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Abstract
Ammonia is a widely used chemical, hence the ammonia
manufacturing process has become a standard case study
in the scientific community. In the field of mathematical
modeling of the dynamics of ammonia synthesis reactors,
there is a lack of complete and well documented mod-
els. Therefore, the main aim of this work is to develop
a complete and well documented mathematical model for
observing the dynamic behavior of an industrial ammonia
synthesis reactor system. The model is complete enough
to satisfactorily reproduce the oscillatory behavior of the
temperature of the reactor.

Keywords: modeling, ammonia, reactor, dynamic, simu-
lation

1 Introduction
The control of the ammonia synthesis reactor is an inter-
esting topic in the industrial and scientific community, be-
cause of the importance and the dynamics of it. Mathe-
matical modeling of the ammonia synthesis loop is a com-
mon strategy for understanding and controlling these dy-
namics. Most of the studies are focused on steady state
operation. Simulation of ammonia synthesis reactors for
design, optimization (Baddour et al., 1965; Murase et al.,
1970; Singh, 1975) and control (Shah, 1967; Singh and
Saraf, 1979) has been reported since the late 1960s. How-
ever, studies on reactor instability started a few years ear-
lier (van Heerden, 1953). A few studies have been done on
dynamic modeling of ammonia synthesis reactors. How-
ever, most available models are incomplete in informa-
tion: missing parameter values, missing or incorrect units,
missing expressions for reaction rate due to confidential-
ity, inconsistent thermodynamics and missing operating
conditions. The main objective of this study is therefore to
compile a complete, well–documented and easily accessi-
ble dynamic model purely based on information available
through open publications. The model is used to repro-
duce the oscillatory behavior of temperature which has
been reported especially on manually controlled industrial
reactors (Naess et al., 1993; Morud and Skogestad, 1993;
Morud, 1995; Morud and Skogestad, 1998; Rabchuk et al.,
2014; Rabchuk, 2014).

Considering the few dynamic models that have been
reported, Naess et al. (1993) developed a model for op-

timization and control of the ammonia synthesis process
based on an incident of an ammonia synthesis plant in
Germany. The simulations were verified using the plant
data. For the same incident, Morud (1995), Morud and
Skogestad (1993, 1998) analyzed the instability through
a dynamic model to reproduce the behavior of rapid tem-
perature oscillations observed in the industrial ammonia
reactor system by stepping down the reactor pressure. A
linear dynamic analysis was done on the model. It has
been shown that the cause of the limit cycle behavior of
the reactor was positive temperature feedback from the
heat exchanger and a non-minimum phase behavior of the
temperature response. A feedback controller is suggested
to control this behavior (Morud and Skogestad, 1998).

Rabchuk (2014) and Rabchuk et al. (2014) have devel-
oped a dynamic model for testing the stability of an in-
dustrial ammonia synthesis reactor. The system consisted
of a catalytic bed ammonia synthesis reactor and a heat
exchanger and the oscillations were obtained by stepping
down the feed temperature. A stability analysis was also
done for selected process parameters (Rabchuk, 2014).

This paper consists of a detailed model description in
Section 2, including the assumptions, the topology and the
descriptive model development for the reactor and the heat
exchanger. This is followed by the simulation results and
discussion with a comparison with previous work in Sec-
tion 3. All the values and units for the used parameters
and operating conditions are included in the Appendix.

2 Mathematical Model
The Haber–Bosch process is used to produce ammonia
from the following reaction using an iron based catalyst,

N2(g)+3H2(g)
Fe−−⇀↽−− 2NH3(g) · (1)

Argon (Ar) is also present as an inert gas. The ammonia
synthesis process includes catalytic bed reactors for am-
monia formation with heat exchangers, where the product
gas streams are cooled by the feed gas streams. A simpli-
fied diagram of the reactor configuration is shown in Fig-
ure 1. The reactor is considered to have one fixed catalytic
bed and no bypass or intermediate cooling gas streams for
simplicity. The heat exchanger is considered to be a sim-
ple counter current heat exchanger.

