
Numerical Algorithm for Design of Stability Polynomials
for the First Order Methods

Eugeny A. Novikov1 Mikhail V. Rybkov2 Anton E. Novikov3
1Institute of Computational Modelling, Federal Research Center, Russia, novikov@icm.krasn.ru

2Institute of Mathematics and Fundamental Informatics, Siberian Federal University, mixailrybkov@yandex.ru
3Institute of Mathematics and Fundamental Informatics, Siberian Federal University, Russia, aenovikov@bk.ru

Abstract
This paper derives an algorithm for computing
coefficients for stability polynomials of a degree up to
m = 35. These coefficients correspond to explicit first
order Runge-Kutta methods. Authors showed
dependence between stability polynomial values at
extreme points and both size and form of a stability
domain. Numerical results are given.
Keywords: stiff problem, explicit methods, stability
polynomials

1 Introduction
Heterogeneous algorithms are applied to solving stiff
problems in a number of situations. Such algorithms
are designed using the fact that on the settling and
transition regions integration stepsizes are limited
according to the requirements of stability and accuracy,
respectively. Efficiency growth is achieved by
applying an explicit scheme over the transition region
and an L-stable scheme over the settling region. The
switch between methods is performed using an
inequality for stability control.

The problem is that the size of stability domains of
the known methods is too small. Some monographs
and papers present explicit methods with extended
stability domains (Novikov, Shornikov, 2012). The
way to obtain stability polynomials providing the
maximal length of a stability domain is considered in
(Skvortzov, 2011). Novikov (1997) proposed an
algorithm which provides polynomials coefficients.
The algorithm allows to design explicit Runge-Kutta
methods with specified stability domain forms and
sizes. Furthermore, coefficients of stability
polynomials having a degree up to m = 13 are found
there.

Here we develop an algorithm that provides stability
polynomials coefficients having a degree up to m = 27.
The coefficients correspond to explicit first order
Runge-Kutta methods. It is shown that the form, size,
and structure of a stability domain depend on the
position of the stability polynomial roots on the
complex plane.

2 Explicit Runge-Kutta Methods
To solve the stiff problem

()y f t y , 0 0()y t y , 0 kt t t ,

where y and f are smooth real N-dimensional
vector-functions, t is an independent variable, in
(Novikov, 1997) explicit methods

1 1

m
n n m i ii

y y p k
 ,

 1

1

i
i n i n ij jj

k hf t h y k

are considered, where ki, 1 i m, are stages of the
method, h is the integration stepsize, pmi, ij, and ij are
numerical coefficients defining accuracy and stability
properties of this numerical scheme. For simplicity, let
us consider the following Cauchy problem for the
autonomous system of ODEs

()y f y , 0 0()y t y , 0 kt t t . (1)
We apply methods of the form

11

1 1

,1 1,

,

i
n i n i j jj

m
n n m i ii

y y k i m

y y p k

 (2)

to solve (1), where ki = hf(yn,i–1), 1 i m, yn,0 = yn. All
the findings those are to obtained below can be used
for non-autonomous problems, if

1 0 , 1

1

i
i ijj

 , 2 i m .

Stability of one-step methods is widely studied on
the Dahlquist equation y =y, y(0) = y0, t 0 with
complex λ, Re(λ) < 0 (Dahlquist, 1963). Applying the
second formula from (2) to solve y =y, we get

1 ()n m ny Q z y ,
1

() 1 m i
m m ii

Q z c z

 ,
m

mi ij m jj i
c b p

 , 1 i m ,

where z = h. Hence, the stability function of a m-
stage explicit Runge-Kutta method is polynomial Qm(z)
of a degree m. Novikov (1997) gave order conditions
for methods of form (2) and, in particular, method (2)

EUROSIM 2016 & SIMS 2016

979DOI: 10.3384/ecp17142979 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

has the first accuracy order, if pm1 + … + pmm = cm1 = 1.
Further, we consider the problem of finding such
coefficients that a stability domain has specified form
and size.

