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Abstract

In this paper, inspired by the herding behavior of rhinos,

a new kind of swarm-based metaheuristic search
method, namely Rhino Herd (RH), is proposed for
solving global continuous optimization problems. In
various studies of rhinos in nature, the synoptic model
is used to describe rhino’s space use and estimate its
probability of occurrence within a given domain. The
number of rhinos increases year by year, and this
increment can be forecasted by several population size
updating models. Synoptic model and a population size
updating model are formalized and generalized to a
general-purpose metaheuristic optimization algorithm.
In RH, null model without introducing any influences is
generated as the initial herding. This is followed by
rhino modification via synoptic model. After that, the
population size is updated by a certain population size
updating model, and newly-generated rhinos are
randomly initialized within the given conditions. RH is
benchmarked by fifteen test problems in comparison
with biogeography-based optimization (BBO) and stud
genetic algorithm (SGA). The results clearly show the
superiority of RH in searching for the better function
values on most benchmark problems over BBO and
SGA.

Keywords: rhino herd, synoptic model, population size
updating model, benchmark functions, swarm
intelligence

1 Introduction

The current real-world optimization problems are
increasingly more and more complex and they are hard
to be solved by the traditional mathematical methods.
On the other hand, human beings are always learning the
rule of nature, and improve the ability to handle the
complicated problems. By learning the collective
behavior of systems, swarm intelligence (SI) (Cui and
Gao, 2012) is studied.

Since they are put forward, SI-based algorithms are
becoming more and more popular in several engineering
applications because of their promising performances
when addressing different kinds of real-world
optimization problems, such as test-sheet composition

(Duan et al., 2012), target threat assessment (Wang et
al., 2012a), parameter estimation (Li and Yin, 2014),
feature selection (Li and Yin, 2013a), path planning
(Wangetal., 2016a; Wang etal., 2012b), wind generator
design (Gao et al., 2012a,b), nonlinear system modeling
(Gandomi and Alavi, 2011), scheduling (Li and Yin,
2013b), neural network training (Mirjalili et al., 2014a)
and knapsack problem (Zou et al., 2011; Feng et al.,
2017; Feng et al, 2014). Although SI algorithms
involve a great number of methods, particle swarm
optimization (PSO) (Kennedy and Eberhart, 1995;
Mirjalili et al., 20/4b; Wang et al., 2016b;, Wang et al.,
2014c; Zhao et al., 2012, Zhao, 2010; Mirjalili et al.,
2013) and ant colony optimization (ACO) (Dorigo et al.,
1996) are two of the most representative and widely
used ones so far. They are inspired by the social
behavior of bird when searching for food and
remembering paths via pheromone. Recently, inspired
by swarm behavior of different animals, serials of SI
algorithms have been developed and proposed, such as
artificial bee colony (ABC) (Karaboga and Basturk,
2007), elephant herding optimization (EHO) (Wang et
al, 2015a;Wang et al, 2016b) chicken swarm
optimization (CSO) (Meng et al., 2014) bird swarm
algorithm (BSO) (Meng et al., 2015) cuckoo search
(CS) (Yang and Deb, 2009; Li et al., 2013; Wang et al.,
2016c¢c; Wang et al., 2016d;Wang et al., 2016¢ ;Li and
Yin, 2015) bat algorithm (BA) (Yang, 2010; Mirjalili et
al., 2013; Zhang and Wang, 2012; Wang et al., 2015b),
firefly algorithm (FA) (Gandomi et al,2011; Yang,
2010; Wang et al., 2014d; Guo et al., 201/3) ant lion
optimizer (ALO) (Mirjalili, 2015), chaotic swarming of
particles (CSP) (Kaveh et al., 2014) monarch butterfly
optimization (MBO) (Wang et al., 2015¢c;Wang et al.,
2016e;Wang et al., 2016f;Ghetas et al., 2016) krill herd
(KH) (Gandomi and Alavi, 2012; Wang et al., 2013;
Gandomi et al., 2013; Wang et al., 201/4d;Wang et al.,
2014e; Wang et al., 2014f;Wang et al., 2016f;Guo et al.,
2014, Wang et al.,, 2016g;Li et al., 2015) multi-verse
optimizer (MVO) (Mirjalili et al, 2016) dragonfly
algorithm (DA) (Mirjalili, 2016), and grey wolf
optimizer (GWO) (Mirjalili et al.,.2014; Saremi et al.,
2014) These algorithms have been successfully used to
address an array of real-world problems.
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Except for SI algorithms, inspired by the
evolutionary rule of nature, evolutionary algorithms
(EAs) are proposed. Among different kinds of EAs, the
following algorithms are some of the most
representative paradigms, which are genetic algorithm
(GA) (Goldberg, 1998), stud genetic algorithm (SGA)
(Khatib and Fleming, 1998), differential evolution (DE)
(Storn and Price, 1997; Zou et al,,2013; Li and Yin,
2016) earthworm optimization algorithm (EWA) (Wang
et al,2015¢e) biogeography-based optimization (BBO)
(Simon, 2008;Li and Yin, 2012; Saremi et al.,2014; Li
and Yin, 2012) and animal migration optimization
(AMO) (Li et al,,.2014).