In this system, ṁi and ṁo are the inlet and outlet mass
flow rates of the system, respectively. Ti is the temperature
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Figure 1. A simplified reactor configuration.

of the inlet flow of the heat exchanger. To is the tempera-
ture of the flow out of the heat exchanger, T i

r is the temper-
ature of the reactor inlet and T o

r is the temperature of the
reactor outlet. The volume of the reactor is denoted by V .
The input ṁi and the set point to the reactor pressure con-
troller can be manipulated. Ti and the inlet mole fractions
of various species

(
xi

j

)
are considered as disturbances to

the system. The temperature of the reactor Tr is the output
of interest.

2.1 Assumptions
The following assumptions are used:

• The model is one-dimensional, i.e. the temperature
and molar gradients only vary in the axial direction.

• The Temkin–Pyzhev reaction rate expression is valid
for the system (Murase et al., 1970; Morud and Sko-
gestad, 1998; Froment et al., 2010).

• The discretized reactor volume compartments are
well mixed.

• No heat or mass diffusion in the system.

• Individual gases and gas mixture behave as ideal gas.

• The catalyst activity is uniform throughout the reac-
tor.

• The heat transfer coefficient, heat of reaction and
heat capacities are constants.

• Reactor pressure is controlled perfectly.

2.2 Development of Model
2.2.1 Material Balance
The pressure inside the reactor (p) is considered to be con-
stant. The schematics shown in Figure 2 depicts the dis-
tributed reactor model. For volume compartment V1, the
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Figure 2. A schematic diagram of the distributed reactor model.

mole balance equation can be written as shown in Eq. 2.

d
dt

nr
j
∣∣

V1
= ṅr

j
∣∣

V1−∆V
− ṅr

j
∣∣

V1
+ ṅr,g

j

∣∣∣
V1

(2)

Here, nr
j is the number of moles inside the reactor com-

partment at a given time t, ṅr
j is the rate of moles leaving

the reactor compartment and ṅr,g
j is the rate of generation

of moles inside the reactor compartment. Superscript r
denotes the reactor and subscript j denotes the particular
specie, where j ∈ (H2,N2,NH3,Ar). The rate of genera-
tion can be expressed using the reaction rate r, stoichio-
metric matrix ν and the catalyst mass mc in the reactor
volume,

ṅr,g
j

∣∣∣
V1
= ν j rmc|V1

= ν j r|V1
mc

∆V

V
, (3)

where ν = [-3 -1 2 0]. ∆V is the volume of a reactor
compartment. The rate of reaction (rate of Nitrogen con-
sumption per unit catalyst mass) can be found using the
Temkin–Pyzhev equation (Murase et al., 1970; Morud and
Skogestad, 1998).

r|V1
=

f
ρc

(
k+

pN2 pH2
1.5

pNH3

− k−
pNH3

pH2
1.5

)∣∣∣∣
V1

(4)

where f is the catalyst activity factor, ρc is the packing
density of the catalyst, k+ and k− are the rate constants
of the forward and reverse reactions, respectively, and p j
denotes the partial pressure of the species in the reactor
compartment. Using the Gibbs Free Energy approach at
a constant temperature, the reverse reaction rate can be
expressed as follows (Froment et al., 2010),

k− = k−0 exp
(
−E−

RT

)
. (5)
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Using the chemical kinetics of the reaction, k+ can be
found from the equilibrium constant, Kp,

k+ = k−Kp. (6)

The value for Kp can be computed using available cor-
relations. The Gillespie–Beattie correlation is selected as
the most suitable correlation for this system (Gillespie and
Beattie, 1930). The correlation is

KGB
p = KGB∗

p 10α·p∗ , (7)

where KGB
p is the Gillespie–Beattie equilibrium constant.