3 Stability Polynomials Over [m, 0]
Let k and m be given integers, k ≤ m. Consider
polynomials

1 1
() 1 k mi i

m k i ii i k
Q x c x c x

 , (3)

where ci, 1 ≤ i ≤ k, are defined, and ci, k + 1 ≤ i ≤ m, are
arbitrary. Usually ci, 1 ≤ i ≤ k, are determined
according to the requirements of accuracy. Therefore,
let us assume that ci = 1/i!, 1 ≤ i ≤ k.

Denote extreme points of (3) by x1, … , xm–1, at that
x1 > x2 > … > xm–1. Define unknown coefficients ci,
k + 1 ≤ i ≤ m, so that polynomial (3) has predefined
values at extreme points xi, k ≤ i ≤ m−1,
i.e. Qm,k(xi) = Fi, k i m–1, where F(x) is some given
function, Fi = F(xi). For this purpose, consider the
following system of algebraic equations

.

1
. 1

() , () 0, 1 ,

,

m k i i m k i

m i
m k ii

Q x F Q x k i m

Q ic x

 (4)

in variables xi, k ≤ i ≤ m − 1, and cj, k + 1 ≤ j ≤ m.
Rewrite (4) in the form, suitable for calculations on

the computer. Denote through y, z, g, and r vectors
with components

1i k iy x , i k iz c , 1 1
1 k j

i k i j ij
g F c y
 ,
1

1

k j
i j ij

r jc y

 , 1 i m k ,

through E1, E2, E3 − diagonal matrices with elements
1
iie k i , 2 1/ii

ie y ,
1

3 (1) 1ii k ie i m k
and through A – a matrix with elements aij = yi

k+j,
1 ≤ i, j ≤ m–k. Using these notations problem (4) can be
written as follows

2 10 0Az g E AE z r . (5)
System (5) is ill-conditioned that leads to some

difficulties while solving it with the fixed point
iteration method. For convergence of the Newton's
method, it is necessary to somehow obtain good initial
values that in this case is a separate difficult problem.
If we assume in (4) that Fi = (–1)i, k ≤ i ≤ m–1, we find
the polynomial with the maximal length of the stability
interval. In this case the problem of computation of
initial value y0 is solved using values of the Chebyshev
polynomial at extreme points over interval [–2m2, 0],
where m is a degree of polynomial (3). Those values
can be computed using the formula

2[cos(/) 1]iy m i m , 1 1i m . (6)
Substituting (6) in the system (5), get coefficients

of the Chebyshev polynomial, for those |Qm1(x)| 1 on
x[–2m2, 0]. For any k we can take (6) as initial values

and, as numerical results show, there is good
convergence rate in this case. If Fi (–1)i, k ≤ i ≤ m−1,
then the choice of initial values is a separate difficult
problem.

Let us describe a way to solve (5) that does not
require good initial values. Apply the relaxations for
the numerical solution of (5). The main idea of the
relaxations is that for a steady-state problem we run
unsteady-state process which solution settles to the
solution of the initial problem. Consider the Cauchy
problem

1
3 2 1 0() (0)y E E AE A g r y y . (7)

Apparently, after a stationary point of (7) has been
found, the stability polynomial coefficients can be
computed from the system (5). Notice, that due to
using matrix E3 all eigenvalues of the Jacobi matrix of
(7) have negative real components, i.e. problem (7) is
stable. Numerical results show that (7) is a stiff
problem. Applying methods that require evaluation of
the Jacobi matrix may cause difficulties while solving
(7). Therefore, we solve (7) with the second accuracy
order method that uses numerical computing and
freezing the Jacobi matrix (Novikov, 2008). When
applied to the problem y = f(y), y(0) = y0, this method
takes the form

1 1 2

1 2 1

(1) ,
()

n n n n n

n n n n

y y ak a k D E ah A
D k h f y D k k

 (8)

Here, a = 1 − 0.5√2, k1 and k2 are stages of the method,
E is the identity matrix, hn is the integration stepsize,
An is a matrix representable in the form An = fn′ + hnRn +
O(hn

2), fn′ = ∂f(yn)/∂y is the Jacobi matrix of (7), Rn is
the integration stepsize independent matrix. Since
matrix Rn is arbitrary, problems of numerical solving
and freezing the Jacobi matrix can be concerned
simultaneously. To control accuracy of (8) we apply
the inequality

