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Abstract
In this paper, we investigate static stability for a double-
spiral mobile robot. It is a new locomotion mechanism
suitable for the wetlands that suppresses damage to vege-
tation and does not sink in the mud. The robot walks on
the spirals, which play the role of footholds for the mobile
robot. To overcome rough terrain locomotion, we need to
ensure the stability of the walking motion on the sloping
ground. In this study, we applied normalized energy sta-
bility margin (NESM) to the double-spiral mobile robot in
order to investigate its static stability over rough terrain.
The procedure to derived the NESM value were shown
from the point of view of the vector calculation. In the
numerical case study, we drew NESM maps to investigate
the static stabilities when the inclination of the slope var-
ied or the pose and orientation of the robot changed. We
adopted a moment in the swing phase where the stability
of the robot’s balance was easily lost. We found that the
robot has sensitive directions in terms of stability. Plan-
ning the route and motion of the robot in the rough terrain
could help maintain its stability.
Keywords: wetland, field survey, mobile robot, slope,
balance

1 Introduction
The problem regarding the reduction of wetlands areas has
come to occupy an important position in environmental
conservation (Nakamura et al., 2004; Fujita et al., 2009).
To investigate the mechanisms of wetlands degradation
trends, much effort is put into field surveys (Musgrave
and Binley, 2011; Riddell et al., 2010). The survey area
where we focus is deeply covered with alder forests or
Sasa (veitchii) and the ground surface is formed by a thick
pile of withered Sasa stems on the muddy soil and water.
It is difficult for researchers to walk around huge areas in
the wetlands with large quantities of survey tools. There-
fore, a technical support system for field surveys in the
wetlands is required.

Recently a double-spiral mobile architecture has been
proposed (Hanajima et al., 2009, 2016). It is a new lo-
comotion mechanism suitable for the wetlands that min-
imizes damage to the vegetation and does not sink in
the mud. It consists of two pairs of spirals and one

quadruped mobile robot. Each pair of spirals plays the role
of footholds for the mobile robot. By traveling at a higher
distance from the ground over the spirals, the robot can
avoid strong resistance from the dense and hard-stemmed
plants. In addition, because the spiral is supported by sev-
eral contact points on the ground and intermediates be-
tween the robot and the muddy ground, the robot never
touches the ground and barely sinks.

The quadruped mobile robot has gantry-shaped legs for
static walking on the spirals. Each of the legs is con-
nected to a body platform with a rotational joint and two
prismatic joints in perpendicular arrangement. Therefore,
while all four legs maintain their position, the body plat-
form can change its position and orientation in the hori-
zontal plane while staying level. This provides the body
platform with the capacity for arbitrary planar motion in
its own plane.

The static walking motion of the double-spiral mobile
robot on the flat ground has been performed successfully
in numeric simulation. However, rough terrain is inherent
in the survey area. We need to account for the stability of
the walking motion on rough terrain.

Several stability criteria have been proposed in the
field of multi-legged and multi-wheeled systems. For
quadruped robots, stability margin was proposed in a very
early stage (McGhee and Frank, 1968). It represents
the distance between the projection of the center of grav-
ity (COG) on the ground and the border of the support-
ing polygon. The tip-over stability margin, which is also
called force-angle stability margin, is given by product of
the magnitude of the net force acting on the COG and the
minimum of the angles formed between the direction of
the net force and the direction of the tip-over axis nor-
mal (Papadopoulos and Rey, 1996). Energy stability mar-
gin evaluates the minimum potential energy required to
tumble the robot (Messuri and Klein, 1985). Normalized
energy stability margin (NESM) is one of the improve-
ments of it (Hirose et al., 2001). It is given by divid-
ing the robot’s weight into the energy stability margin for
normalization; that is, it becomes the height difference of
the COG. In this research, we deal with static stability in
walking motion. We do not have to consider the forces
other than the gravity acting on the robot. Therefore, we
decided to employ NESM for the stability criteria, which
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Figure 1. Whole image of the double-spiral robot and definition
of links.

only consider the height of the COG of the robot (Kaneko
and Hanajima, 2016).

