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Abstract
This paper derives an algorithm for computing
coefficients for stability polynomials of a degree up to
m = 35. These coefficients correspond to explicit first
order Runge-Kutta methods. Authors showed
dependence between stability polynomial values at
extreme points and both size and form of a stability
domain. Numerical results are given.
Keywords:  stiff problem, explicit methods, stability
polynomials

1 Introduction
Heterogeneous algorithms are applied to solving stiff
problems in a number of situations. Such algorithms
are designed using the fact that on the settling and
transition regions integration stepsizes are limited
according to the requirements of stability and accuracy,
respectively. Efficiency growth is achieved by
applying an explicit scheme over the transition region
and an L-stable scheme over the settling region. The
switch between methods is performed using an
inequality for stability control.

The problem is that the size of stability domains of
the known methods is too small. Some monographs
and papers present explicit methods with extended
stability domains (Novikov, Shornikov, 2012). The
way to obtain stability polynomials providing the
maximal length of a stability domain is considered in
(Skvortzov, 2011). Novikov (1997) proposed an
algorithm which provides polynomials coefficients.
The algorithm allows to design explicit Runge-Kutta
methods with specified stability domain forms and
sizes. Furthermore, coefficients of stability
polynomials having a degree up to m = 13 are found
there.

Here we develop an algorithm that provides stability
polynomials coefficients having a degree up to m = 27.
The coefficients correspond to explicit first order
Runge-Kutta methods. It is shown that the form, size,
and structure of a stability domain depend on the
position of the stability polynomial roots on the
complex plane.

2 Explicit Runge-Kutta Methods 
To solve the stiff problem 

( )y f t y   , 0 0( )y t y , 0 kt t t  , 

where y and f are smooth real N-dimensional  
vector-functions, t is an independent variable, in 
(Novikov, 1997) explicit methods 
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are considered, where ki, 1  i  m, are stages of the 
method, h is the integration stepsize, pmi, ij, and ij are 
numerical coefficients defining accuracy and stability 
properties of this numerical scheme. For simplicity, let 
us consider the following Cauchy problem for the 
autonomous system of ODEs 

( )y f y  , 0 0( )y t y , 0 kt t t  .  (1) 
We apply methods of the form 
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to solve (1), where ki = hf(yn,i–1), 1  i  m, yn,0 = yn. All 
the findings those are to obtained below can be used 
for non-autonomous problems, if 
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 , 2 i m  . 

Stability of one-step methods is widely studied on 
the Dahlquist equation y =y, y(0) = y0, t  0 with 
complex λ, Re(λ) < 0 (Dahlquist, 1963). Applying the 
second formula from (2) to solve y =y, we get 

1 ( )n m ny Q z y  , 
1
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where z = h. Hence, the stability function of a m-
stage explicit Runge-Kutta method is polynomial Qm(z) 
of a degree m. Novikov (1997) gave order conditions 
for methods of form (2) and, in particular, method (2) 
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has the first accuracy order, if pm1 + … + pmm = cm1 = 1. 
Further, we consider the problem of finding such 
coefficients that a stability domain has specified form 
and size. 

3 Stability Polynomials Over [m, 0] 
Let k and m be given integers, k ≤ m. Consider 
polynomials 

1 1
( ) 1 k mi i

m k i ii i k
Q x c x c x   

    , (3) 

where ci, 1 ≤ i ≤ k, are defined, and ci, k + 1 ≤ i ≤ m, are 
arbitrary. Usually ci, 1 ≤ i ≤ k, are determined 
according to the requirements of accuracy. Therefore, 
let us assume that ci = 1/i!, 1 ≤ i ≤ k. 

Denote extreme points of (3) by x1, … , xm–1, at that 
x1 > x2 > … > xm–1. Define unknown coefficients ci,  
k + 1 ≤ i ≤ m, so that polynomial (3) has predefined 
values at extreme points xi, k ≤ i ≤ m−1, 
i.e. Qm,k(xi) = Fi, k  i  m–1, where F(x) is some given 
function, Fi = F(xi). For this purpose, consider the 
following system of algebraic equations 
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in variables xi, k ≤ i ≤ m − 1, and cj, k + 1 ≤ j ≤ m. 
Rewrite (4) in the form, suitable for calculations on 

the computer. Denote through y, z, g, and r vectors 
with components 

1i k iy x   , i k iz c  , 1 1
1 k j

i k i j ij
g F c y  
   ,  
1

1

k j
i j ij

r jc y 


  , 1 i m k   , 

through E1, E2, E3 − diagonal matrices with elements 
1
iie k i  , 2 1/ii

ie y , 
1

3 ( 1) 1ii k ie i m k         
and through A – a matrix with elements aij = yi

k+j,  
1 ≤ i, j ≤ m–k. Using these notations problem (4) can be 
written as follows 

