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Abstract
Industrial systems are being rapidly innovated due to re-
cent information technology of IoT and fruitful results of
artificial intelligence. We discuss roles of big data tech-
nologies and soft computing to optimize industrial sys-
tems and to design robust systems through image cod-
ing. We show a code book (CB) design for vector quan-
tization (VQ) to discuss roles of soft computing and big
data technology. The CBs were designed by conventional
clustering algorithms. However, these conventional algo-
rithms cannot provide CBs that encode and/or decode im-
ages with high image quality and low bits rate. We show
a perspectives to overcome this problem to integrate big
data technology and soft computing.
Keywords: industrial optimization, big data, soft com-
puting, image coding

1 Introduction
Industrial systems and products are being rapidly inno-
vated due to recent information technology and fruitful
results of artificial intelligence. Nowadays, industrial sys-
tems are managed using the Internet, which is “the Internet
of Things (IoT)". The development of products has there-
fore been dramatically speeded up, and industrial systems
have also become both complex and large-scaled. To de-
velop such systems, it is necessary to make them efficient
for saving energy, downsizing, and reducing costs. Envi-
ronmental compatibility is also important for developing
the industrial systems without slowing down their perfor-
mance as shown in Fig. 1. To design industrial systems
satisfying the above requirements, optimization based on
meta-huristic methods is a key point.

Many decision variables and objectives are involved in
the design of industrial systems. Zhou et al. stated the
problems on the many decision variables and objectives
as follows (Zhou, 2014). (i) The correlation between the
decision variables may be nonlinear, and some objectives
are in conflict with each other. (ii) In meta-heuristic meth-
ods, since one population has a trade-off relationship and
another population has a different trade-off relationship,
there is conflict among populations. (iii) A multi-objective
meta-heuristic method does not work efficiently when the
number of objects is much larger than three, because
Pareto-optimal solutions become intractable. (iv) Further-

more, when the number of objects increase, computational
cost to obtain optimal solutions increases drastically. They
also stated that it is necessary to develop optimization al-
gorithms that can gain problem-specific knowledge dur-
ing the optimization process to overcome the problems.
If there is a large number of decision variables and ob-
jects, such knowledge is essential to focus the search in
a promising direction. Big data technologies can provide
us with such problem-specific knowledge. If we can ob-
tain problem-specific knowledge using big data technol-
ogy and provide a search direction for meta-huristic opti-
mization, we may be able to obtain optimal solutions effi-
ciently (Zhou, 2014).

For large-scaled complex systems, there are large
amounts of uncertainties and impreciseness. They are in-
volved by varying environmental conditions, system de-
generations, or changing customer demand (Zhou, 2014).
Furthermore, to optimize complex systems, the princi-
ple of incompatibility suggested by Zadeh is essential.
The principle states that as the complexity of a system
increases beyond a threshold, precision and significance
become almost exclusive (Zadeh, 1973). Methodologies
comprising soft computing (SC) provide an approximate
and adequate solution for uncertainties, impreciseness,
and problems caused by complexity such as nonlinearity
and non-stationrity (Suzuki, 2013). SC principally con-
sists of fuzzy logic, evolutionary computation, neural net-
works, probabilistic computing, and a rough set. These
methodologies are not exclusive but are complementary.
To obtain the optimal solution efficiently and treat uncer-
tainties related to complex industrial systems, it is neces-
sary to integrate big data technology and soft computing
as shown in Fig. 2. In this paper, we discuss roles of big
data technology and soft computing through image cod-
ing. Furthermore, we give perspectives about integration
of big data technology and soft computing.

We have been studying vector quantization (VQ) for
image coding (Sasazaski, 2008; Miyamoto, 2010). Fig.
3 shows a conceptual diagram of VQ. For VQ, an image
is divided into blocks of pixels such as 4 × 4 or 8 × 8.
Each block of the image is encoded using a CB, which
consists of code vectors (CVs). The nearest CV in the
CB is taken and its index is memorized in the index map.
The indexes are transferred to the destination through a
communication channel to decode images. In decoding,
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Figure 1. Industrial systems and optimization
technology.

