
A Novel Flower Pollination Algorithm 

based on Genetic Algorithm Operators

Allouani Fouad 1     Kai Zenger 2     Xiao-Zhi Gao 3, 4

1Department of Industrial Engineering, University of Khenchela, Algeria, fouad.allouani@g.enp.edu.dz
2Department of Electrical Engineering and Automation, Aalto University, Aalto, Finland, kai.zenger@aalto.fi
3Machine Vision and Pattern Recognition Laboratory, Lappeenranta University of Technology, Lappeenranta, Finland.

4School of Computing, University of Eastern Finland, Kuopio, Finland, xiao.z.gao@gmail.com

 

 

Abstract
The Flower Pollination Algorithm (FPA) is a new

natural bio-inspired optimization algorithm that mimics

the real-life processes of the flower pollination. Thus,

the latter has a quick convergence, but its population

diversity and convergence precision can be limited in

some applications. In order to improve its

intensification (exploitation) and diversification

(exploration) abilities, we have introduced a simple

modification in its general structure. More precisely,

we have added both Crossover and Mutation Genetic

Algorithm (GA) operators respectively, just after

calculating the new candidate solutions and the greedy

selection operation in its basic structure. The proposed

method, called FPA-GA has been tested on all the

CEC2005 contest test instances. Experimental results

show that FPA-GA is very competitive.

Keywords—�flower pollination algorithm, crossover, 

mutation, genetic algorithm (GA)

1 Introduction

Swarm intelligence (SI) optimization algorithms which

are inspired by simulation of various types of

biological behavior existing in nature, have

characteristics of simple operation, good optimization

performance and strong robustness. In the last two

decades, a large number of algorithms based on this

aspect have been suggested, such as, ant colony

optimization (ACO) (Socha and Dorigo, 2008),

differential evolution (DE) (Storn and Price, 1997),

particle swarm optimization(PSO) (Kennedy and

Eberhart, 1995), firefly algorithm (FA) (Xinshe, 2012),

glowworm swarm optimization (GSO) (Yongquan and

Jiakun, 2012), monkey search (MS) (Mucherino and

Seref, 2007), harmony search (HS) (Geem et al, 2001),

cuckoo search (CS) (Yang and Deb, 2009), bat

algorithm (BA) (Yang, 2010). SI optimization

algorithm can solve complex optimization problems,

which classical methods cannot handle efficiently.

They have shown excellent performance in many ways

(Blum and Li, 2008), and their fields of application are

continuously growing (Yang et al, 2013).

Flower pollination algorithm (FPA) is a simple and 

effective SI optimization algorithm proposed in (Yang, 

2012). It derives its inspiration from pollination 

process of flowering plants. From the biological 

evolution point of view, the objective of flower 

pollination is the survival of the fittest and the optimal 

reproduction of plant species. All these factors 

involved in this process interact systematically 

between them to achieve optimal reproduction of the 

flowering plants. 

In reality (in the general sense), there are two 

different ways of pollination; Self-pollination and 

cross-pollination (Yang, 2012). The cross-pollination 

(or global pollination) means that pollination can be 

achieved through pollinators, which carry pollen of a 

flower of a different plant using Levy flights (Yang, 

2012).  

The second type, self-pollination (local pollination), 

is made by the same plant or flower without 

pollinators. In the latter, the carrying process of pollen 

is generally done with the help of environmental 

factors such as wind and diffusion in the water (Yang, 

2012).  

In this paper, a novel FPA based on both Crossover 

and Mutation Genetic Algorithm (GAs) operators has 

been proposed. The changes made allow the 

introduction of two major improvements: (i) enhancing 

the diversity of the population, and (ii) improving the 

intensification ability by the association of these two 

operators and the elite selection mechanism. Indeed, to 

demonstrate the efficacy of the proposed algorithm an 

experimental investigation was carried out using the 

CEC2005 test suite benchmark problems (Suganthan et 
al, 2005). In addition, the proposed method was also 

compared to a set of state-of-the-art algorithms 

including, the basic FPA, the MGOFPA (Draa, 2015), 

which is a recently proposed FPA variant, the Co-

variance Matrix Adaptation Evolution Strategies 

(CMA-ES) algorithm (Hansen and Ostermeier, 2001), 

the Comprehensive Learning Particle Swarm 

Optimizer (CLPSO) (Liang et al, 2006), JADE (Zhang 
and Sanderson, 2009), jDE (Brest et al, 2012), CoDE 

(Wang et al, 2011) which are all a DE variants. 