2 10 0Az g E AE z r     .  (5) 
System (5) is ill-conditioned that leads to some 

difficulties while solving it with the fixed point 
iteration method. For convergence of the Newton's 
method, it is necessary to somehow obtain good initial 
values that in this case is a separate difficult problem. 
If we assume in (4) that Fi = (–1)i, k ≤ i ≤ m–1, we find 
the polynomial with the maximal length of the stability 
interval. In this case the problem of computation of 
initial value y0 is solved using values of the Chebyshev 
polynomial at extreme points over interval [–2m2, 0], 
where m is a degree of polynomial (3). Those values 
can be computed using the formula 

2[cos( / ) 1]iy m i m  , 1 1i m   . (6) 
Substituting (6) in the system (5), get coefficients 

of the Chebyshev polynomial, for those |Qm1(x)|  1 on 
x[–2m2, 0]. For any k we can take (6) as initial values 

and, as numerical results show, there is good 
convergence rate in this case. If Fi  (–1)i, k ≤ i ≤ m−1, 
then the choice of initial values is a separate difficult 
problem. 

Let us describe a way to solve (5) that does not 
require good initial values. Apply the relaxations for 
the numerical solution of (5). The main idea of the 
relaxations is that for a steady-state problem we run 
unsteady-state process which solution settles to the 
solution of the initial problem. Consider the Cauchy 
problem 

1
3 2 1 0( ) (0)y E E AE A g r y y     .  (7) 

Apparently, after a stationary point of (7) has been 
found, the stability polynomial coefficients can be 
computed from the system (5). Notice, that due to 
using matrix E3 all eigenvalues of the Jacobi matrix of 
(7) have negative real components, i.e. problem (7) is 
stable. Numerical results show that (7) is a stiff 
problem. Applying methods that require evaluation of 
the Jacobi matrix may cause difficulties while solving 
(7). Therefore, we solve (7) with the second accuracy 
order method that uses numerical computing and 
freezing the Jacobi matrix (Novikov, 2008). When 
applied to the problem y = f(y), y(0) = y0, this method 
takes the form 

1 1 2

1 2 1
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( )
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           (8) 

Here, a = 1 − 0.5√2, k1 and k2 are stages of the method, 
E is the identity matrix, hn is the integration stepsize, 
An is a matrix representable in the form An = fn′ + hnRn + 
O(hn

2), fn′ = ∂f(yn)/∂y is the Jacobi matrix of (7), Rn is 
the integration stepsize  independent matrix. Since 
matrix Rn is arbitrary, problems of numerical solving 
and freezing the Jacobi matrix can be concerned 
simultaneously. To control accuracy of (8) we apply 
the inequality 

1
2 1( ) || ( ) || 1 3nj

n nj D k k a a         , 1 2nj  , (9) 
where ε is the required accuracy of calculations, ||∙|| is 
some norm in RN, and integer variable jn is chosen 
minimum for which inequality (9) is satisfied. The 
numerical differentiation step sj, 1 ≤ j ≤ N, is chosen 
using the formula sj = max{10−14, 10−7|yj|}. In this case 
j-th column an

j of matrix An is computed using the 
formula 

1 1[ ( ) ( )]
1

j
n j j N j N ja f y … y s … y f y … y … y s

j N
            

  
 

i.e. it is required to perform N computations of the 
right part of problem (7) to define An. An attempt to 
use previous matrix Dn is performed after each 
successful integration step. To preserve stability 
properties of the numerical scheme, on freezing matrix 
Dn the integration stepsize is kept permanent. 
Recomputation of the matrix is carried out in the 
following cases: 1) calculations accuracy is 
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degenerated, 2) quantity of steps with a frozen matrix 
has reached maximal number Ih, 3) the predicted step is 
greater than the previous successful one in Qh times. 

4 Stability Polynomials Over [‒1, 1] 
It is not difficult to see that stability polynomial 
coefficients approach zero as m increases. Novikov 
(1997) presented coefficients ci, k + 1 ≤ i ≤ m, for 
polynomials of a degree up to 
m = 13. Now consider an algorithm providing 
polynomials with specified properties over the interval 
[−1, 1]. In this case coefficients ci grow not that much, 
and it is possible to derive polynomials for m > 13. 
Denote through |m| the length of stability interval of 
m-stage explicit formula of the Runge-Kutta type, i.e. 
the inequality |Qm,k(x)|  1 over the interval [m, 0] is 
satisfied. Then, substituting x = 1 − 2z/m we can map 
[m, 0] into [−1, 1] and obtain polynomial 

0
( ) m i

m ii
Q z d z


 .  (10) 

Coefficients di, 0 ≤ i ≤ m of polynomial (10) and 
coefficients ci, 0 ≤ i ≤ m, of (3) satisfy the relation 

,c UVd    (11) 
where d = (d0, … , dm)T, c = (c0, … , cm)T, U is a 
diagonal matrix with elements uii = (–2/m)i–1, 
1 ≤ i ≤ m + 1. Elements vij  of V are defined by 

1 1jv  , 1 1j m   ; , 1 1, 1ij i j i jv v v    , 
2 1i j m    ; 0ijv  , i j . 