The pressure correction coefficient α is given as

α =
0.1191849

Tr|V1

+
91.87212

Tr|2V1

+
25122730

Tr|4V1

, (8)

where Tr is the temperature of the reactor compartment.
The value of the KGB∗

p can be computed from Eq. 9.

logKGB∗
p =−2.69112log Tr|V1

−5.51926×10−5 Tr|V1

+1.84886×10−7 Tr|2V1
+

2001.6
Tr|V1

+2.6899 (9)

The dimensionless pressure p∗ is

p∗ =
p

pσ
, (10)

where pσ is the atmospheric pressure in the given pressure
unit. The relationship between the two rate coefficients is
given by Eq. 11.

Kp = KGB
p

2
(11)

Temperature Tr at reactor compartment V1 can be found by
rearranging the ideal gas law to express the temperature as
shown in Eq. 12.

Tr|V1
=

p ·∆V
nr|V1

R
ε (12)

Here, ε is the void fraction of the catalyst and nr is the
total number of moles in the reactor volume where

nr = ∑
j

nr
j, (13)

and R is the universal gas constant.

2.2.2 Energy Balance
The energy balance equation for volume compartment V1
is

d
dt

(H− pV )|V1
= Ḣ

∣∣
V1−∆V

− Ḣ
∣∣

V1

+ Q̇
∣∣

V1
+ Ẇ

∣∣
V1
. (14)

Assuming no heat flow Q̇, no shaft work Ẇ and constant
pressure, the Eq. 14 can be simplified into

d
dt

H|V1
= Ḣ

∣∣
V1−∆V

− Ḣ
∣∣

V1
, (15)

where H is the enthalpy of the reactor volume at a given
time t, Ḣ is the rate of enthalpy of the flow into/out of the
reactor volume. H can be written using the enthalpies of
individual components of the mixture,

H|V1
= ∑

j
nr

jH̃ j

∣∣∣∣∣
V1

+ mcĤc
∣∣

V1
(16)

where H̃ j is the molar enthalpy of pure gas j ∈
(H2,N2,NH3,Ar) and Ĥc is the specific enthalpy of the
catalyst. Similarly Ḣ is

Ḣ
∣∣

V1
= ∑

j
ṅr

jH̃ j

∣∣∣∣∣
V1

. (17)

Using Eqs. 2, 16 and 17, Eq. 15 can be developed as
follows,

∑
j

nr
j
dH̃ j

dt

∣∣∣∣∣
V1

+ mc
dĤc

dt

∣∣∣∣
V1

=−∑
j

ṅr,g
j H̃ j

∣∣∣∣∣
V1

+∑
j

ṅr
j
∣∣

V1−∆V

(
H̃ j
∣∣

V1−∆V
− H̃ j

∣∣
V1

)
. (18)

With the use of following approximations,

dH̃ j ≈ c̃p, jdT (19)

H̃1− H̃2 ≈ ¯̃cp(T1−T2) (20)

where c̃p, j is molar heat capacity of each gas and ¯̃cp is the
average molar heat capacity of the gas mixture, the model
can be simplified into

Cp
dTr

dt

∣∣∣∣
V1

= ṅr ¯̃cp
∣∣

V1−∆V

(
Tr|V1−∆V − Tr|V1

)
− ∆H̃rrmc

∣∣
V1
, (21)

where ∆H̃r is the heat of reaction. Here, Cp is the heat
capacity of the reactor compartment,

Cp = ∑
j

nr
jc̃p, j +mcĉp,c, (22)

where ĉp,c is the specific heat capacity of the catalyst.
Taking the time derivative of ideal gas law with constant

pressure and then substituting the expression in Eq. 21 for
the term dTr

dt will lead to the Eq. 23,

ṅr|V1
= ṅr|V1−∆V + ṅr,g|V1

+
nr

TrCp

∣∣∣∣
V1

[
ṅr ¯̃cp

∣∣
V1−∆V(

Tr|V1−∆V − Tr|V1

)
− ∆H̃rrmc

∣∣
V1

]
(23)
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which can be re-arranged into