Rhinos are one of the largest mammals in the world.
The studies about rhinos have been done in various
aspects, involving rhino’s space use and the increment
of population size. For rhino’s space use, synoptic
model (Horne et al, 2008) is one of the most
representative paradigms that is used to estimate its
probability of occurrence in a given domain associated
with a fixed spatial area (i.e. home range), the spatial
distribution of resources, and the occurrence of other
animals (Horne et al., 2008) which are called herding
density variables (HDVs). With the increment of rhino
number, the resources represented by HDVs and owned
by each rhino individual are becoming less and less.
That is, the fewer recourses, the worse they feel. In our
current work, we use rhino comfort index (RCI) to
represent this feeling. In other words, RCI is used to
measure the goodness of a feasible solution. A good
solution is analogous to a rhino with a high RCI, and a
poor solution is similar to a rhino with a low RCIL.

In this paper, synoptic models and population size
updating models are formalized and generalized to a
general-purpose metaheuristic algorithm. Accordingly,
a new kind of swarm-based algorithm, called Rhino
Herd (RH), is proposed for coping with global
optimization tasks. Null model in synoptic model is a
special kind of model without any influences from
others. In RH, null model is considered as the initial
herding or the herding before updating. This is followed
by rhino modification via synoptic model. Finally, the
population size is updated by some population size
updating model, and newly-generated rhinos are
randomly initialized within the given conditions. The
RH is benchmarked by fifteen test optimization
problems by comparing it with BBO, and SGA. The
results clearly show the superiority of RH in searching
for the better function values on most benchmarks over
BBO and SGA.

The rest of paper is structured as follows. Section 2
reviews the herding behavior of rhinos in nature,
involving synoptic model and population size updating
model. Subsequently, Section 3 discusses how the
herding behavior of rhinos can be used to formulate a
general-purpose metaheuristic algorithm. To fully
investigate the performance of RH algorithm, several
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simulation results comparing the optimal RH algorithm
with other optimization methods on fifteen benchmark
functions, are presented in Section 4. Finally, Section 5
draws some concluding remarks.

2 Herding behavior of rhinos

Rhinos are one of the biggest mammals in the world, and
their weight can reach one ton or more. Rhinos are
herbivorous, and they mainly live on in leafy materials.
The current rhinos only involve five extant species, and
some of the rhinos have two horns, while others have a
single horn. Several researchers have done many studies
of rhinos from various aspects. Synoptic model of space
use and population size updating model are two of the
most representative paradigms.

