW = 1 266, and IF = 70 893. For the 
absolute tolerance 10‒7: IS = 72 658, IW = 10 333, and 
IF = 403 066. 

 
Figure 4. Solution of the Medical Akzo Nobel problem.

10 Conclusions
From the numerical results it follows that stability
control leads to the efficiency gain due to the reduction
of some declined solutions appearing as a result of
instability of a numerical formula. Simulation of other
test examples gives similar tendency. The designed
method is aimed at the solution of large-scale problems
of moderate stiffness with low accuracy, аs well as
problems with protensive settling regions, where the
first order methods with conformed stability domains
give growth of the efficiency.

The constructed algorithm is designed for low
precision calculations – about 1% and lower. In this
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case, its maximum efficiency is reached. In the 
algorithm, with its parameters, one can specify 
different modes of calculations: 1) with the explicit 
first order method with conformed stability domains 
either with or without stability control; 2) with the 
Merson method either with or without stability control; 
3) with automatic choice of a numerical scheme. 
Therefore, this algorithm can be applied both for 
solving stiff and non-stiff problems. In calculations 
with automatic choice of a numerical scheme, the 
integration algorithm makes a decision whether a 
problem to be solved is stiff or not by itself. 
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