For a quadruped robot, a swing phase is one of the
least stable postures in the walking motion. A creep gait
is a well-known static gait in which only one leg can be
lifted at any given time (McGhee and Frank, 1968). For a
quadruped, when one leg is lifted, the remaining three legs
must support the weight of its body. The ground contact
points of the three legs form a supporting polygon. Be-
fore the swing leg is lifted, the COG of the robot needs to
be inside of the support polygon. At the same time, to en-
hance static stability, it is expected that the COG is located
where its NESM is maximized.

In this study, we investigate the NESM values of the
double-spiral mobile robot in the swing phase on several
gradients of slope from the numerical case study. The
knowledge obtained by the case study can be applied to
the stable motion planning for the robot’s static walking.

In the rest of this paper, first, we review the structure of
the double-spiral mobile robot and its kinematics. Next,
we introduce the NESM, followed by the numerical case
study. Then, we show the results and discuss the potential
of the stability of the robot.

2 Structure and Kinematics of the
Double-Spiral Mobile Robot

2.1 Structure
Figure 1 shows the structure of the double-spiral mobile
robot in the dynamics simulator. As mentioned in the in-
troduction, it consists of two pairs of spirals and one mo-
bile robot. The mobile robot possesses four legs with a
gantry-shaped mechanism. Links 11, 21, 31, and 41 move
in the direction of travel with respect to the platform with
prismatic joints J11, J21, J31, and J41, respectively. Note
that the joints are embedded and invisible in Figure 1. We
use 2 digits to specify the links and joints of the robot. The
first digit denotes a leg number; Leg 1 represents front left;
Leg 2, rear left; Leg 3, front right; and Leg 4, rear right.

Figure 2. Stance phase and swing phase produced by motion of
a gantry-shaped mechanism.

Hereafter, we only explain Leg 1, because every leg has
the same structure. Another prismatic joint, J12, is in-
stalled at Link 11, perpendicular to the traveling direction.
It drives Link 12. The rotational joint, J13, rotates Link
13, which is a part of the legs. As a result, each leg has
two prismatic joints orthogonal to each other and one ro-
tational joint for 3 DOF motion in a plane.

As shown in Figure 1, the end link of each leg has a
gantry-shaped mechanism. A pair of vertical links, Links
14 and 15, stands on the spiral in parallel. The distance
between them is adjustable by the prismatic joints, J14
and J15. They are driven by one actuator, symmetrically.
A gripper is mounted on the lower end of every vertical
link. Each gripper requires special mechanisms to grip the
rounded rim of the spiral stably so as not to slide down
in the stance phase. Once the gripper holds the spiral, the
leg needs to maintain its foot position even if the platform
moves toward a different posture. In the creep gait, Links
14 and 15 take the opening motion in the swing phase and
the closing motion in the stance phase, as shown in Fig-
ure 2. In the stance phase, the grippers must hold the spiral
tightly.

Note that the working space of the grippers mounted on
Link 14 and Link 15 forms the plane parallel to the body
platform as well. When the position of the spiral and the
working space of the grippers are given, their intersections
indicate a pair of points to be gripped. Connecting the pair
of points forms a line segment. By aligning Link 13 par-
allel to the line segment and making the distance between
Links 14 and 15 equal to the length of the line segment,
each gripper is located at the point to be gripped. In to-
tal, the leg mechanism should have enough DOF for the
gripper to control a specific position. Since the four legs
have the same properties, the position and posture angle
of the body platform can be decided within the plane par-
allel to the grippers’ working space independently of any
gripper’s position.

In total, the robot has enough DOF for its body to move
in the desired direction. This function is also important
to maintain the balance of the robot. To maintain its bal-
ance, the platform of the robot needs to be able to move
arbitrarily in the horizontal plane as the NESM value be-
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Figure 3. The coordinate system and joints for one leg of the
robot.

comes larger, even though the grippers continue to hold
the same places on the spirals.