Figure 2. Integration of big data technology and soft
computing for optimization.

the CV corresponding to an index is retrieved from the
CB to reconstruct the image. Since a CB determines the
performance of image coding with VQ, design of a CB
is essential for VQ. Various type of images have to be
encoded for sending and have to be decoded for receiv-
ing. Since a huge number of images is being transmitted
through communication channels, we cannot predict the
images to be encoded and/or decoded before VQ. We have
to design a CB that can encode and/or decode images not
only with maintenance of high image quality but also at
a high compression rate. There is an enormous amount
of image data in cyberspace. A huge number of people
release their photographs in websites and also there are
huge image databases. A flood of images satisfies the def-
inition of big data of three “Vs": volume (large datasets),
variety (different types of data from myriad sources), and
velocity (data collected in real time) (Fang, 2015). We use
big data of images to design a CB that is able to encode
and/or decode a variety of images as shown Fig. 4. We
acquire big data of images from the database and analyze
them to extract their features. These features are grouped

Figure 3. Conceptual diagram of vector quantization.

Figure 4. Big data technology and soft computing to design a
CB.

into categories using a clustering algorithm and optimiza-
tion techniques. The categorized features are obtained by
a CB using learning algorithms. The CB designed in this
framework can be expected to encode and/or decode im-
ages with good quality and high compression rate.

In the following section, we show the conventional CB
design methods using clustering algorithms. Four widely
used clustering algorithms were used. As crisp cluster-
ing algorithm k means clustering (KMC) and the enhance
LBG (ELBG) clustering algorithm were used. As fuzzy
clustering algorithms, fuzzy k means (FKM) clustering
and fuzzy learning vector quantization (FLVQ) algorithms
were used. In section 3, computational experiments to
evaluate four the clustering algorithms are shown. The
roles of big data technology and soft computing are also
discussed and surveyed. Finally, the present paper is con-
cluded in section 4.

2 Clustering Algorithms

2.1 k Means Clustering Algorithm

The k means clustering (KMC) algorithm is the most com-
monly used algorithm due to its algorithmic simplicity and
low computational cost. It is also called the LBG algo-
rithm (Linde, 1980). There are two methods of initializa-
tion for the LBG algorithm: random initialization and ini-
tialization by splitting. CB initialization is a very impor-
tant task. For the KMC algorithm, we chose random ini-
tialization. The KMC algorithm assigns each input vector
to a certain cluster. As initial centroids (cluster centers),
the number of c input vectors is chosen. NNC (nearest
neighbor condition) and CC (central condition) are used
for optimal clustering. For NNC, input vector xi is as-
signed to the cth cluster when d(xi,cc) = mincc∈Cd(xi,cc)
is satisfied. We employed the squared Euclidean norm for
clustering such as d(xi,cc) = ∥xi − cc∥2. After all input
vectors have been assigned to respective centroids, new
centroids are updated according to CC. In the KMC algo-
rithm, since the input vector is assigned to only one cen-
troid, which is crisp clustering, the membership function
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takes zero or one.

uc(xi) =

{
1 if d(xi,cc) = mincc∈Cd(xi,cc)

0 otherwise. (1)

Once we obtain the membership function, the centroids
are updated according to

cc =

n
∑

i=1
uc(xi)xi

n
∑

i=1
uc(xi)

, (2)

where c = 1, · · · ,k. Iterative updating the membership
functions and centroids by (1) and (2) minimize MQE es-
timated as

MQE =
1
n

k

∑
c=1

n

∑
i=1

uc(xi)∥xi − cc∥2. (3)

We conclude the KMC algorithm as follows: (i) The num-
ber of k input vectors is randomly selected as initial cen-
troids, (ii) the membership function is computed using (1)
for all input vectors, (iii) after new membership functions
have been obtained, all centroids are updated according to
(2). (ii) and (iii) are repeated as long as the convergence
condition to terminate repetition is not satisfied. In this
paper, the convergence condition is determined as

|MQE(υ −1)−MQE(υ)|
MQE(υ)

< ε, (4)

where υ is the number of iterations and ε = 10−4.