TrCpṅr,g∣∣
V1
− ∆H̃rnrrmc

∣∣
V1
= TrCpṅr

∣∣
V1

− ṅr|V1−∆V

[
TrCp

∣∣
V1
+ ¯̃cp

∣∣
V1−∆V

nr|V1(
Tr|V1−∆V − Tr|V1

)]
. (24)

This can be written in matrix form,

b = A · ṅr (25)

where A ∈ RN×N and ṅr,b ∈ RN×1. Here N is the num-
ber of reactor compartments in the reactor. If all compart-
ments are considered to have equal volumes of ∆V with
N = Vr

∆V , then

b1 = TrCpṅr,g∣∣
∆V
− ∆H̃rnrrmc

∣∣
∆V
+ ṅr|0[

TrCp
∣∣

∆V
+ ṅr ¯̃cp

∣∣
0

nr|∆V (Tr|0− Tr|∆V )
]

(26)

bi = TrCpṅr,g∣∣
i∆V
− ∆H̃rnrrmc

∣∣
i∆V

,

i ∈ {2,3, ...,N} (27)

and,

Ai,i = TrCp
∣∣

i∆V
, i ∈ {1,2, ...,N} (28)

Ai,i−1 =− TrCp
∣∣

i∆V
− ¯̃cp

∣∣
(i−1)∆V

nr|i∆V(
Tr|(i−1)∆V − Tr|i∆V

)
, i ∈ {2,3, ...,N}. (29)

Solving Eq. 25 gives ṅr, and then ṅr
j can be found from

ṅr
j
∣∣

V1
= xr

jṅr
∣∣

V1
. (30)

Here, xr
j is the mole fraction, which can be found using the

mole numbers.

x j
∣∣

V1
=

n j
∣∣

V1

∑
j

n j
∣∣

V1

(31)

2.2.3 Heat Exchanger
The heat exchanger is considered as a standard counter-
current heat exchanger with steady state heat transfer. The
energy balance equation can be written as

dTc

dx
=

UA
ṁiĉi

pL
(Th−Tc) , (32)

and
dTh

dx
=

UA
ṁoĉo

pL
(Th−Tc) (33)

where Th, Tc are the temperatures of hot (outlet stream of
the heat exchanger) and cold (inlet stream of the heat ex-
changer) streams at time t, respectively. U is the over-
all heat transfer coefficient of the heat exchanger and A is
the total heat transfer area of the heat exchanger and ĉi

p
and ĉo

p are the specific heat capacities of the inlet and out-
let gas mixtures, respectively. L is the length of the heat

exchanger and x is the position along the heat exchanger
where x = [0,L].

Assuming that ṁoĉo
p and ṁiĉi

p have the same values, and
UA

ṁiĉi
p
is independent of x, Eqs. 32 and 33 can be simplified

further to give an explicit expression for the reactor inlet
temperature as

T i
r =

Ti +
UA

ṁiĉi
p
T o

r

1+ UA
ṁiĉi

p

. (34)

Similarly, the expression for the outlet temperature of the
heat exchanger is

To =
T o

r + UA
ṁiĉi

p
Ti

1+ UA
ṁiĉi

p

. (35)

3 Simulation Results and Discussion
3.1 Simulation Results
The mathematical model was simulated using the Python
odeint solver with the use of the nominal values given
in Appendix. Different number of volume compartments
were tested to find the lowest number of volume compart-
ments which sufficiently represents the system, and 150
volume compartments are selected. To obtain the oscilla-
tory behavior of the temperature, the inlet temperature to
the heat exchanger (Ti) was stepped down from 350◦C to
230◦C.

The temperature transient for 150 volume compart-
ments is shown in Figure 3, depicting the change of tem-
perature as uniform oscillations at the exit of the reactor
with time, when the feed temperature (the inlet to the heat
exchanger) was stepped down by 120◦C. Initially, the re-
actor operated at steady state with a temperature of 350◦C.
Then at t = 0.125 hr, the temperature is reduced by 120◦C.
The system became unstable and showed oscillatory be-
havior. Temperature oscillations have a period of about 12
minutes and a maximum amplitude of about 320◦C.