2.2 Forward kinematics
For the sake of mathematical consideration, we need to
define a coordinate system at each link of the robot. Fig-
ure 3 shows the coordinate systems of the body platform
and Leg 1 from the top view (a) and the rear view (b).
We represent the coordinate system of the body as Σ1 and
each coordinate system of Link 〈a〉 as Σ〈a〉, respectively.
The symbol O〈a〉 denotes the origin of Σ〈a〉, and x〈a〉, y〈a〉,
and z〈a〉 denote the x, y, and z axes of Σ〈a〉, respectively,
according to the right-handed coordinate system. We de-
fine notation of a position vector of a point p with respect
to Σ〈a〉 as a ppp.

Forward kinematics of a robot is usually represented
by homogeneous transformation. The 3×3 block matrix,
which consists of the first 3 rows and the first 3 columns
of a homogeneous transformation matrix, represents a ro-
tation matrix. The 3×1 vector, which consists of the first
3 rows in the fourth column of a homogeneous transfor-
mation matrix, represents a position vector. The position
vector can be used to calculate the working space of a link.

With reference to Figure 3, the homogeneous transfor-
mation matrices between adjoining coordinate systems for
Leg 1 are as follows.

1HHH11 =


1 0 0 −l11
0 1 0 d11
0 0 1 −h11
0 0 0 1

 (1)

11HHH12 =


1 0 0 d12
0 1 0 0
0 0 1 −h12
0 0 0 1

 (2)

12HHH13 =


cosθ13 −sinθ13 0 0
sinθ13 cosθ13 0 0

0 0 1 −h13
0 0 0 1

 (3)

13HHH14 =


1 0 0 −d15
0 1 0 0
0 0 1 −h14
0 0 0 1

 (4)

13HHH15 =


1 0 0 d15
0 1 0 0
0 0 1 −h14
0 0 0 1

 (5)

where aHHHb represents a homogeneous transformation ma-
trix from coordinate system 〈a〉 to coordinate system 〈b〉.
The values of h11, h12, h13, and h14 are the offset distances
in the z1 axis direction between the x1 axis, x11 axis, x12
axis, x13 axis, and x14 axis, respectively. The value of l11
is the offset distance in the x1 axis direction between the
y1 axis and y11 axis. The variables of d11, d12, and d15 are
the joint displacements in the direction of the y1 axis, x11
axis, and x13 axis, respectively. The variable of θ13 is the
joint angle around the z13 axis.

2.3 Gripper positions
The calculation of NESM requires specifying the posi-
tions of the grippers. The position vectors of grippers 1 ppp14
and 1 ppp15 with respect to Σ1 are represented as follows.

1 ppp14 = III3×4
1HHH11

11HHH12
12HHH13

13HHH14 pppO (6)

=

−l11 +d12 −d15 cosθ13
d11 −d15 sinθ13

−h11 −h12 −h13 −h14

 (7)

1 ppp15 = III3×4
1HHH11

11HHH12
12HHH13

13HHH15 pppO (8)

=

−l11 +d12 +d15 cosθ13
d11 +d15 sinθ13

−h11 −h12 −h13 −h14

 (9)

where

III3×4 =

1 0 0 0
0 1 0 0
0 0 1 0

 , pppO =


0
0
0
1

 (10)

The position vectors of the grippers for the other legs
are defined in the same manner.

2.4 COG
The calculation of NESM also requires the COG of the
whole robot. The robot body is divided into three portions
from the aspect of the COG; the body platform, the first
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Figure 4. COG of the platform.

Figure 5. COG of Link 11.

Figure 6. COG of Link 12.

links for the four legs, and the four gantry-shaped legs.
We define the position vectors for each portion as ppp f , pppnm,
and pppnb as shown in Figure 4, Figure 5, and Figure 6, re-
spectively, where n denotes the leg number. The position
vector of the total COG of the whole robot, pppc, is obtained
by the following equation.

pppc =
m f ppp f +∑4

n=1(mnm pppnm +mnb pppnb)

m f +∑4
n=1(mnm +mnb)

(11)

where m f , mnm, and mnb denote the mass of the three por-
tions: the body platform, the first links for the four legs,
and the four gantry-shaped legs, respectively.