Moreover, Wilcoxon’s rank-sum statistical test was 

carried out at 5 % significance level to judge whether 
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the results of the proposed algorithm differ from those 

of the other algorithms in a statistically significant way 

(Derrac et al, 2011). The rest of this paper is organized 

as follows: Section 2 presents the fundamental 

principles of the standard FPA. Section 3 contains a 

brief description of GAs and its crossover and mutation 

operators. The proposed algorithm is introduced in 

Section 4. Experimental results are reported in Section 

5. Finally, Section 6 concludes this paper. 

 

2 The Flower Pollination Algorithm 

The flower pollination algorithm (FPA) is a new 

population-based optimization technique inspired by 

the physiological process of mating in plants. More 

specifically, this algorithm mimics the reproduction of 

plants of the same kind or other, through the so-called 

fertilization or pollination of flowers. To better 

basically understand the principle of this optimization 

technique, we start by giving a brief description of its 

biological underpinnings (Yang, 2012). 
 

2.1 Biological underpinnings of the FPA 
Generally, everyone knows that the reproduction of 

almost plants, in its direct and simple meaning, is a 

result of a pollination operation. Thus, this very 

important biological process is typically associated 

with the transfer of a chemical substance called pollen, 

and such transfer is often linked with some creatures 

called pollinators such as insects, birds, bats and other 

animals.  

In fact, some pollinators and certain flowers have 

co-evolved into very specialized flower-pollinator 

cooperation. For example, some pollination kind 

cannot be completed successfully without the 

intervention of a specific type of pollinators. In reality, 

there are two main forms in the pollination process; the 

biotic and abiotic pollination. Thus, about 90% of 

flowering plants belong in the first class, in which the 

pollen is transferred by a specific pollinator. 

Concerning the second class, which does not involve 

using other organisms and employs wind, water or 

gravity as pollination mediators, we find only 10% of 

flowering plants.  

Pollinators, or sometimes-called pollen vectors, 

which may be of various kinds like honeybees for 

example, represent an essential factor in a biotic 

pollination form. Thus, some pollinators tend to visit 

exclusively one species of flower; this pollinator 

behavior is called flower constancy. The latter 

increases directly the reproduction of the same flower 

species by maximizing the transfer of flower pollen to 

the same plants. This is also advantageous for the 

pollinators, since they will be sure of the availability of 

nectar supply with a limited memory and minimum 

cost of learning.  

Depending on the availability of pollinators, two 

types of pollination are considered; self-pollination and 

cross-pollination. The first pollination type, called also 

local pollination, occurs when pollen from one flower 

pollinates the same flower or other flowers of the same 

plant (Yang, 2012). Contrariwise, cross-pollination 

also known as global pollination, happens over long 

distances when pollen is delivered to a flower from a 

different plant through a direct or indirect intervention 

of pollinators following the so-called Lévy flight 

behavior (Pavlyukevich, 2007). 

 

2.2 The FPA 
In (Yang, 2012), Yang emulated the characteristic of 

the biological flower pollination process in flowering 

plants to develop the algorithm in question, based on 

four main rules listed as follows: 

Rule1: The global pollination process takes place 

through biotic and cross-pollination, such that the 

movement of pollinators has the form of the levy flight 

(Pavlyukevich, 2007). 

Rule2: Local pollination process is considered as 

abiotic and self-pollination. 

Rule3: The flower constancy provided by pollinators is 

equivalent to a reproduction probability proportional to 

the similarity of two flowers involved in pollination 

process. 

Rule4: The orientation of the global pollination 

process, towards local or global pollination is 

controlled by a switch probability 𝑝 ∈ [0,1] with a 

simple prejudice toward local pollination for reasons 

relating to the approximation of the algorithm to the 

real case. 