2.1 A synoptic model of space use

To describe rhino space use, a multivariate model, called
synoptic model, is proposed to estimate a rhino’s
probability of occurrence associated with various
HDVs, such as a fixed spatial area (i.e., home range), the
spatial distribution of resources, and the occurrence of
other animals (Horne et al., 2008). In synoptic model,
s(x) represents the probability density of finding the
rhino at location x during the period of study. For each
location, k£ environmental variables (HDVs) are used as
covariates to model a rhino’s utilization distribution
(Horne et al.,2008). In this model, a null model of space
use fo(x) is applied to describe a rhino’s utilization
distribution without effects from environmental
covariates, which is expressed in the form of an
exponential power model (Horne et al.,2008), shown in

(D).
__ 2 (=g Y
f()(x)_czﬂazr(c)exp{( a j :l M

where I' is the gamma function, u is the center of the
distribution, >0 is the scale parameter, ¢>0 is the shape
parameter, and |[x-u|| is the distance between x and u
(Horne et al., 2008).

Subsequently, a spatially explicit environmental
covariate H(x) is added to the null model fy(x), where
H(x) is defined as a function for describing the
environmental covariate. The function H(x) has various
forms according to its environmental variables to be
described. After introducing one covariate, the synoptic
model can be expressed as

S TBH(x) £, (x)
[/s()+BH (x) f,(x)]

() = @
J

x

where f is an estimated selection parameter
controlling the magnitude of the effect.

Similarly, after introducing k& covariates, the
synoptic model of space use can be expressed as
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The denominator of (3) is hard to handle, as it cannot
be analytically intractable for most combinations of
initial models and environmental covariates (Horne et
al., 2008). As an alternative, the landscape can be
divided into / discrete grid cells, and the denominator of
(3) is therefore calculated as follows:

Ai{fo(xj)lj[(l +ﬂ,-H,(x,-))} ~ J‘x[fo(x)lj[(l +ﬁ'l.Hi(x))} ©)

where 4 is the area of each grid cell.
Accordingly, (3) can be approximated as

s(x) =

3)

L@+ BH,(x))

s =—" 5)
Az{fo(x,)H(Hﬂ,H,-(x,,))}

i=1

More information about synoptic model of space use
can be found in (Horne et al., 2008).

2.2 Population size updating model

The original data from two sites in South Africa is
collected to model the rhino population and predict the
rhino number next year (Cromsigt et al., 2002).
Population density is thus determined. The predicted
rhino number, #(f), and the real population number from
the original data, p(7), have the following relationship:

p(t)=n(t)+&(1) (6)

where £(¢) is an error term between p(¢) and n(f).

3 Rhino herd (RH) algorithm

Here, the herding behavior of rhinos described in
Section 2, involving synoptic model of space use and
population size updating model, is formed to handle
optimization problems.

3.1 Synoptic model

In this section, how to use the synoptic model of space
use to optimize is given. As aforementioned, the
synoptic model is to estimate a rhino’s probability of
occurrence within a given domain. Here, an updated
synoptic model is used to determine the direction of the
search for the next iteration. For the jth HDV of rhino i,
this updated model can be given as

LX) (1+aH, (X)) -
AS [ 0000+ AHX,)]

S(Xi,j)z
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where a; and pfr are the estimated selection
parameter controlling the magnitude of the effect
from H(X); n is the population size. Null model fo(X)
and A are defined as above. Hi(X) and Hi(X) are
defined as functions for describing the related variables
that have influence on rhino i. In our current work, for
the sake of simplicity, we set Hi(Xi )= X , H{(Xix)=Xix.
That is, H(X)=X.

After all the HDVs in rhino i are calculated, the rhino
i is updated as

B {X,+S(X,.)®X,,, rand > 0.5 ®

X,-S(X,)®X,, rand <0.5

where Xinew is the updated rhino, symbol “®
represents pairwise product, and rand is a random
number drawn from a stochastic distribution.

In order to increase the diversity of the population in
the later search, a random term is added to above
equation. Therefore, the updated expression can be
given as

_{X,.+mnd><S(X,.)®Xi, rand > 0.5 )

X,-rand xS(X,)® X,, rand <0.5

It should be noted that for the center « in (1), for the
Jjth HDV in g, it can be calculated as

1 n
b-te3, 10)

3.2 Population size updating model

The rhino population number varies each year, and the
number is generally becoming larger and larger in
nature. This trend can be modeled as above. In this
paper, the exponential model is used to update
population size, which is given as

N, =n,+rxn, (11)
where r is a constant specific growth rate; n; and

n+1 are population size at generation ¢ and 7+1,
respectively.