Obviously, V represents the Pascal's triangle which 
elements are easily computed using a recurrent 
formula. Therefore, after deriving the polynomial (10) 
over interval [–1, 1], using (11) it is easy to compute 
coefficients of the polynomial (3). 

Now let us derive polynomial (10). We denote the 
extreme points of (10) through z1, … , zm–1, at that  
z1 > z2 > … > zm–1. We compute coefficients di, 
0 ≤ i ≤ m, under condition that polynomial (10) has 
predefined values in extreme points zi, 1 ≤ i ≤ m − 1, 
i.e. 

( ) 1 1m i iQ z F i m     , 
where F(z) is some given function, Fi = F(zi). For that, 
consider the following system of algebraic equations 

1
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here the normality conditions Qm(−1) = (−1)m and 
Qm(1) = 1 are satisfied. 

Rewrite (12) in the form, suitable for calculations on 
the computer. For this purpose, denote by y, w, g, and r 
vectors with components 

j jy z , 0jr  , 1 1j m   ; 1i iw d  , 1 1i m   , 

i ig F , 1 1i m   ; 1ig  , i m ; 
( 1)m

ig   , 1i m  ; 

through E1 and E2 matrices of dimension 
(m + 1)(m + 1) and (m – 1)(m + 1), respectively, 
with elements of the form 

1 1jje j  , 1 1j m   ; 2 1/ii
ie y , 1 1i m   , 

and through A – a matrix of dimension (m + 1)(m + 1) 
with elements 

1ij j
ia y  , 1 1i m   , 1 1j m   ; , 1m ja  , 

1, 1( 1)m j ja    , 1 1j m   . 
Now problem (12) can be written as follows  

0Aw g  , 2 1 0E AE w r  .       (13) 
For the numerical solution of (13) we use the 
relaxations (Novikov, 1997). After the determination 
of polynomial (10) coefficients, compute the 
coefficients of polynomial (3) using relation (11). Find 
value m under assumption that the polynomial to be 
obtained corresponds to the first order method, 
i.e. c1 = 1. Having written the second relation and 
having made necessary transformations, we get 

 1
2 11

2 /m
m j jj

v d c 


   , 0 22m m   . 

5 Form and Size of Stability Domains 
Let us describe how the choice of values Fi  affects the 
size and form of a stability domain. If we let Fi = (–1)i, 
k ≤ i ≤ m – 1, then the stability interval length is known 
and computed using the formula |m| = 2m2. In this case 
for given m we get the maximal length of a stability 
domain along the real axis. Figure 1 shows level curves 
|Qm,k(x)| = 1, |Qm,k(x)| = 0.8, |Qm,k(x)| = 0.6, 
|Qm,k(x)| = 0.4, and |Qm,k(x)| = 0.2 on the complex plane 
{hλ} for the stability domain on m = 4, k = 1, 
F = {–1, 1, –1}. The stability interval length |m| of the 
corresponding method equals 32. 

In case if the stability interval length is maximal, a 
stability domain is almost multiconnected, so rounding 
errors may lead to stepping out of the stability domain. 
To solve this problem we need to stretch the stability 
domain along the imaginary axis in tangency points of 
parts of the stability domain. For this purpose, we can 
let Fi = (–1)i, 1 ≤ i ≤ m – 1, 0 <  < 1. Numerical 
results show that if  = 0.9, the stability interval length 
becomes shorter by 5–8% comparing to the maximal 
possible length equal to 2m2. At that, the stability 
domain stretches along imaginary axis at the tangency 
points. This provides better stability properties of the 
corresponding method to rounding errors on 
insignificant reduction of the stability interval length. 
If we assume  = 0.95, then the stability interval length 
is reduced by 3–4%. The stability domain of the five-
stage method on  = 0.9 is shown in Figure 2. The 
stability interval length of this method |m| = 30.00. 

As  decreases from 1 to 0, roots of polynomial (3) 
get closer to each other on the real axis. Therefore, the 
stability interval length is reduced. The ellipsises, 
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which are well-defined on  = 1 get closer not 
providing essential stretch of the stability domain along 
the imaginary axis. Therefore, depending on the 
problem to be solved it is reasonable to choose value  
from 0.8 to 0.95. 