The implementation of these rules is based on a 

simplistic idea said that: each plant has only one 

flower, and each flower produces only one pollen 

gamete (Yang, 2012). Thus, this argument means that 

it is not necessary to distinguish between a pollen 

gamete, a flower, a plant or a solution to a problem.  

The transition to the mathematical formulation of 

these rules is carried out according to (Yang, 2012) as 

follows; first, the global pollination processes (Rule 1), 

and flower constancy (Rule 3) are represented using 

the following equation:  

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝜆)(𝑔∗ − 𝑥𝑖
𝑡)                                     (1)                                       

 

where, 𝑥𝑖
𝑡 is the pollen 𝑖 or the solution vector 𝑥𝑖 at 

iteration 𝑡, 𝑥𝑖
𝑡+1 is the generated solution vector at 

iteration 𝑡 + 1, 𝑔∗is the current best solution. In 

addition, 𝛾 is a scaling factor used to control the step 

size. 𝐿(𝜆) is the Lévy flights-based step size, it 

corresponds to the strength of the pollination. In 

reality, pollinators can fly over a long distance with 

different distance steps; this can be modeled using a 

Lévy distribution (Pavlyukevich, 2007) according to 

the following equation:  
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𝐿 ∼
𝜆Γ(𝜆)sin(

𝜋𝜆

2
)

𝜋

1

𝑠1+𝜆
      (𝑠 ≫ 𝑠0 ≫ 0).                       (2) 

 

In this equation, Γ(𝜆) is the standard gamma 

function, and this distribution is valid for large steps 

𝑠 > 0. 

 

Then, the local pollination (Rule 2), and the flower 

constancy (Rule 3) can be represented as follows:  

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜖(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡)                                             (3)                                             

 

where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are pollen gametes obtained from 

different flowers of the same plant species. Thus, this 

random subtraction (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) is used to imitate the 

flower constancy in a limited neighbourhood. The 

parameter 𝜖 is chosen arbitrarily in [0,1] to 

approximate this selection to a local random walk 

(Yang, 2012).      

Flower pollination processes can occur randomly at 

all scales, both local and global case. Hence, to emulate 

this bi-orientation, a switching parameter 𝑝 chosen 

randomly in [0,1] (Rule 4) can be effectively used 

(Yang, 2012).     

 

The standard FPA is summarised in the following: 
 

Algorithm 1. The flower pollination algorithm 
 

1: Objective Function 𝑓(𝑥), 𝑥 = (𝑥1, … . , 𝑥𝑑)
𝑇 

2: Initialise a population of 𝑛𝑓 flowers in random positions 

3: Find the best solution 𝑔∗ in the initial population 

4: Define the switch probability 𝑝 ∈ [0, 1] 
5: Initialise the iteration counter 𝑡 = 0 

6: While 𝑡 < 𝑡𝑚𝑎𝑥 do 

7:      For 𝑖 = 1 ∶ 𝑛𝑓(all 𝑛𝑓  flowers in the population) do 

8:            If rand < 𝑝 then  

9: 
                  Draw a 𝑑-dimensional step vector 𝐿 which 

obeys a Lévy distribution 

10:                   Do global pollination via (1) 

11:           Else 

12:                   Draw 𝜖 from a uniform distribution in [0,1] 

13: 
                  Randomly chose 𝑥𝑗

𝑡 and 𝑥𝑘
𝑡  from the 

population 

14:                   Do local pollination via (3) 

15:           End if 

16:          Evaluate the newly generated solution 𝑥𝑖
𝑡+1 

17: 
         If the newly generated solution is better, replace 𝑥𝑖

𝑡 

by 𝑥𝑖
𝑡+1 

18:          Update the current best solution 𝑔∗    

19:          𝑡 = 𝑡 + 1 

18:     End for 

19: End while 

 

 

3 Genetic Algorithm 
Genetic algorithm (GA) is a search method that 
employs random choice to guide a highly exploitative 

search, by maintaining a balance between exploration 

of the feasible search domain and exploitation of 

‘‘good’’ solutions, see (Holland, 1992). A simple GA 

is comprised of three main operators: reproduction, 

crossover, and mutation. Reproduction allocates more 

copies to solutions with better fitness values and thus 

imposes the survival-of-the-fittest mechanism on the 

candidate solutions. Crossover combines partially a set 

of bits and pieces of two or more parental solutions to 

produce new, possibly better solutions (i.e. offspring). 