3.3 RH algorithm

Rhino modification operator is a critical operator in RH
algorithm, which can loosely be given below.

Algori
Begin
Calculate RClIy for null model (1).
for i=1 to n (all the rhinos in the herding) do
Calculate synoptic model S.
Update the rhino i according to S;
end for i

End
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Population size updating is another important
operator that updates rhino population size based on a
certain rule. The exponential model is provided to
calculate the modified population size n'in our current
work ( Section 3.2).

Algorithm 2 P
Begin
Calculate n' as per the population size updating
model.
for i= n+1 to n’' (all the newly-generated rhinos) do
Initialize X; with a randomly generated HDV"".
end for i

End

lation siz atin

According to the analyses above, the schematic
framework of RH algorithm can be described as follows.

Algorithm 3 Rhino Her
Begin
Step 1: Parameters initialization. Firstly, the
problem-dependent solutions are mapped to
HDVs and rhinos. In addition, an elitism
parameter, and the parameters used in null model
and population size updating models (see Section
4.1) are initialized.
Step 2: Generate a group of rhinos at random X

RH) Algorithm

Each rhino represents a feasible solution to the
problem of interest.

Step 3: Map each rhino to RCI. Each rhino in initial
herding is mapped to RCI that can measure the
goodness of the rhino.

Step 4: Calculate RCIy. The RCIy of null model at
each generation is calculated. Here, the herding
before being modified can be considered as null
model at each generation, followed by modifying
each rhino based on this null model.

Step 5: Rhino modification. For each rhino in the
herding, it is modified by synoptic model (
Algorithm 1).

Step 6: Map each rhino to RCI. Each rhino in
newly-generated herding is mapped to RCIL.

Step 7: Population size updating model. Update
population size by using updating model.
Rrandomly initialize the newly-generated rhinos
and calculate its corresponding RCI for each
rhino (see Algorithm 2).

Step 8: Stop or not. Go to Step 4, if the termination
criterion is not satisfied; terminate the
optimization process, if the predefined
termination criterion is reached.

End

In Algorithm 3, a rhino comfort index RCI: X—R is
a measure of goodness of the solution that is represented
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by the rhino. It should be mentioned that, for most
population-based metaheuristic algorithms, RCI is
called fitness, and its value is the fitness value. A rhino
comfort index of null model RCly: N—R is a measure of
goodness of the solution that is represented by the Xo.
Here, RCly is a special RCI that is different with other
RCI. Null model can be formulated in different forms,
and there are various ways of calculating RClp.

4 Simulation results

In this section, the RH is verified by benchmark
evaluation in comparison with two methods (BBO
(Simon, 2008), and SGA (Khatib and Fleming, 1998) on
fifteen test problems ( Table 1).

In order to obtain fair results, all the implementations
are conducted under the same conditions shown in
(Wang et al., 2014a).

The same parameters for RH are set as follows: the
area of each grid cell A=1; the constant specific growth
rate 7=0.04; the scale parameter a=2831; the shape
parameter ¢=0.53; for rhino i, its estimated selection
parameter a; and f; are set to be its RCI and 1/RCI,
respectively. The numbers of generations and initial
population size are set to 50 and 50, respectively. In
other methods, their parameter settings can be found in
(Wang et al., 2014a,b) The dimension is twenty.

Table 1. Benchmark functions.

No. Name No. Name

FO1 Ackley F09 Schwefel 2.26
F02 Alpine F10 Schwefel 1.2
F03 Griewank F11 Schwefel 2.22
F04 Holzman 2 function F12 Schwefel 2.21
FO5 Levy 8 F13 Step

F06 Pathological function | F14 Sum function
FO7 Perm F15 Zakharov

FO8 Powell

Metaheuristic algorithms are always based on certain
stochastic distribution. Therefore, 50 independent runs
are implemented ( Table 2). In the following
experiments, the best solution is highlighted in bold.