3 NESM
In this section, we apply the NESM to the double-spiral
mobile robot on a slope and show the calculation method.

First, we define a reference coordinate frame ΣR in the
field. It is supposed that the double-spiral mobile robot is
located on the slope as shown in Figure 7. The axes xR,
yR, and zR denote the principal axes of ΣR. The positive
direction of zR is upward to the vertical line. The plane
consisting of xR and yR is set arbitrarily.

Figure 7. Reference frame and relationship of frames.

Figure 8. Illustration of normalized energy stability margin.

To derive NESM, the height information in the refer-
ence coordinate frame is mandatory. We define the ho-
mogenous transfer matrix RHHH1 from ΣR to Σ1, which rep-
resents the position and orientation of the whole robot. We
can obtain the position vectors with respect to ΣR by pre-
multiplying the position vector with respect to Σ1 by RHHH1.
After the position vectors of the COG and the grippers of
the four legs are obtained, their coordinates are converted
to those with respect to ΣR using RHHH1. Hereafter, we use
the notation pppc for the position vector with respect to ΣR.

In the stance phase, all eight grippers hold the spirals.
In the swing phase, one pair of grippers releases one of
the spirals. Before the moment of release, the body plat-
form needs to be located at the position where its NESM
in the swing phase is maximized. The positions of the six
grippers that will hold the spiral in the swing phase form
a polygon. However, the polygon does not always form a
convex polygon. By applying a quickhull algorithm (Bar-
ber et al., 1996) to the positions of the six grippers, we
can obtain the vertices of a convex polygon that forms a
support polygon in the swing phase at the same time. We
refer to the vertices of the support polygon as pi, where i
is an index number.

Figure 8 illustrates NESM. Each pppi denotes a position
vector relative to the vertex pi. The support polygon is
represented by broken lines. It is important that the index
i is ordered clockwise in the top view. When a tip over
occurs, one edge of the polygon can be a rotation axis. A
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Figure 9. Motion of the platform: front view.

Figure 10. Motion of the platform: side view.

tip-over vector aaai is defined as the following equation so
that it is aligned with the edge.

aaai = pppi+1 − pppi (i = 1, · · · ,n) (12)

where pppn+1 ≡ ppp1. A tip-over unit vector âaai has same di-
rection as aaai; that is, âaai = aaai/|aaai|. A vector zzzc is normal
to the support polygon passing through the COG of the
whole robot. The position vector of the COG is shown as
pppc. A tip-over vector normal llli is chosen so that it inter-
sects the COG and the edge regarding aaai. It is given by the
following equation.

llli = (III − âaaiâaaT
i )(pppi+1 − pppc) (13)

where III is the identity matrix. The position vector qqqi is
chosen where an intersection of llli and aaai. It is obtained by
the following equation.

qqqi = llli + pppc (14)

Unit vectors eeex, eeey, and eeez are alined to the respective axes
of the reference frame. The height of COG with respect
to the reference frame, hli , is equivalent to the z axis com-
ponent of pppc. Therefore, it is obtained by the following
equation.

hli = eeeT
z pppc (15)

When the robot tumbles about the axis regarding aaai, the
locus of COG follows a circular path. The highest point
of the locus is just above the axis regarding aaai. The vector
rrri is oriented from the position regarding qqqi to the highest
point. A vector given by a cross product of eeez and aaai is the
normal vector of the plane including vector rrri, which is

perpendicular to aaai. Therefore, the following relationship
is satisfied.

rrri = aaai × (eeei ×aaai) (16)

The radius of the circle drawn by the COG is equal to |llli|.
Then, the height of the highest point with respect to the
reference frame, hmax

li
, is obtained by the following equa-

tion.
hmax

li = eeeT
z (qqqi + |llli|r̂rri) (17)

Finally, NESM for all edges of the support polygon is ob-
tained by the following equation.