When the feed temperature decreases, the temperature
at the reactor inlet also decreases due to the decreased heat
transfer. This will affect the temperature at the exit of the
reactor due to two mechanisms, which are the direct heat
transfer from the gas and the change of heat of reaction of
the exothermic reaction. The latter is known to be faster
than the former (Morud and Skogestad, 1993). Therefore
at first, the rate of ammonia conversion decreases leading
to an increase of reactant concentration and total number
of molecules in the first few reactor compartments, which
will decrease the outlet temperature of each reactor com-
partment. This can be seen from the number of moles and
the outlet temperature transient of the volume compart-
ments 1 and 5 in Figure 4. A sudden reduction of number
of molecules with the temperature reduction can be ob-
served for the volume compartments 10 and higher. This
may be due to the combined effect of the faster reduc-
tion of NH3 molecules and slower increase of N2 and H2
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Figure 3. The temperature transient for 150 volume compartments, when a decrease in heat exchanger inlet temperature (Ti) from
350◦C to 230◦C was done at t = 0.125 hr.

(a)

(b)

Figure 4. The total number of moles (4a) and the temperature
(4b) with time, for different volume compartments along the re-
actor. Here ‘vol’ stands for the volume compartment number.

molecules. However, this gives a sudden increase to the
exit temperature. The temperature of the reactor compart-
ments along the reactor will increase due to the exother-
mic reaction of ammonia conversion. Therefore, the inlet
temperature to the reactor will again increase by the heat
transfer from the reactor exit streams. This dual effect of
rate of reaction and the heat transfer will eventually result
in an oscillatory behavior of number of moles in the reac-
tor compartments leading to the same cyclic behavior in
the outlet temperature of reactor compartments.

However, to obtain an optimum stabilized reactor per-

formance, controlling of the temperature to the heat ex-
changer inlet will not be enough. The composition of feed
gases, feed flow rate, feed temperature to the reactor in-
let and the pressure along the reactor would be useful as
monitoring measurements (Shah, 1967).

3.2 Comparison with Previous Work
The model developed by Naess et al. (1993) includes a re-
actor with three beds, an internal heat exchanger, an exter-
nal heat exchanger, a compressor and a separator. A pres-
sure drop is considered as a pressure drop across valves.
Spatial discretization of states along the reactor beds is
also done. Their model was verified using the plant data.
However, the main objective was to test different control
strategies.

The model used by Morud and Skogestad (1998) also
consist of three beds in series with fresh feed make–up be-
tween each bed and pre–heating of feed with the effluent.
Partial differential equations are used considering spatial
discretization of temperature and the ammonia concentra-
tion in one direction. A dispersion coefficient is used for
finding the finite heat transfer rate between the gas and the
catalyst. The pre–heater is same as in this work, a steady
state counter current heat exchanger, but the model used
the Number of Transfer Units (NTU) approach with pre–
heater efficiency. The temperature instability is obtained
by changing the pressure of the reactor from 200 bar to
less than 170 bar while the feed temperature was kept con-
stant at 250◦C. It is stated that the same behavior could
be observed by changing the temperature from 250◦C to
about 235◦C while keeping the pressure constant at 200
bar, which is also observed in this work.

The reactor system used by Rabchuk (2014) and
Rabchuk et al. (2014) consists of a reactor and a heat ex-
changer as in this study. This is due to the assumption that
the temperature oscillations occur due to the reactor–heat
exchanger system, which is proven true. The mole num-
bers of species in the reactor and the heat flow through the
heat exchanger is kept as states unlike in previous models,
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where the concentration and temperature along the reactor
beds were the states. The heat exchanger model includes
dynamics and the Logarithmic Mean Temperature Differ-
ence (LMTD) approach with an approximation to the tem-
perature difference. Instead of discretized partial differen-
tial equations, sets of ordinary differential equations have
been used for 200 elementary volumes. The details of the
reaction rate is not stated. Similar oscillatory behavior of
temperature has been obtained by changing the tempera-
ture of the inlet to the system from 250◦C to 200◦C.

