
Interpolating Lost Spatio-Temporal Data by Web Sensors

Shun Hattori

Web Intelligence Time-Space (WITS) Laboratory, College of Information and Systems, Graduate School of
Engineering, Muroran Institute of Technology, 27–1 Mizumoto-cho, Muroran, Hokkaido 050–8585, Japan,

hattori@csse.muroran-it.ac.jp

Abstract
We experience various phenomena (e.g., rain, snow, and
earthquake) in the physical world, while we carry out
various actions (e.g., posting, querying, and e-shopping)
in the Web world. Many researches have tried to mine
the Web for knowledge about various phenomena in the
physical world, and also several Web services using Web-
mined knowledge have been made available for the public.
Meanwhile, the previous papers have introduced various
kinds of “Web Sensors” with Temporal Shift, Temporal
Propagation, and Geospatial Propagation to sense the Web
for knowledge about a targeted physical phenomenon, i.e.,
to extract its spatiotemporal data sensitively by analyzing
big data on the Web (e.g., Web documents, Web query
logs, and e-shopping logs), and compared them based
on their correlation coefficients with Japan Meteorolog-
ical Agency’s physically-sensed spatiotemporal statistics
to ensure the accuracy of Web-sensed spatiotemporal data
sufficiently. As an industrial application of Web Sensors
to a problem of the loss or error of physically-sensed spa-
tiotemporal data due to some sort of troubles (e.g., tempo-
rary faults of JMA’s observatories), this paper tries to en-
able Web Sensors to interpolate lost spatiotemporal data
of physical statistics by regression analysis
Keywords: spatiotemporal data mining, big data
analysis, web sensors, regression analysis

1 Introduction
We experience or forecast various phenomena (e.g., rain-
fall, snowfall, earthquake, influenza, and traffic accident)
in the physical world, while we carry out various ac-
tions (e.g., posting, querying, and e-shopping) in the Web
world. Recently, there have been many researches to mine
a huge amount of various documents in the exploding Web
world, especially User Generated Content such as blogs,
microblogs (e.g., Twitter), Word-of-Mouth sites, and So-
cial Networking Services (e.g., Facebook), for knowl-
edge about various phenomena and events in the physi-
cal world. For instance, opinion and reputation extraction
(Dave et al., 2003; Fujimura et al., 2005) of various prod-
ucts and services in the physical world, experience mining
(Tezuka et al., 2006; Inui et al., 2008) of various phenom-
ena and events in the physical world, concept hierarchy
(semantics) extraction (Hearst, 1992; Ruiz-Casado et al.,
2007; Hattori et al., 2008; Hattori and Tanaka, 2008a;

Hattori, 2010, 2012a) such as is-a/has-a relationships,
and visual appearance (look and feel) extraction (Hattori,
2010; Tezuka and Tanaka, 2006; Hattori et al., 2007;
Hattori and Tanaka, 2009; Hattori, 2012b, 2013a) of phys-
ical objects in the physical world. Meanwhile, Web ser-
vices using Web-mined knowledge have been made avail-
able for the public, and more and more ordinary people
actually utilize them as important information for choos-
ing better products, services, and actions in the physical
world.

However, there are not enough investigations
(Ginsberg et al., 2009; Sakaki et al., 2010; Aramaki et al.,
2011) on how accurately Web-mined data about a
targeted phenomenon or event in the physical world
reflect physical-world data. It is not so difficult to mine
the Web for some kind of potential knowledge data by
using various text mining techniques, and it might not
be problematic only to enjoy browsing the Web-mined
knowledge data. But while choosing better products,
services, and actions in the physical world, it must be
socially-problematic to idolatrously/immoderately utilize
the Web-mined data in public Web services without
ensuring their accuracy sufficiently.