From Table 2, RH method has demonstrated its best
performance on FO1, FO5, FO8, and F12-F14. At the
same time, RH is able to find the best solutions with the
smallest Std (standard deviation) on F02, FO7, and F11.
BBO has shown its best performance on F09-F10. Both
of them perform significantly better than SGA. This
indicates that RH has a powerful search ability, and can
find the fittest solution on most benchmarks.
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Table 2. Fitness values obtained by three methods.

Test | BBO RH SGA

FOl | 6.1940.85 3.84+0.18 7.80£1.02

F02 | 1.68+0.85 2.07+0.60 3.55£1.70

FO3 | 9.98+4.32 10.59£19.24 7.91£2.97

FO4 | 398.30+£669.60 7.01E4+5.88E4 159.80+109.70
FO5 | 2.64+1.38 2.40+0.42 2.52+1.54

FOG6 | 5.22+0.55 2.77+0.49 4.98+0.56

FO7 | 6.79E51+2.19E51 | 6.01E51+1.33E36 | 6.01E51+1.33E36
FO8 | 167.00£97.03 8.82+5.21 100.10+55.83
FO9 | 926.40+258.80 4.52E3+4%3.70 1.04E3£268.20
FI0 | 1.16E4+4.00E3 | 3.74E4+1.05E4 1.62E4+4.89E3
FI1 | 3.74x1.75 4.16+0.86 11.94+3.34
FI12 | 48.1849.23 1.84+0.26 43.18+13.20
FI3 | 3.30£1.23 1.12+0.33 526+1.54

F14 | 89.80426.06 6.88+2.87 121.20+52.95
FI5 | 137.70£43.15 217.50+174.50 224.40+65.28

Moreover, the convergent processes of three most

representative algorithms on the most representative
benchmarks can be given as follows ( Figures 1 and 2).

Figure 1 shows the convergent history of FO1-F02,
F05, and FOS8. For F1 case, it can be easily observed that
RH11, BBO and SGA rank the first, the second, and the
third, respectively. For FO2 and FOS5 cases, although all
the three algorithms converge to the similar final
solutions, RH has the fastest convergent speed, and it
can find the best solution within ten generations. For
FO8 case, RH has a stable convergence speed, and it can
find the final best solution after BBO and SGA have
been trapped into the premature status.

Fitness
Fitness

Figure 1. Convergent curves of the benchmarks FO1, F02,
FO05, and FO8.

Figure 2 shows the convergent history of
benchmarks F11-F14. For F11 and F13 cases, although
all the three algorithms can produce similar final
solutions, RH has the fastest convergence speed, and it
can find the best solution within ten generations. For
F12 case, it is clearly visible that RH has a much better

solution than BBO and SGA, which have similar
optimization performances. For F14 case, RH can
eventually find the optimal solution.

80

60

40

Fitness

20

150

Fitness
Fitness

Figure 2. Convergent curves of the benchmarks F11-F14.

5 Discussions and conclusions

We have shown how rhino herding, the research of
synoptic model and population size updating model, can
be used to develop a novel algorithm for optimization.
This new family of algorithms is called RH, which has
been benchmarked by fifteen test problems. The results
have shown RH’s competitive performance in
comparison with other two state-of-the-art algorithms.
Unfortunately, we cannot conclude RH algorithm is
universally better than other two algorithms, or vice
versa, as per the no free lunch theorem. However, the
good performance of RH algorithm in comparison with
two other algorithms on fifteen benchmarks
demonstrates that it is well capable of addressing
practical problems successfully.

In our current work, the influence of some herding
density variables is exerted on the null model. Other
factors, such as the ratio of male and female, the sun,
and landscape will be included in the improved synoptic
model as herding density variables.

Another bottleneck of many algorithms is
computational  requirements. How to reduce
computation efforts is highly worthy of in-depth study
for an algorithm.
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