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Abstract
This paper presents a specialized evolutionary approach
for large scale vehicle routing problems (VRPs). Our ap-
proach includes two original mechanisms; simplification
of problem and partially fixing of customers’ sequence.
The first one tries to simplify the problem by integrat-
ing some neighbor customers into one group recursively
and to iterate to restore the simplified problem to origi-
nal one gradually. And second mechanism is to reduce
the search space of the problem by fixing a part of cus-
tomers’ sequence. Our approach is designed for an effec-
tive search in large scale VRPs by the interaction of these
mechanisms. Through applying the proposed approach to
some test problems having different characteristics, the ef-
fectiveness of our approach is determined in comparison
with normal approach (without our these original mecha-
nisms).
Keywords: vehicle routing problem, large scale problem,
evolutionary multi-criterion optimization

1 Introduction
Vehicle Routing Problems (VRPs) are well known as
NP-hard combinatorial optimization problems arising in
many distribution and transportation systems, such as
postal delivery, school bus routing, newspaper distri-
bution, etc. VRPs have attracted a great deal of at-
tention since 1970’s due to their wide applicability
and economic importance(Braysy and Gendreau, 2005;
Watanabe and Sakakibara, 2007).

Although the objective of most VRPs’ application
is to minimize the total area distance, VRPs inher-
ently have multi-objective aspects such as the num-
ber of vehicles or the degree of dispersion between
the distances of each vehicle. Therefore, there have
been many studies using evolutionary multi-criterion op-
timization (EMO) algorithm to optimize multi-objective
VRPs (Watanabe and Sakakibara, 2007; Jozefowiez et al.,
2002).

Recently, data size and problem size has become larger
scale according to technical advantages of storage perfor-
mance and cloud technology. Since this trend causes new
formidable issues such as the combinatorial explosion and

the increment in computational cost, previous approaches
are difficult to obtain solutions to fill required quality in
real time.

In this research, we propose a new approach dedicated
to very large scale VRPs. The proposed approach has two
distinguishing mechanisms; simplification of problem and
partially fixing of customers’ sequence. The first mech-
anism tries to obtain high quality candidate solutions at
early stage by mixing simplification and gradual restora-
tion techniques. In particular, simplification is used firstly
to reduce the number of customers apparently by gather-
ing some neighborhood customers to one virtual customer.

Also, the second fixing mechanism is used to reduce
search space by fixing a part of customers’ sequence and
perform an efficient refinement of the obtained solution
by applying the first mechanism. The fixing of customers’
sequence is very reasonable way to reduce a number of
combination in large scale problem.

Through some test examples of Cordeau’s instances
from VRP website1 , we showed that the proposed ap-
proach can obtain high quality solution in the case of very
large problem size.

2 Vehicle Routing Problem
There are many different types in vehicle routing prob-
lems (VRPs) based on the type of handling constraints.
This paper deals with the multiple depots vehicle routing
problems (MDVRPs) (Luo et al., 2013) having only a ca-
pacity constrain, which is generally called the capacitated
VRPs (CVRPs).

The definitions of CVRPs and MDVRPs can be de-
scribed as below.

2.1 Capacitated Vehicle Routing Problems
There are many kinds of VRPs according to the type of
constraints. CVRPs having only a capacity constrain can
be defined as follows (Braysy and Gendreau, 2005):

• All vehicles start from the depot and visit the as-
signed customer points, then return to the depot.
Here, a route is formed by the sequence of the depot

1VRPwebsite http://www.bernabe.dorronsoro.es/vrp/.
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and the customer points visited by a vehicle. There-
fore the number of vehicles is same as the number of
route. Moreover, each customer is visited only once
by exactly one vehicle.

• Each customer asks for a weight wi(i = 1, . . . ,N)2

of goods and a vehicle of capacity W is available to
deliver the goods. In this paper, we used the same
capacity W for all vehicles.

• A solution of the CVRPs is a collection of routes
where the total route demand is at most W .

In this paper, we treated CVRPs having multiple depots
(MDVRPs). In MDVRPs, departure and arrival points of
each vehicle should be same.

VRPs have a number of objectives, such as minimiza-
tion of the total travel distance, minimization of the num-
ber of routes, minimization of the duration of the routes,
etc. In this paper, we treated VRPs as two objective prob-
lem; minimization of the total travel distance (Fdist) and
the variance of travel distance of each vehicle Fvar. The
formulas of these objectives are as follows:

minimize Fdist =
M

∑
m=1

cm (1)

minimize Fvar =
1
M

M

∑
m=1

(c̄− cm)2 (2)

where M is the total number of routes and cm and c̄ in-
dicate m th route distance and the average value of cm,
respectively.

2.2 Multi-Depot Vehicle Routing Problems
MDVRPs add one more constraint to CVRPs relative to
multi-depots. This constraint is that starting point and end-
ing point of each vehicle should be the same depot.