The previous papers (Hattori and Tanaka, 2008b;
Hattori, 2011a,b, 2012c, 2013b,c,d, 2014, 2015) have in-
troduced various kinds of “Web Sensors” to sense the Web
for knowledge about a targeted phenomenon (e.g., rainfall,
snowfall, and earthquake) in the physical world, i.e., to
extract its spatiotemporal numerical values by analyzing
big data on the Web, i.e., various action-based data (e.g.,
Web documents, Web query logs, and e-shopping logs)
in the Web world, and investigated how correlated Web-
sensed spatiotemporal data are with physically-sensed
spatiotemporal data (e.g., rainfall, snowfall, and earth-
quake statistics of JMA (Japan Meteorological Agency,
2016)) as shown in Figure1.

Document-based Web Sensors with “Temporal Shift”
(Hattori, 2011a, 2013d) showed that

1. The optimized temporal shift parameterδ of Web
Sensors depends on physical phenomena: Not-
Shifted Web Sensor whose temporal shift parameter
δ is±0 gives the highest correlation coefficient (i.e.,
the Web runs parallel to the physical world) for rain-
fall, Shifted-to-Future Web Sensor whose temporal
shift parameterδ is negative gives the highest cor-
relation coefficient (i.e., the Web leads the physical
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Figure 1. Can Web Sensors sense the physical world sensi-
tively?

world) for snowfall, and Shifted-to-Past Web Sensor
whose temporal shift parameterδ is positive gives
the highest correlation coefficient (i.e., the Web fol-
lows the physical world) for earthquake,

2. The optimized temporal shift parameterδ and corre-
lation coefficient for rainfall are not much dependent
on geographical spaces (e.g., 47 prefectures in Japan)
and time periods, while the optimized temporal shift
parameterδ for snowfall and earthquake varies more
widely, and

3. More shaken geographical spaces and time peri-
ods are given higher correlation coefficient between
Web-sensed spatiotemporal data and physically-
sensed spatiotemporal data by the Great East Japan
Earthquake (3.11).

Query-based Web Sensors using Web search query logs
(Hattori, 2013c) are superior to Document-based Web
Sensors using Web documents such as blogs for snow-
fall and earthquake, while Query-based Web Sensors are
inferior to Document-based Web Sensors for rainfall. In
addition, the best combined Web Sensor using both Web
search query logs and Web documents is superior to un-
combined Web Sensors using only Web search query logs
or Web documents.

This paper introduces a novel method to interpolate the
loss of physically-sensed spatiotemporal data about a tar-
geted physical phenomenon (e.g., Japan Meteorological
Agency’s rainfall, snowfall, and earthquake statistics) by
regression analysis between physically-sensed spatiotem-
poral data and Web-sensed spatiotemporal data about the
targeted physical phenomenon, as an industrial applica-
tion of variously defined “Web Sensors” with Temporal
Shift, Temporal Propagation, and Geospatial Propagation
to sense the Web for knowledge about a targeted phys-
ical phenomenon, i.e., to extract its spatiotemporal data
sensitively by analyzing big data on the Web (e.g., Web
documents, Web queries, and e-shopping logs).

The rest of this paper is organized as follows. Section 2
shows various definitions of Web Sensors, and Section 3

introduces a novel method of interpolating lost spatiotem-
poral data of physical statistics by Web Sensors and re-
gression analysis. And Section 4 concludes this paper.

2 Web Sensors
This section shows various definitions of Web Sensors
with Temporal Shift, Temporal Propagation, and Geospa-
tial Propagation to sense the Web for spatiotemporal nu-
merical values dependent on a geographic space (e.g., one
of 47 prefectures in Japan) and a time period (e.g., days
and weeks in 2011) about a physical phenomenon (e.g.,
rainfall, snowfall, and earthquake).