1
2 1() || () || 1 3nj

n nj D k k a a , 1 2nj , (9)
where ε is the required accuracy of calculations, ||∙|| is
some norm in RN, and integer variable jn is chosen
minimum for which inequality (9) is satisfied. The
numerical differentiation step sj, 1 ≤ j ≤ N, is chosen
using the formula sj = max{10−14, 10−7|yj|}. In this case
j-th column an

j of matrix An is computed using the
formula

1 1[() ()]
1

j
n j j N j N ja f y … y s … y f y … y … y s

j N

i.e. it is required to perform N computations of the
right part of problem (7) to define An. An attempt to
use previous matrix Dn is performed after each
successful integration step. To preserve stability
properties of the numerical scheme, on freezing matrix
Dn the integration stepsize is kept permanent.
Recomputation of the matrix is carried out in the
following cases: 1) calculations accuracy is

EUROSIM 2016 & SIMS 2016

980DOI: 10.3384/ecp17142979 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

degenerated, 2) quantity of steps with a frozen matrix
has reached maximal number Ih, 3) the predicted step is
greater than the previous successful one in Qh times.

4 Stability Polynomials Over [‒1, 1]
It is not difficult to see that stability polynomial
coefficients approach zero as m increases. Novikov
(1997) presented coefficients ci, k + 1 ≤ i ≤ m, for
polynomials of a degree up to
m = 13. Now consider an algorithm providing
polynomials with specified properties over the interval
[−1, 1]. In this case coefficients ci grow not that much,
and it is possible to derive polynomials for m > 13.
Denote through |m| the length of stability interval of
m-stage explicit formula of the Runge-Kutta type, i.e.
the inequality |Qm,k(x)| 1 over the interval [m, 0] is
satisfied. Then, substituting x = 1 − 2z/m we can map
[m, 0] into [−1, 1] and obtain polynomial

0
() m i

m ii
Q z d z

 . (10)

Coefficients di, 0 ≤ i ≤ m of polynomial (10) and
coefficients ci, 0 ≤ i ≤ m, of (3) satisfy the relation

,c UVd (11)
where d = (d0, … , dm)T, c = (c0, … , cm)T, U is a
diagonal matrix with elements uii = (–2/m)i–1,
1 ≤ i ≤ m + 1. Elements vij of V are defined by

1 1jv , 1 1j m ; , 1 1, 1ij i j i jv v v ,
2 1i j m ; 0ijv , i j .

Obviously, V represents the Pascal's triangle which
elements are easily computed using a recurrent
formula. Therefore, after deriving the polynomial (10)
over interval [–1, 1], using (11) it is easy to compute
coefficients of the polynomial (3).

Now let us derive polynomial (10). We denote the
extreme points of (10) through z1, … , zm–1, at that
z1 > z2 > … > zm–1. We compute coefficients di,
0 ≤ i ≤ m, under condition that polynomial (10) has
predefined values in extreme points zi, 1 ≤ i ≤ m − 1,
i.e.

() 1 1m i iQ z F i m ,
where F(z) is some given function, Fi = F(zi). For that,
consider the following system of algebraic equations

1
1

() , () 0,1 1 ,

() ,
m i i im

m i
m ii

Q z F z i mQ

Q z id z

 (12)

here the normality conditions Qm(−1) = (−1)m and
Qm(1) = 1 are satisfied.

Rewrite (12) in the form, suitable for calculations on
the computer. For this purpose, denote by y, w, g, and r
vectors with components

j jy z , 0jr , 1 1j m ; 1i iw d , 1 1i m ,

i ig F , 1 1i m ; 1ig , i m ;
(1)m

ig , 1i m ;

through E1 and E2 matrices of dimension
(m + 1)(m + 1) and (m – 1)(m + 1), respectively,
with elements of the form

1 1jje j , 1 1j m ; 2 1/ii
ie y , 1 1i m ,

and through A – a matrix of dimension (m + 1)(m + 1)
with elements

1ij j
ia y , 1 1i m , 1 1j m ; , 1m ja ,

1, 1(1)m j ja , 1 1j m .
Now problem (12) can be written as follows

0Aw g , 2 1 0E AE w r . (13)
For the numerical solution of (13) we use the
relaxations (Novikov, 1997). After the determination
of polynomial (10) coefficients, compute the
coefficients of polynomial (3) using relation (11). Find
value m under assumption that the polynomial to be
obtained corresponds to the first order method,
i.e. c1 = 1. Having written the second relation and
having made necessary transformations, we get

 1
2 11

2 /m
m j jj

v d c

 , 0 22m m .