3 Proposed approach
In this paper, we proposed a new approach specialized for
large scale VPRs. The main feature of the proposed ap-
proach is to have two distinguishing mechanisms; simpli-
fication and fixing mechanisms. The first one is used for
obtaining high quality solutions at early search phase and
the second one is assumed to perform an efficient refine-
ment of solutions at late search phase.

In this section, the details of the proposed approach
were explained.

3.1 The flow of the proposed approach
Here, we described the detail of our approach as follows.

Step 0: The setting of initial parameters

• N The number of initial population
• GS The upper period of the search stagnation

(the timing parameter of dissolving cluster)

2N is the number of customers.

Setting of initial parameters

Simplification of original problem

Genetic operations

Gradual clustering dissolution

Start

End

Judgement of termination

Judgement of dissolution
 or fixing

Initializing population

Fixing mechanism

Figure 1. Flowchart of the proposed approach.

• GR The upper period of the search stagnation
(the timing parameter of fixing mechnism)

• EFinal Terminal criteria
Step 1: Simplification of the problem

In order to simplify the original problem, neighbor-
hood customers would be gathered to one virtual cus-
tomer by clustering method and this gathering pro-
cess would be repeated until the number of customer
reaches the pre-defined number.

Step 2: Initializing population
Create N initial individuals and set the parameter t
representing the generation t = 0 and the parameter
gs representing the term of search stagnation gs = 0.

Step 3: Updating solutions
Solutions would be improved by genetic operations.
And the solution having the best value of FsumT at T
generation would be found. If FbestT−1 and FT

best are
same, the value of gs is incremented by one (gs =
gs + 1) and in other case (FT−1

best ̸= FT
best), reset the

value of gs(gs = 0). However gs would be kept 0
until this step repeat Gr times.

Step 4: Judgment of termination
If termination condition is satisfied, terminate this
optimization process. Also, if GS ≤ gs and p ̸= 1,
go to Step 5 (clustering dissolution phase), and in
the case of GR ≤ gs, p = 1, go to Step 6 (fixing
mechinsm). Otherwise, go back to Step3.

Step 5: Cluster dissolution
In order to reinstate simplified problem, gradual dis-
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solution mechanism would dissolve clustering in a
limited area (the details of this mechanism is de-
scribed below). After resetting gs = 0, go back to
Step4.

Step 6: Fixing and unfixing of customers’ sequence
In order to reduce search space by fixing a part
of customers’ sequence, fixing mechanism would
implement the fixing or unfixing of customers’ se-
quence(the details of this mechanism is described be-
low). After resetting gs = 0, go back to Step4.

Hereinafter, simplification of problem of of Step1,
gradual cluster dissolution mechanism of Step 5 and fixing
mechanism of Step 6 are described in detail.

3.2 Simplification of the problem
Our simplification technique tries to reduce the number
of customers apparently by gathering some neighborhood
customers to one virtual customer. In this simplification,
clustering method is used to group a set of customers and
some unique features in VRPs are considered.

As a results of analyzing best known solutions of some
different famous CVRP instances, we could find the rela-
tion between depots and customers. The customers near
depot tend to belong different routes even though they are
very close. On the other hand, in the case of the customers
being far from depot, customers in the near distance tend
to belong same route.

Therefore we designed our simplification that the cus-
tomers being father away from depots result in a higher
rate of grouping customers (creating sets).

Also, in this simplification, we restrict grouping cus-
tomers in case that their distance is over a certain amount
and the total weight of grouping customers is over a
weight capacity of vehicle.

The flow of this simplification is shown as below.
Step 0: Creating initial clusters

Creating initial clusters Ci(i = 1, . . . ,N) having each
one customer and setting the initial clusters’ total
load wCi(i = 1, · · · ,N). Here, set the number of cus-
tomer in each cluster Pi = 1 and current total number
of clusters NC = N.

Step 1: Calculating the maximum number of
customers for each cluster
Calculating the maximum number of customers Pmax

i
for each cluster. This Pmax

i is defined according to the
distance between cluster and the depot. We set larger
Pmax

i of cluster larger distance from depot.
Step 2: Selecting the target cluster

Selecting the target cluster satisfying below equation
(1) from unselected clusters.

max
i=1,··· ,NC

d(Ci,C0) (3)

where C0 is depot and d(Ci,C j) indicates the shortest
distance between two clusters. If there are no clus-

ters which satisfy the above equation, finish this pro-
cedure.

Step 3: Judgment of termination

If NC ≤ NP, finish this procedure. Otherwise, go to
next step.

Step 4: Finding set of clusters to combine
Selecting set of clusters to combine. Here, Ci and C j
satisfying below equation are selected.