First, the simplest and spatiotemporally-normalized
Web Sensor (Hattori and Tanaka, 2008b; Hattori, 2013b)
by using only Web documents (not Web search query
logs (Hattori, 2013c)) with a linguistic name of a geo-
graphic spaces, e.g., one of 47 prefectures in Japan such
as “Hokkaido,” a time periodt, e.g., one of 365 days or
52 weeks in 2011 such as January 1st (1st day) or from
January 1st to 7th (1st week) and from December 24th to
30th (52nd week), and a linguistic keywordkw represent-
ing a targeted physical phenomenon, e.g., “rain,” “snow,”
and “earthquake,” is defined as

ws(kw,s, t) :=
dft([" kw" AND " s"] )

dft([" s"] )
, (1)

where dft([" s"] ) stands for the Frequency of Web Doc-
uments searched from the Web, especially the Weblog, by
submitting the search queryq with the custom time range
t to Google Web Search. Note that the Weblog is supe-
rior to the whole Web, Twitter, Facebook, and News as a
corpus of Web Sensors (Hattori, 2012c).

Secondly, the temporally-shifted Web Sensor (Hattori,
2011a, 2013d) with a “Temporal Shift” parameterδ [day],
a geographic spaces, a time periodt, and a linguistic key-
word kw representing a targeted physical phenomenon is
defined as

ws-tsδ (kw,s, t) := ws(kw,s, t +δ ). (2)

As shown in Figure2, Shifted-to-Past Web Sensor for a
targeted physical phenomenon (e.g., earthquake) when its
Temporal Shift parameterδ is positive (e.g., +14) calcu-
lates a numerical value dependent on a geographic spaces
(e.g., “Hokkaido” prefecture in Japan) and a time periodt
(e.g., one of 52 weeks in 2011) by using Web documents
uploadedδ day(s) after the time periodt (i.e., infers the
past from the future), while Shifted-to-Future Web Sen-
sor when its Temporal Shift parameterδ is negative (e.g.,
−14) calculates a numerical value dependent on a geo-
graphic spaces and a time periodt by using Web docu-
ments uploaded|δ | day(s) before the time periodt (i.e.,
infers the future from the past).

Thirdly, the temporally-propagated Web Sensor
(Hattori, 2011a) with a “Temporal Propagation” pa-
rameterσ2

t , a geographic spaces, a time periodt, and
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Figure 2. Temporally-shifted Web Sensors for earthquake
and JMA’s weekly earthquake statistics in Hokkaido prefecture,
2011.

a linguistic keywordkw representing a physical phe-
nomenon is defined by integrating the surrounding time
periods as

ws-tpσ2
t (kw,s, t) := ∑

∀δ
ws-tsδ (kw,s, t) · pσ2

t (δ ) (3)

pσ2
t (δ ) :=

1√
2πσ2

t

·exp
(
− δ 2

2σ2
t

)
(4)

where pσ2
t (δ ) stands for a Normal Distribution

N(0,σ2
t ,δ ) with a mean 0 and a varianceσ2

t . In
this paper,∀δ is restricted to [−30,30].

Next, the geospatially-propagated Web Sensor (Hattori,
2014, 2015) with a “Spatial Propagation” parameterσ2

s , a
geographic spaces, a time periodt, and a linguistic key-
word kw representing a targeted physical phenomenon is
defined by integrating the surrounding geographic spaces
as

ws-spσ
2
s (kw,s, t) := ∑

∀si

ws(kw,si , t) · pσ2
s (distance(s,si))

(5)

pσ2
s (d) :=

1√
2πσ2

s

·exp
(
− d2

2σ2
s

)
(6)

where distance(s,si) stands for the geographic distance
[km] between geographic spacess and si and is calcu-
lated based on their latitude and longitude. In this paper,
∀si is restricted to 47 prefectures in Japan, and the lati-
tude and longitude of its prefectural capital are used for
calculating distance(s,si) by using the Survey Calculation
API of GSI (GeoSpatial Information Authority of Japan,
2016). In pairs of 47 prefectures in Japan, the pair of
Hokkaido pref. (Sapporo city) and Okinawa pref. (Naha
city) has the longest distance, 2243.9 [km], while the pair
of Shiga pref. (Otsu city) and Kyoto pref. (Kyoto city) has
the shortest distance, 10.5 [km].