5 Form and Size of Stability Domains
Let us describe how the choice of values Fi affects the
size and form of a stability domain. If we let Fi = (–1)i,
k ≤ i ≤ m – 1, then the stability interval length is known
and computed using the formula |m| = 2m2. In this case
for given m we get the maximal length of a stability
domain along the real axis. Figure 1 shows level curves
|Qm,k(x)| = 1, |Qm,k(x)| = 0.8, |Qm,k(x)| = 0.6,
|Qm,k(x)| = 0.4, and |Qm,k(x)| = 0.2 on the complex plane
{hλ} for the stability domain on m = 4, k = 1,
F = {–1, 1, –1}. The stability interval length |m| of the
corresponding method equals 32.

In case if the stability interval length is maximal, a
stability domain is almost multiconnected, so rounding
errors may lead to stepping out of the stability domain.
To solve this problem we need to stretch the stability
domain along the imaginary axis in tangency points of
parts of the stability domain. For this purpose, we can
let Fi = (–1)i, 1 ≤ i ≤ m – 1, 0 < < 1. Numerical
results show that if = 0.9, the stability interval length
becomes shorter by 5–8% comparing to the maximal
possible length equal to 2m2. At that, the stability
domain stretches along imaginary axis at the tangency
points. This provides better stability properties of the
corresponding method to rounding errors on
insignificant reduction of the stability interval length.
If we assume = 0.95, then the stability interval length
is reduced by 3–4%. The stability domain of the five-
stage method on = 0.9 is shown in Figure 2. The
stability interval length of this method |m| = 30.00.

As decreases from 1 to 0, roots of polynomial (3)
get closer to each other on the real axis. Therefore, the
stability interval length is reduced. The ellipsises,

EUROSIM 2016 & SIMS 2016

981DOI: 10.3384/ecp17142979 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

which are well-defined on = 1 get closer not
providing essential stretch of the stability domain along
the imaginary axis. Therefore, depending on the
problem to be solved it is reasonable to choose value
from 0.8 to 0.95.

On solving problems, which Jacobi matrices have
eigenvalues with imaginary components and which
solutions have an oscillating behavior, the extension of
a stability interval is not always obligatory. In this
case, the integration stepsize is rather small due to the
accuracy requirements and thus it is more reasonable to
extend a stability domain along the imaginary axis. If
the Jacobi matrix have pure imaginary eigenvalues, it
is necessary to have the condition |Qm,k(x)| = 1 satisfied
over some region on the imaginary axis. This
requirement is satisfied as k increases.

For the first order methods, i.e. for k = 1, it is
possible to make the requirement satisfied choosing
appropriate values of function F. For instance, on
m = 4, k = 1, F = {0.75, 0.80, 0.75} we obtain a
polynomial, satisfying this requirement (Figure 3).
Since m is even and all the values Fi are positive, the
graph of the polynomial does not cross the real axis, at
that, polynomial has two pairs of complex conjugate
roots. Therefore, the stability domain stretches along
the imaginary axis and some region of the imaginary
axis belongs to the stability domain. The stability
interval length equals 2.89. On reducing values Fi the
length of a stability domain along the real axis gets
greater. While further reducement of values Fi the
stability interval length |m| also becomes greater but
the region on the imaginary axis belonging to the
stability domain becomes less. Therefore, for
developing first order methods aimed at solving
oscillating problems, it is reasonable to choose stability
polynomials which have a couple of complex
conjugate roots in a complex plane {hλ} nearby the
origin of coordinates. At that, values Fi that correspond
to these roots are needed to be chosen close to 1, so
that the stability domain has the maximal region of the
imaginary axis in it.

Figure 1. Stability domain on parameters m = 4, k = 1,
F = {–1, 1, –1}.

Figure 2. Stability domain on parameters m = 4, k = 1,

F = {–0.9, 0.9, –0.9}.

Figure 3. Stability domain on parameters m = 4, k = 1,
F={0.75, 0.80, 0.75}.