On solving problems, which Jacobi matrices have 
eigenvalues with imaginary components and which 
solutions have an oscillating behavior, the extension of 
a stability interval is not always obligatory. In this 
case, the integration stepsize is rather small due to the 
accuracy requirements and thus it is more reasonable to 
extend a stability domain along the imaginary axis. If 
the Jacobi matrix have pure imaginary eigenvalues, it 
is necessary to have the condition |Qm,k(x)| = 1 satisfied 
over some region on the imaginary axis. This 
requirement is satisfied as k increases. 

For the first order methods, i.e. for k = 1, it is 
possible to make the requirement satisfied choosing 
appropriate values of function F. For instance, on  
m = 4, k = 1, F = {0.75, 0.80, 0.75} we obtain a 
polynomial, satisfying this requirement (Figure 3). 
Since m is even and all the values Fi are positive, the 
graph of the polynomial does not cross the real axis, at 
that, polynomial has two pairs of complex conjugate 
roots. Therefore, the stability domain stretches along 
the imaginary axis and some region of the imaginary 
axis belongs to the stability domain. The stability 
interval length equals 2.89. On reducing values Fi the 
length of a stability domain along the real axis gets 
greater. While further reducement of values Fi the 
stability interval length |m| also becomes greater but 
the region on the imaginary axis belonging to the 
stability domain becomes less. Therefore, for 
developing first order methods aimed at solving 
oscillating problems, it is reasonable to choose stability 
polynomials which have a couple of complex 
conjugate roots in a complex plane {hλ} nearby the 
origin of coordinates. At that, values Fi that correspond 
to these roots are needed to be chosen close to 1, so 
that the stability domain has the maximal region of the 
imaginary axis in it. 

 
Figure 1. Stability domain on parameters m = 4, k = 1, 
F = {–1, 1, –1}. 

 
Figure 2. Stability domain on parameters m = 4, k = 1,  

F = {–0.9, 0.9, –0.9}. 
 

 
Figure 3. Stability domain on parameters m = 4, k = 1,  
F={0.75, 0.80, 0.75}. 

6 Numerical Results 
The numerical results show that coefficient сm of 
polynomial (3) reduces as m grows. In particular, on  
m = 13 and k = 1 value сm is of the order of 10–26. 
It is difficult to solve problem (7) for m > 13 due to 
rounding errors. Numerical results of solving (11) 
show that polynomial (10) coefficients di, 0 ≤ i ≤ m, 
grow in magnitude simultaneously with m. In 
particular, on m = 13 value max0im|di| is of the order 
of 105, and on m = 25 of the order of 109, i.e. di grow 
slower than ci. We transit from polynomial (10) 
coefficients to coefficients of (3) using (11) after (13) 
has been solved. This allows to compute the 
coefficients of stability polynomials of a degree up to 
m = 27. 

It is difficult to solve problem (11) with double 
precision for m > 27 due to the appearing rounding 
errors. The algorithm using the "Quade-Double 
Precision Library" (described in (Hida, 2000)) was 
developed to compute the stability polynomials 
coefficients with greater m. 

The "QD Precision Library" allows performing 
calculations with higher accuracy. While the standard 
data type 'double', allowing to represent numbers with 
double precision, is confined to 53 bits of the binary 
mantissa and provides precision about 16 decimal 
numerals, numbers of the data type 'dd_real' from the 
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library QD has the 106-bit mantissa that provides
precision about 32 decimal numerals. In fact, the
number of the type dd_real is the software-
implemented sum of two numbers of the type 'double'.
At that, the mantissa of the sum elongates in two times,
but the range of values, presentable in new data type
does not change and the possible values vary from
about 10‒308 to 10308, as for the standard 'double'.
Despite the confinement, accuracy of the
representation of numbers in this diapason increases.

On the implementation of the algorithm for
computation of the coefficients of (8) using the data
type 'dd_real' the main input parameters of the
algorithm − accuracy of calculations ε and
differentiation stepsize sj did not change. The
Chebyshev polynomial values at the extreme points
were chosen for initial conditions. The improved
precision of the numbers representation allowed to
compute polynomial coefficients for m > 27.

7 Conclusions
Authors of this article computed the coefficients for
stability polynomials of a degree up to m = 35 using an
algorithm providing polynomials over the interval
[−1, 1]. These coefficients correspond to the first order
Runge-Kutta methods with specified both form and
size of stability domains. It is shown that the choice of
values of stability polynomials at extreme points
affects form and size of a stability domain. The
proposed algorithm for designing stability domains
increases the efficiency of explicit methods.
Furthermore, it allows to develop algorithms of
alternating order and step for solving problems of
moderate stiffness. If the solution behavior of a
problem which is to be solved is known, then it is
possible to design an integration algorithm with the
stability domain suitable for the given class of
problems.

From our point of view, one of the main future
applications of these results is to use the proposed
algorithm to design numerical methods for solving
ODEs systems. These methods can be included in
libraries for software aimed at computer simulation.
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