DT ≥ min
j=1,··· ,NC| j ̸=i

d(Ci,C j) (4)

s.t. W ≥ wCi +wC j

( j = 1, · · · ,NC | i ̸= j)
Pmax

i ≥ Pi +Pj

( j = 1, · · · ,NC | i ̸= j)

where DT is the upper limit distance of combing
clusters. Also, W indicates the upper load capacity
and d(Ci,C j) represents the distance between two clus-
ters.

Step 5: Combination of two clusters
Combining two clusters (Ci and C j) and updating
cluster’s total load and the number of customer
within cluster. Specifically, the information of C j is
integrated into that of Ci and remove C j. After re-
newing NC = NC −1, go back to Step 3.

As mentioned above, this simplification tries to com-
bine two adjacent clusters into one until the total number
of clusters reaches the predefined number.

3.3 Gradual cluster dissolution
This technique gradually restore simplified problem to
original one. If the simplified problem is restored at once,
the differences between before and after problems is so
large that the solutions of prior problem wouldn’t con-
tribute to the search in a new integrated problem. There-
fore, we try to control the differences between before and
after problems small by gradually restoration. In the case
that the difference of two problems is small, the solu-
tions of prior problem would be good seed solutions in
antecedent one and this would tend toward an effective
search.

There two key points in this dissolution; the timing of
dissolving cluster and the determination which cluster is
dissolved next. For former point, we use the term of search
stagnation as the timing of dissolving cluster. Specific
conditions of dissolution timing are that a best incumbent
solution having best Fsum value remains unchanged for a
certain predefined generation (GS).

On the other hand, we specify the region for dissolv-
ing cluster in order to perform locally-concentrated search
regarding the determination of dissolving cluster. Specif-
ically, we define Θ angle region around on depot for the
dissolution region and dissolve clusters within this angle
region. Also, we define the search region having twice the
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area of dissolution region and restrict the range of search
in order to increase the search effectiveness.

The details of this dissolution is described as below.
Step 1: Judgment for restoring simplified problem

to original one
If current generation g satisfied g ≥ GF , dissolve ev-
ery cluster in order to return to original problem and
finish this flow.

Step 2: Timing judgement for partially dissolution
If the above two conditions about dissolution timing
were satisfied, go to Step 3. Otherwise, finish this
flow.

Step 3: Determination of dissolution area for
dissolving cluster
Calculate the dissolution area utilizing unit vector
u = (1.0,0.0), depot and 0 ≤ θ ≤ 360.

Step 4: Dissolving cluster within dissolution area
Dissolve every cluster having multiple customers
within dissolution area.

3.4 Fixing mechanism
This fixing mechanism has two opposite mode; fixing
and unfixing mode and it depends on the condition which
mode is performed if this mechanism is called. In par-
ticular, we use the ratio of the total number of customers
as the switching condition. In the case this ratio is under
0.8, fixing mode gets executed, otherwise, unfixing mode
is carried out.

In fixing mode, a couple of customer that are the high-
est potential as customer’s sequence is fixed. Since the
fixing customers are excluded from search space, we ex-
pect that this fixing would promote the efficiency of search
and reduce a waste of search.

Of course, this fixing has a risk to fix a wrong couple of
customers and this wrong fixing may cause to be trapped
in local optima. Due to reduce this risk to the absolute
minimum, the following function is used to select a couple
of customers as a fixing sequence.

Fbond =
d(Ck

i ,C
k
i+1)

d(0,M
(Ck

i ,C
k
i+1)

)×2
(5)

where d(a,b) represents the distance between a−b, Ck
i in-

dicates the customer that is ith visited in route k, 0 is depot
and M(a,b) means the middle point between a−b.

(5) consists of two parts; the distance from the middle
point and the distance from the depot. Since a lower value
of (5) means more appropriate for fixing a couple of cus-
tomers, the couple having lowest value of (5) is selected.

On the other hand, unfixing mode tries to release the
fixing customers’ sequence in the limited area. The ba-
sic idea of unfixing is the same as cluster dissolution in
section3.3. Therefore, this mode unfixes every fixing cus-
tomers within the area calculated the same as cluster dis-
solution technique. We expects this unfixing has the effect

Table 1. Instances.

Instance tai385 triple- sixth- sixth-
tai385-d3 tai385-d1 tai385-d6

# customers 385 1155 2310 2310
# depots 1 3 1 6

Figure 2. The distribution of tai385.

of reducing the risk caused by a wrong fixing customers’
sequence.

4 Numerical Examples
We used MOEA/D(A Multiobjective Evolutionary Algo-
rithm Based on Decomposition)(Zhang and Li, 2007) as
EMO algorithm. And we treated this MVRPs as two ob-
jective problem having Fdist and Fvar of expression (1) and
(2) respectively. Table 2 shows parameters we used. As
shown in Table 2, the results of this section were of 10
trials.