The topology used in this work is similar to that of
Rabchuk et al. (2014), and simpler than the topology of
most other work. Only the number of moles in the reactor
compartments are kept as states via species balances. The
heat exchanger model is explicit with respect to the tem-
perature, which simplifies the model compared to other
work where an implicit model based on LMTD is used.
Assuming ideal gas, and perfectly controlled pressure al-
lows for eliminating the energy balance to compute the
exit flow rates. All the data with values and units are well–
documented.

4 Conclusions
A mathematical model is developed for observing the dy-
namic behavior of an industrial ammonia synthesis reactor
system which includes one reactor and a heat exchanger.
All the data used in the simulation are taken from open
literature and are presented in this work. The model is
simple, but complete enough to satisfactorily reproduce
the oscillatory behavior of the temperature of the reactor.

To obtain more accurate results, the model could be
modified using the temperature dependent variables which
are assumed as independent in this work and using more
accurate catalyst activity values for the appropriate parti-
cle size of the catalyst.
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Appendix: Data
Parameters and operating conditions used for the simula-
tion:

Parameters

A Heat transfer area (Morud,
1995)

283 m2

c̃p Molar heat capacity of gas
mixture (Morud, 1995)

35500 J
kmol·K

ĉp,c Specific heat capacity of cata-
lyst (Morud, 1995)

1100 J
kg·K

Cp,c Total heat capacity of catalyst
mcĉp,c

138.4×106 J
K

∆Hr Enthalpy of the reaction
(Rabchuk et al., 2014)

−92.4×106 J
kmol

E− Activation energy of reverse
reaction (Murase et al., 1970;
Morud and Skogestad, 1998)

1.98464×108 J
kmol

ε Void fraction of catalyst
(Rabchuk et al., 2014)

0.42

f Catalyst activity factor
(Morud and Skogestad, 1998)

4.75

k0
− Pre–exponential factor of re-

verse reaction (Murase et al.,
1970; Morud and Skogestad,
1998)

2.5714×1016 kmol·atm
1
2

m3·h

mc Total mass of catalyst ρcV 125840 kg
MAr Molar mass of Ar atom 39.95 kg

kmol
MH2 Molar mass of H2 molecule 2.016 kg

kmol
MN2 Molar mass of N2 molecule 28.02 kg

kmol
MNH3 Molar mass of NH3 molecule 17.034 kg

kmol
N Number of reactor compart-

ments (Decided after a few tri-
als)

150

ν Stoichiometric matrix
[H2 N2 NH3 Ar]

[-3 -1 2 0]

pσ Atmospheric pressure 1.01325×105 Pa
R Universal gas constant 8314 J

kmol·K
ρc Packing density of catalyst

(Rabchuk et al., 2014)
2200 kg

m3

U Overall heat transfer coeffi-
cient (Morud, 1995)

1.9296×106 J
h·m2·K

V Volume of the reactor
(Rabchuk et al., 2014)

57.2 m3

Operating Conditions

ṁi Mass flow rate - reactor inlet
(Rabchuk et al., 2014)

67.6 kg
s

p Controlled reactor pressure
(Rabchuk et al., 2014)

178×105 Pa

Ti Feed temperature (heat ex-
changer inlet) (Rabchuk et al.,
2014)

350 ◦C

xi
H2

Mole fraction of H2 at reactor
inlet (Rabchuk et al., 2014)

0.6972

xi
N2

Mole fraction of N2 at reactor
inlet (Rabchuk et al., 2014)

0.24

xi
NH3

Mole fraction of NH3 at reac-
tor inlet (Rabchuk et al., 2014)

0.0212
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