2.2 Enhanced LBG Algorithm
Patane et al. (Patane, 2001) pointed out that there are two
important drawbacks of the LBG algorithm. One draw-
back is an empty cluster that is generated when all input
vectors are nearer to other CVs. This empty cluster is gen-
erated due to inappropriate selection of the initial CVs. As
for the other drawback, suppose that there are two clusters
and three CVs. In the smaller cluster, there are two CVs.
However, there is one CV in the larger cluster. All in-
put vectors in the smaller cluster are approximated well
by the two CVs, but the input vectors in the larger cluster
are poorly approximated by the CV. For optimal cluster-
ing, the larger cluster should include two CVs, while the
smaller cluster includes one CV. However, it is impossi-
ble to implement CV migration for the LBG algorithm.
Patane et al. (Patane, 2001) claimed that this impossible
migration is a great limitation of the LBG algorithm. To
improve the performance of the LBG algorithm, they de-
veloped a migration algorithm for the LBG algorithm that
called the enhanced LBG algorithm.

Patane at al. (Patane, 2001) introduced a quantity of the
utility of CVs, which provides a solution to overcome the
drawbacks stated above. The utility index of the cth clus-
ter is computed as

Dmean =
1
n

k

∑
c=1

Dc, (5)

where Dc is the distortion value of the cth cluster. The
utility index of the kth cluster is

Uc =
Dc

Dmean
,c = 1, · · · ,k. (6)

Migration of CVs from a smaller cluster to a larger cluster
is implemented using the utility of CVs. The algorithm
was named ELBG block, in which the utility of each clus-
ter is estimated and clusters with low utility are found. The
algorithm could implement the “partial distortion" theo-
rem by Gersho (Gersho, 1979).

2.3 Fuzzy k Means Clustering Algorithm
The idea of fuzzy sets was introduced to allow multiple as-
signments of input vectors to CVs, which is implemented
by the fuzzy k means clustering algorithm (FKM). This al-
gorithm is an extension of the KMC algorithm using fuzzy
sets (Bezdek, 1987). To derive the FKM algorithm, NNC
and CC conditions were used to design an optimal clus-
tering algorithm. The membership function is the degree
of belongness of the input vector to a certain cluster. It is
determined so as to minimize total distortion

Dtotal =
k

∑
c=1

n

∑
i=1

uc(xi)
m∥xi − cc∥2 (7)

under the two constraints

0 <
n

∑
i=1

uc(xi)< n (8)

k

∑
c=1

uc(xi) = 1, (9)

where 1 < m < ∞ provides the fuzziness of the clustering.
In the case of m = 1, FKM clustering becomes crisp clus-
tering and m has to be given in advance. The membership
function is computed as

uc(xi) =
1

k
∑

l=1

(
d(xi,cc)
d(xi,cl)

) 2
m−1

, (10)

where d(xi,cc) and d(xi,cl) are the squared Euclidean
norm. If the norm became zero, it was replaced by one to
avoid zero division in our experiments. After the member-
ship function has been updated, the centroids are renewed
according to the CC condition.

cc =

n
∑

i=1
uc(xi)

mxi

n
∑

i=1
uc(xi)

m
. (11)

Karayiannis et al. (Karayiannis, 1995) reported that the
FKM algorithm showed the best performance when m =
1.2, and we therefore used this value for our experiments.
The convergence condition to terminate the repetition was
the same as that in (4). If the repetition was more than
500, we made the repetition terminate in the experiment.
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2.4 Fuzzy Learning Vector Quantization
Tsao et al. (Tsao, 1994) developed a clustering algorithm
with integration of FKM and KMC based on Kohonen’s
learning vector quantization (LVQ) algorithm. This al-
gorithm is fuzzy learning vector quantization (FLVQ). In
FLVQ, transition from fuzzy mode to crisp mode is imple-
mented by controlling the fuzziness parameter (Tsekouras,
2008). This means transition from assignment of multi-
ple clusters to assignment of a single cluster. The objec-
tive function to minimize distortion and constraints during
repetition of the FLVQ algorithm is the same as that in (7),
(8), and (9). According to (Tsekouras, 2008), the FLVQ
algorithm consists of the following stages.
(stage 1) Specify the number of clusters k and the initial
CVs

c1,c2, · · ·ck.
(stage 2) Set the maximum number of iterations tmax,

the initial m0 and the final m f values for
the fuzziness parameters.