In this experiment, we investigated the characteristics
and effectiveness of the proposed approach by compar-
ing the performance of the approach without our origi-
nal mechanisms(normal method). In particular, we used
four cases for comparison; normal (without every mecha-
nisms), simplification (with simplification and without fix-
ing), immobilization (without simplification and with fix-
ing) and proposed (with every mechanisms) methods.

4.1 VRPs Instances
We used four test problems based on Taillard’s instances
(tai385) from VRP website;tai385, triple-tai385-d3, sixth-
tai385-d1 and sixth-tai385-d6. tai385 is original Taillard’s
instances and triple-tai385-d3 is created by the combi-
nation of 3 tai385. Although sixth-tai385-d1 and sixth-
tai385-d6 are composed of 6 tai385, the former instance
has only one depot and the latter has 6 depots, respectively.
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Table 2. Used Parameters.

Instance tai385 triple-tai385-d3 sixth-tai385-d1 sixth-tai385-d6
The number of population(A) 50
The upper period of the search stagnatioGR 3
The upper period of the search stagnatio GB 5
The number of function call 500,000 1,000,000
The number of trials 10

Table 3. Computational times (average).

Problem Normal Simplification Immobilization Proposed
tai385 23 min 32 s 22 min 30 s 11 min 3 s 10 min 11 s

triple-tai385-d3 12 min 25 s 12 min 36 s 7 min 7 s 9 min 12 s
sixth-tai385-d1 6 h 22 min 46 s 5 h 11 min 11 s 5 h 15 min 25 s 5 h 12 min 59 s
sixth-tai385-d6 1 h 12 min 54 s 55 min 50 s 42 min 46 s 42 min 42 s

Table 4. The values of hyper volume.

Problem Normal Simplification Immobilization Proposed
tai385 8.15×107 8.38×107 7.95×107 8.22×107

triple-tai385-d3 6.44×107 6.86×107 5.44×107 5.66×107

sixth-tai385-d1 1.96×109 2.62×109 1.72×109 1.86×109

sixth-tai385-d6 2.96×108 6.73×108 2.13×108 6.12×108

Figure 3. The distribution of sixth-tai385-d6.

The details of four test problems is shown in Table 1 and
the distribution of customers in tai385 and sixth-tai385-d6
are shown in Figure 2 and Figure 3.

4.2 Performance measures
In this experience, we used two different type of perfor-
mance measures for evaluating the obtained solutions; hy-
per volume (HV) (Zitzler and Thiele, 1998). HV can be
calculated as the volume covered by non-dominated solu-
tions and can be treated as an overall measure. In HV, the
higher values mean the better solutions.

4.3 Results and Analysis

The results of performance measures are shown in Table
4. The transitions of minimum Fdist value in each problem
are shown in Figure 4.

From Table 4, we could find that simplification case
could get better solutions than those of the other cases in
totally. Proposed method obtained better results in sixth-
tai385-d6, but in other cases the results of normal method
were better than those of proposed method.

However, Figure 4 indicated a bit different result. From
these cases, simplification and proposed methods could
obtain the solution with better quality. Particularly, in the
problem having large customer problems the performance
of these methods were overwhelming. Also, in the case of
small size problem, normal method were superior to our
methods.

From these result, every mechanisms in proposed
method have an advantage in large scale problem and are
not efficient in the small size problem. Also, simplifica-
tion could indicate better results in every large scale prob-
lem but the performance of immobilization were low in
totally. This fact indicates that the only fixing mechanism
is difficult to improve a search performance.

On the other hand, Table 3 indicated that every our
methods could finish at shorter times than that of nor-
mal method. This means every mechanisms of proposed
method has an effect on accelerating the search process.
Especially, this tendency were significant in large scale
problems.
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Figure 4. The transitions of minimum Fdist value.

5 Conclusions
In this paper, we proposed a new method based on sim-
plification and fixing mechanisms for large scale vehicle
routing problems (VRPs). The first mechanism is aimed
to obtain high-quality solutions at early stage by mixing
simplification and gradual restoration techniques. And
the second mechanism is to refine the obtained solution
through applying the first mechanism more efficiently due
to a reduction of search space.

We investigated the effectiveness of the proposed
method and our mechanisms in the proposed method by
comparison of its performance with the cases having no
our mechanisms.

Numerical experiments clarified the following points:
1) Our mechanisms could obtain the solution with bet-

ter quality in large customer problems, but in the case
of small size problem the proposed method and our
mechanisms were not good.

2) To use only fixing mechanism is not effective way
for improving a search performance.

As future works, we would investigate the influence of
clustering in more detail and try to apply the proposed ap-
proach to another very large scale VRPs. Also, we would
advance the application to more practical problems (in-
cluding real world problems).
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