3 Data Interpolation
As an industrial application of variously above-defined
“Web Sensors” with Temporal Shift, Temporal Propaga-
tion, and Geospatial Propagation to the loss or error of
physically-sensed spatiotemporal data due to some sort
of troubles (e.g., temporary faults of Japan Meteorologi-
cal Agency’s observatories), this section proposes a novel
method to interpolate lost spatiotemporal data about a tar-
geted physical phenomenon (e.g., Japan Meteorological
Agency’s rainfall, snowfall, and earthquake statistics).

For a lost spatiotemporal numerical value ps(s, t,kw)
about a targeted physical phenomenon (which is repre-
sented by a linguistic keywordkw, e.g., “rain,” “snow,”
and “earthquake”) in a geographic spaces, e.g., one of 47
prefectures in Japan such as “Hokkaido” over a time pe-
riod t, e.g., one of 365 days or 52 weeks in 2011 such
as January 1st (1st day) or from January 1st to 7th (1st
week) and from December 24th to 30th (52nd week),
the proposed method interpolates it by regression analy-
sis with its surroundingN physically-sensed spatiotempo-
ral data, their correspondingN Web-sensed spatiotempo-
ral data, and its corresponding Web-sensed spatiotemporal
data ws(s, t,kw) or ws-XX(s, t,kw) (where XX ∈ {“ts,”
“tp,” “sp”}). In this paper, N is restricted to [1,30]. The
variety of N physically-sensed spatiotemporal data sur-
rounding a lost physically-sensed spatiotemporal numer-
ical value ps(s, t,kw) has:

1. N physically-sensed spatiotemporal data followed by
it (i.e., onlyN past data),

ps(s, t −N,kw), · · · ,ps(s, t −1,kw),

2. N physically-sensed spatiotemporal data following it
(i.e., onlyN future data),

ps(s, t +1,kw), · · · ,ps(s, t +N,kw),

3. ⌊N/2⌋ physically-sensed spatiotemporal data fol-
lowed by it and⌈N/2⌉ physically-sensed spatiotem-
poral data following it (i.e., both⌊N/2⌋ past data and
⌈N/2⌉ future data, future-preferred whenN is odd-
numbered),

4. ⌈N/2⌉ physically-sensed spatiotemporal data fol-
lowed by it and⌊N/2⌋ physically-sensed spatiotem-
poral data following it (i.e., both⌈N/2⌉ past data
and⌊N/2⌋ future data, past-preferred whenN is odd-
numbered).

The generalization of the above-mentioned examples ism
(∈ [0,N]) physically-sensed spatiotemporal data followed
by it andN−mphysically-sensed spatiotemporal data fol-
lowing it (i.e.,mpast data andN−m future data) as shown
in Figure3. Meanwhile, Figure4 shows a simple method
to interpolate a lost physically-sensed datum by average
function using only physically-sensed data.
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Figure 3. Interpolating a lost physically-sensed datum by Web
Sensors and regression analysis using not only physically-sensed
data but also Web-sensed data (whenN = 3 andm= 1).
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Figure 4. Interpolating a lost physically-sensed datum by av-
erage function using only physically-sensed data (adopted as a
baseline in the experiment).

4 Conclusions

This paper has introduced a novel method to interpolate
the loss of physically-sensed spatiotemporal data about a
targeted physical phenomenon (e.g., Japan Meteorological
Agency’s rainfall, snowfall, and earthquake statistics) by
regression analysis between physically-sensed spatiotem-
poral data and Web-sensed spatiotemporal data about the
targeted physical phenomenon, as an industrial applica-
tion of variously defined “Web Sensors” with Temporal
Shift, Temporal Propagation, and Geospatial Propagation
to sense the Web for knowledge about a targeted phys-
ical phenomenon, i.e., to extract its spatiotemporal data
sensitively by analyzing big data on the Web (e.g., Web
documents, Web queries, and e-shopping logs).

The future work has to perform experiments to validate
the introduced method of interpolating lost spatiotemporal
data of physical statistics by Web Sensors and regression
analysis, and also will try to apply the other kinds of phys-
ical phenomena to the proposed interpolation. In addition,
Web Sensors will be able to forecast future data about a
targeted physical phenomenon and to alert falsified data
of real statistics.
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