6 Numerical Results
The numerical results show that coefficient сm of
polynomial (3) reduces as m grows. In particular, on
m = 13 and k = 1 value сm is of the order of 10–26.
It is difficult to solve problem (7) for m > 13 due to
rounding errors. Numerical results of solving (11)
show that polynomial (10) coefficients di, 0 ≤ i ≤ m,
grow in magnitude simultaneously with m. In
particular, on m = 13 value max0im|di| is of the order
of 105, and on m = 25 of the order of 109, i.e. di grow
slower than ci. We transit from polynomial (10)
coefficients to coefficients of (3) using (11) after (13)
has been solved. This allows to compute the
coefficients of stability polynomials of a degree up to
m = 27.

It is difficult to solve problem (11) with double
precision for m > 27 due to the appearing rounding
errors. The algorithm using the "Quade-Double
Precision Library" (described in (Hida, 2000)) was
developed to compute the stability polynomials
coefficients with greater m.

The "QD Precision Library" allows performing
calculations with higher accuracy. While the standard
data type 'double', allowing to represent numbers with
double precision, is confined to 53 bits of the binary
mantissa and provides precision about 16 decimal
numerals, numbers of the data type 'dd_real' from the

EUROSIM 2016 & SIMS 2016

982DOI: 10.3384/ecp17142979 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

library QD has the 106-bit mantissa that provides
precision about 32 decimal numerals. In fact, the
number of the type dd_real is the software-
implemented sum of two numbers of the type 'double'.
At that, the mantissa of the sum elongates in two times,
but the range of values, presentable in new data type
does not change and the possible values vary from
about 10‒308 to 10308, as for the standard 'double'.
Despite the confinement, accuracy of the
representation of numbers in this diapason increases.

On the implementation of the algorithm for
computation of the coefficients of (8) using the data
type 'dd_real' the main input parameters of the
algorithm − accuracy of calculations ε and
differentiation stepsize sj did not change. The
Chebyshev polynomial values at the extreme points
were chosen for initial conditions. The improved
precision of the numbers representation allowed to
compute polynomial coefficients for m > 27.

7 Conclusions
Authors of this article computed the coefficients for
stability polynomials of a degree up to m = 35 using an
algorithm providing polynomials over the interval
[−1, 1]. These coefficients correspond to the first order
Runge-Kutta methods with specified both form and
size of stability domains. It is shown that the choice of
values of stability polynomials at extreme points
affects form and size of a stability domain. The
proposed algorithm for designing stability domains
increases the efficiency of explicit methods.
Furthermore, it allows to develop algorithms of
alternating order and step for solving problems of
moderate stiffness. If the solution behavior of a
problem which is to be solved is known, then it is
possible to design an integration algorithm with the
stability domain suitable for the given class of
problems.

From our point of view, one of the main future
applications of these results is to use the proposed
algorithm to design numerical methods for solving
ODEs systems. These methods can be included in
libraries for software aimed at computer simulation.

Acknowledgements
This work is partially supported by Russian Foundation
of Fundamental Researches (project №17-07-01513A).

References
G. Dahlquist: A Special Stability Problem for Linear

Multistep Methods. BIT, 3: 23‒43, 1963.
Y. Hida, X. S. Li, and D. H. Bailey. Quad-Double

Arithmetic: Algorithms, Implementation, and Application.
Technical Report LBNL-46996, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, 2000.

E. A. Novikov. Explicit Methods for Stiff Systems.
Novosibirsk: Nauka, 1997. (in Russian)

E. A. Novikov and Y. V. Shornikov. Computer Simulation of
Hybrid Stiff Systems. Novosibirsk: Publishing House of the
Novosibirsk State Technical University, 2012. (in Russian)

A. E. Novikov and E. A. Novikov: L-stable (2,1)-method for
solving stiff non-autonomous problems. Computational
Technologies, 13: 477‒ 482, 2008. (in Russian)

L. M. Skvortzov: Simple way to Design Stability
Polynomials for Explicit Stabilized Runge-Kutta Methods.
Matematicheskoe modelirovanie, 23(1): 81‒86, 2011.

EUROSIM 2016 & SIMS 2016

983DOI: 10.3384/ecp17142979 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