NESM = min
i

(hmax
li −hli)σi (18)

= min
i

eeeT
z (llli + |llli|r̂rri)σi (19)

where r̂rri is a unit vector in the same manner as âaai, and
σi represents a sign of NESM, which is positive when the
COG is in the stable side and negative otherwise. σi is
defined as the following formula.

σi = (r̂rri × l̂lli)T âaai (20)

where l̂lli is a unit vector in the same manner as âaai.

4 Numerical Case Study
In this section, we investigate the NESM values of the
double-spiral mobile robot in the swing phase on several
gradients of slope.

4.1 Conditions and methods
Table 1 shows the values used in the numerical case study,
such as link parameters, platform sizes, weight, joint vari-
ables, and so on. The number n in the subscript denotes
the leg number.

The parameters hpg, hln, and hlg represent positions of
the COGs of the three portions. We suppose that the den-
sity of each portion is uniform. Therefore, we can assume
that ppp f and pppnm locate on the z1 axis and zn1 axis, respec-
tively, and that pppnb locates on the zn2 axis because Link n4
and Link n5 move symmetrically. As a result, we have the
following:

1 ppp f =

 0
0

hpg

 , n1 pppnm =

 0
0

hln

 , n2 pppnb =

 0
0

hlg

 . (21)

In this numerical case study, we set the initial values
of the joint parameters as shown in Table 1, such that the
double-spiral mobile robot is in the swing phase —i.e.,
Leg 1 is a swing leg. After that, we move the platform to
the position that is taken at each of twenty points at regular
intervals within the full stroke of each joint in the x1 and
y1 directions, as in Figure 9 and Figure 10, respectively.
During the movement, the leg positions remain station-
ary. The ranges of the joint parameters are designated as
strokes in Table 1. After calculating the values of NESM
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Table 1. The values used in the numerical case study. n in the
subscript denotes the leg number.

Item Value

ln1 0.5[m]

hn1 0.1[m]

hn2 0.05[m]

hn3 0.1[m]

hn4 0.5[m]

hpg 0.1[m]

hln 0.025[m]

hlg 0.3[m]

m f 100[kg]

mnm 5[kg]

mnb 20[kg]

Item Value

width of platform 1.0[m]

depth of platform 0.5[m]

height of platform 0.1[m]

stroke of joint 1, 2, 4 0.4[m]

stroke of joint 3 0.4π[rad]

d11,d31 0.2[m]

d21,d41 −0.2[m]

dn2 0.0[m]

θn3 π/18[rad]

d14 0.3[m]

d24,d34,d44 0.2[m]

Figure 11. Maximum value map of NESM with respect to the
yaw and roll angle of slope gradient.

at each position, the maximum value of NESM and the
corresponding position of the platform are obtained.

We prepare the slope conditions by changing two ori-
entation angles of the robot: the yaw angle around zR and
the roll angle around xR in ΣR. The roll angle represents
the inclination of the slope. The yaw angle represents the
front direction of the robot. We set the range of the yaw
angle from 0[rad] to 2π[rad] every 0.2π[rad], and the roll
angle from 0[rad] to π

4 [rad] every π
40 [rad]. Then we obtain

a maximum values map of NESM with respect to the yaw
and roll angles.

4.2 Results
Figure 11 shows the maximum values map of NESM with
respect to the yaw and roll angles. The largest maximum
NESM is observed as 0.0328 when the yaw angle is π[rad]
and the roll angle is 3π

40 [rad]. When the robot keeps the
same direction as the yaw angle of π[rad] and the inclina-
tion of the slope changes, the smallest maximum NESM

Figure 12. NESM map with respect to the x-y displacement of
the platform when the yaw angle is π [rad] and the roll angle is
3π
40 [rad] at the largest maximum NESM as shown in Figure 11.

Figure 13. NESM map with respect to the x-y displacement of
the platform when the yaw angle is π [rad] and the roll angle is
π
4 [rad]. The robot keeps the same direction as Figure 12 —i.e.
the yaw angle of π[rad], where the maximum NEMS value is
minimized at the roll angle of π

4 [rad].

is observed as 0.0232 when the roll angle is π
4 [rad].