(stage 3) for t = 0,1,2, · · · , tmax
(i) The fuzziness parameter
m(t) = m0 −

[
t(m0 −m f )

]
/tmax is computed.

(ii) The membership function is updated as

uc(xi) =
1

k
∑

l=1

(
d(xi,cc)
d(xi,cl)

) 2
m−1

, (12)

where m is m(t). We used the squared Euclidean norm
for d(xi,cc) and d(xi,cl). If the norm became zero, it was
replaced by one to avoid zero division in our experiments.

(iii) The CVs are updated using new membership
functions as

cc =

n
∑

i=1
uc(xi)

mxi

n
∑

i=1
uc(xi)

m
, (13)

where m is m(t).
(iv) The repetition terminates when the following

condition is satisfied:

k

∑
c=1

∥∥∥ct−1
c − ct

c

∥∥∥2
< ε, (14)

where ε = 10−4.
We used the following parameters for our experiments:
m0 = 1.5, m f = 1.001 and tmax = 100.

3 Performance of Clustering Algo-
rithms and A Role of Big Data Tech-
nology

We choose images and design a CB using those im-
ages to encode and/or decoded images by VQ in ad-
vance. In the set of experiments, we examined the im-

portance of selection of clustering algorithms for design-
ing a CB. Performance of clustering algorithms was esti-
mated. We carried out sets of computational experiments
using 8-bit gray scale images (images used in the ex-
periments were images from CVG-UGR-Image database
http://decsai.ugr.es/cvg/dbimagenes/index.php). In the set
of experiments, two sizes of images were used: 256 ×
256 pixels and 512 × 512 pixels. The images used as
both the learning images and test images are shown in
Fig. 5. These images were segmented into 4× 4 pixels

Airplane Bamboon Bee

Bird Birds Boat

Butterlfy Cat City

Crowd Girlface Gold Hill

Old City Parthnon Peppers

Figure 5. Images used as both learning and test images. There
are two sizes for each image: 256× 256 pixels and 512× 512
pixels.

as a block of pixels. Each block of pixels was treated as
a learning and test vector with 16 dimensions. When the
image is 256 × 256 pixels, there are 4096 learning and
test vectors. These 4096 learning vectors were used to de-
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sign a CB using four clustering algorithms (KMC, ELBG,
FKM, FLVQ). For example, the image “Airplane" was
segmented into 4096 blocks as both learning and test vec-
tors. Four CBs were designed using these learning vectors
with four clustering algorithms. We decoded test vectors
using the four CBs, and the performance of the clustering
algorithms was estimated by image quality of the decoded
image. Image quality is estimated in terms of PSNR.

PSNR = 10log10

(
PS2

MSE

)
(dB), (15)

where PS = 255. MSE is the mean square error between
the original image and the decoded image. We performed
experiments with increases in the number of CVs as 64,
128, 256, 512, and 1024.

Fig. 6 shows a comparison of the performance of the
four clustering algorithms. Each value is the average of
PSNRs for 15 test images. As shown in Fig. 6, the
ELBG algorithm showed the best performance for both
image sizes of 256× 256 and 512× 512 pixels. The dif-
ference between the PSNR of the ELBG algorithm and the
PSNRs of the other algorithms increases as the number of
CVs increases. The performance of the FKM algorithm
and that of the FLVQ algorithm were comparable for both
image sizes. The KMC algorithm showed poor perfor-
mance in comparison with the performance of the ELBG,
FKM, FLVQ algorithms. When the number of CVs was
256 and image size was 256× 256, the average PSNRs
of the clustering algorithms were 30.26 dB (KMC), 31.29
dB (ELBG), 30.67 dB (FKM), and 30.79 dB (FLVQ). The
difference between the PSNRs of the KMC and ELBG al-
gorithms was 1.03 dB, which is sufficient to perceive a dif-
ference. Fig. 7 and Fig. 8 show decoded images with CBs
(the number of CVs being 256) constructed by the KMC
and ELBG algorithms, respectively. In Fig. 7, the upper
image is the original “Airplane" image. The middle image
was decoded using CBs designed by the KMC algorithm,
and the bottom image was decoded using CBs designed
by the ELBG algorithm. The difference between PSNRs
in images decoded by CBs constructed by the KMC and
ELBG algorithms was 1.63 dB. The difference between
PSNRs was 1.17 dB in the case of “Girlface" in Fig. 8.
We can perceive a difference in decoded image quality be-
tween the middle and bottom images. For example, in the
“Airplane" image in the middle panel, it is difficult to rec-
ognize the letters on the tail. However, we can clearly
perceive the letters on the tail in the image in the bottom
panel. In the image of “Girlface", there are strong block
noises at the lower jaw and lip in the image in the middle
panel. Block noises at the lower jaw and lip are decreased
in the image in the bottom panel. In the case of image size
being 512× 512, the average PSNRs of the clustering al-
gorithms were 31.22 dB (KMC), 31.67 sB (ELBG), 31.41
dB (FKM), and 31.42 dB (FLVQ). The difference in PSNR
between KMC and ELBG was 0.45 dB, which enables us
to perceive an image difference. The experiments demon-