Figure 12 shows the NESM map with respect to the x-y
displacement of the platform when the yaw angle is π[rad]
and the roll angle is 3π

40 [rad]. Figure 13 is different from
Figure 12 only in that the roll angle is π

4 [rad]. For the sake
of comprehension, the projection of the support polygon
to the xy plane is drawn by a broken line. The solid rect-
angle represents the initial position of the platform. It is
drawn on the zero-level plane of the NESM.

Figure 14 and Figure 15 show wire-frame models of the
robot in the cases of maximum NESM in Figure 12 and
Figure 13, respectively. Each of the platforms is painted
gray. Under the platform, the gantry-shaped leg is repre-
sented by solid lines. The gripper positions of Legs 2, 3,
and 4 form the support polygon designated by the broken
lines.

Figure 16 shows the support polygons, the position of
the COGs, and maximum height regarding the NESM re-
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Figure 14. Relationship between COG and support polygon at
the maximum NESM in the Figure 12. pc designates the position
of COG.

Figure 15. Relationship between COG and the support poly-
gon at the maximum NESM in the Figure 13. pc designates the
position of COG.

lationship in Figure 12 and Figure 13.

5 Discussion
We can observe in Figure 11 that the maximum NESM
tends to decrease in general as the roll angle increases —
that is, the inclination of the slope becomes larger.

As shown in the preceding figures, the shape of the sup-
port polygon of the robot is long and narrow. It is easy to
find that a stability margin against tumbling tends to be
wider in the longer direction and narrower in the shorter
direction. Figure 11 shows this tendency; that is, the max-
imum NESM is relatively high at the yaw angle around
0[rad] or π[rad] and low around π

2 [rad] or 3π
2 [rad]. Es-

pecially in the latter case, some of the maximum NESMs
become negative when the roll angle is larger than π

8 [rad].
Comparing Figure 12 and Figure 13, the position of the

peek in the NESM map is different. According to Fig-
ure 16, the tip-over edge in the case of Figure 12 is a swing
leg side on the support polygon. It likely happens in the

Figure 16. Relationship between COG and the support poly-
gon when NESM is maximum and minimum. pc designates the
position of COG.

swing phase of the walking motion on even terrain. On the
other hand, the tip-over edge in the case of Figure 13 is a
downhill side of the slope on the support polygon. This
means that the tip-over edge of the support polygon de-
pends on the steepness of the slope. To maintain a high
enough NESM value during the walking motion, it is im-
portant to measure the steepness of the slope and check
NESM at every moment.

In a real situation, the robot should move to avoid very
steep terrain. The strength of a gantry-shape leg or the
maximum force and torque of the actuators must not ex-
ceed the design specification. However, as shown in Fig-
ure 15, very steep slope requires greater strength or force/-
torque. Theoretically, the positive value of NESM can
maintain the robot’s balance; however, too much inclina-
tion may damage the machine.

6 Conclusions
In this paper, we investigated the NESM values of a
double-spiral mobile robot in the swing phase on several
gradients of the slope from the numerical case study. We
derived the support polygon from the kinematics analy-
sis and showed the position vector of COG of the whole
robot. Then, we described the way to obtain NESM values
from the vector calculation.

The numerical case study revealed that the stability
margin against tumbling tended to be wider in the longer
direction of the body platform and narrower in the shorter
direction. we reported the results and discussed the poten-
tial stability of the robot.

Even if the direction of the inclination of the slope was
the same, if the degree of the inclination changed, the
shape of the NESM map with respect to the position of
the platform was also different. The double-spiral mobile
robot was able to maintain its foot position while the posi-
tion of the platform changed. Therefore, it is important to
measure the steepness of the slope, to check NESM at ev-
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ery moment, and to move the platform in the appropriate
direction to maintain a high enough NESM value in the
walking motion.

The numerical case study discussed in this paper just
showed the NESM map for a specific pose of the robot
in a stationary condition. To investigate dynamic stability
or to perform the dynamical simulation is left for future
work.
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