Table 1. Compression rates when segmentation block size is
4× 4. Overhead in bits/pixel to transmit CB was neglected. In
the table, CVs shows the number of CVs.

CVs 64 128 256 512 1024
bits/pixel 0.375 0.4375 0.5 0.5628 0.625

strated that selection of a clustering algorithm is important
to design a CB.

When segmented block size is 4× 4, the compression
rate is given as shown in Table 1. In practical applica-
tion of VQ, it is necessary to keep compression rate less
than 0.5 bits/pixel. Furthermore, we consider that it is de-
siable to keep image quality (PSNR) more than 35.0 dB.
If PSNR of the compressed image is more than 35.0 dB,
we cannot perceive the difference between original image
and compressed image. However, PSNRs of the compres-
sion images are slightly more than 30.0 dB in the case of
image being 256× 256 as shown in Fig. 6. ELBG algo-
rithm showed the best performance (PSNR was 31.29 dB).
In the case that image was 512×512, PSNRs of decoded
image were slightly more than 31.0 dB. ELBG algorithm
also showed the best performance of 31.67. These val-
ues are far from 35.0 dB. In this sense, conventional CB
design by clustering could not be applicable to encoding
and/or decoding images. To overcome this limitation, we
use big data technology as shown in Fig. 4. We collect a
huge number of images from cyberspace or a database and
extract the features of the images collected. The features
of the images are categorized using a clustering algorithm
and they are optimized to select essential features. The se-
lected features are learned by neural networks (soft com-
puting) to construct a CB. This is the author’s perspective
and opinion for designing a CB based on big data technol-
ogy. So far, we have no evidence showing the performance
of the CB designed by the method described above. We in-
tend to evoke discussion rather than to provide evidences
of big data technology for image coding.

4 Conclusions
Roles of big data technology and soft computing for in-
dustrial optimization were discussed in this paper. It is
necessary to optimize industrial systems for saving energy,
downsizing, and reducing cost. Image coding by VQ was
presented to discuss the necessity of big data technology
and soft computing. CBs to encode and/or decode images
were designed using conventional clustering algorithms.
However, performance of the CBs designed by conven-
tional clustering algorithms did not show decoded image
quality more than 32 dB of average PSNR when the num-
ber of CVs is 256. This image quality is not sufficient
for practical application of image coding. We therefore
showed a perspective using big data technology and soft
computing for discussion.
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Figure 6. Changes in PSNRs with increases in the number of
CVs . PSNR values in the graph were average values for 15 de-
coded test images. The upper panel shows PSNRs when image
size was 256×256 pixels. The lower panel shows PSNRs when
image size was 512×512 pixels.
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Figure 7. Upper image is the original “Airplane" image. Middle
and bottom images were decoded using CBs designed by KMC
and ELBG algorithms, respectively. These images are 256×256
pixels in size.

Figure 8. Upper image is the original “Girlface" image. Middle
and bottom images were decoded using CBs designed by KMC
and ELBG algorithms, respectively. These images are 256×256
in size.
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