Many crossover techniques exist, but the key idea 

of the most of them is based on the following simple 

concept: two individuals (parents) are randomly 

selected and recombined with a probability equal to 𝑝𝐶 

called crossover probability. Indeed, the combination is 

achieved if the following condition 𝑟𝑎𝑛𝑑 ≤𝑝𝐶 is 

verified, where 𝑟𝑎𝑛𝑑 is random number. Otherwise, 

the two offspring are simply copies of their parents. 

Mutation is the occasional random inversion of bit 

values that generates non-recursive offspring. More 

precisely, mutation is often the secondary operator 

performed with a low probability in GAs. One of the 

most common mutations method is the bit-flip 

mutation (Sastry et al, 2005). In this kind of mutation, 

each bit in a binary string is altered (from 0 to 1 or the 

opposite) with a certain probability 𝑝𝑚 known as the 

mutation probability. In reality, mutation operator 

performs a random walk near to the individual.  

In this paper, we integrate these two GAs operators 

(crossover and mutation) in the FPA structure to 

improve its performances. The typical crossover and 

mutation operation is shown in Figure.1.  
 

 
 

Figure 1. Crossover and mutation operation. 

 

4 The Proposed Algorithm 

The key idea of the proposed algorithm FPA-GA, is 

including the concept of crossover and mutation 

operators as successive steps in the basic FPA. These 

two steps are included just after calculating the new 

candidate solutions and the greedy selection operation. 

Thus, the proposed FPA-GA can be described as 

shown in the pseudo-code of Algorithm 2 below. 
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Algorithm 2. FPA based on Crossover and Mutation GAs 

Operators 

 
1: Objective Function 𝑓(𝑥), 𝑥 = (𝑥1, … . , 𝑥𝑑)

𝑇 

2: Initialise a population of 𝑛𝑓 flowers in random positions 

3: Find the best solution 𝑔∗ in the initial population 

4: Define the switch probability 𝑝 ∈ [0, 1] 
5: Define the crossover and mutation application probability 

𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢 ∈ [0, 1] 
6: 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 = 𝑛𝑓n 

7: While  𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 < 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣  do 

9:      For 𝑖 = 1 ∶ 𝑛𝑓(all 𝑛𝑓  flowers in the population) do 

10:            If rand < 𝑝 then  

11:                   Draw a 𝑑-dimensional step vector 𝐿 which 

obeys 

                  a Lévy distribution 

12:                   Do global pollination via (1) 

13:           Else 

14:                   Draw 𝜖 from a uniform distribution in [0,1] 

15:                   Randomly chose 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  from the 

population 

16:                   Do local pollination via (3) 

17:           End if 

18:          Evaluate the newly generated solution 𝑥𝑖
𝑡+1 

19:          If the newly generated solution is better, replace 𝑥𝑖
𝑡 

by 

         𝑥𝑖
𝑡+1 

20:      End for 

21:    𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 = 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 + 𝑛𝑓 

22:     If 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 < 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣  then 

23:          Break ; 

24:     End if 

25:     if 𝑟𝑎𝑛𝑑 < 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢𝐭𝐡𝐞𝐧 

26:          Apply crossover operator on the current population 

         𝑃𝑜𝑝𝑡 to generate a new population 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 
27:          Apply mutation operator on the 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 

population 

          to generate a new population 𝑃𝑜𝑝𝑀𝑢𝑡𝑎 

28:          Apply an elite selection of 𝑛𝑓 individuals from 

         𝑷𝒐𝒑𝒕 ∪ 𝑷𝒐𝒑𝑪𝒓𝒐𝒔𝒔 ∪ 𝑷𝒐𝒑𝑴𝒖𝒕𝒂 

29:         𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 = 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 + 𝑛𝑓 

30:     end if 

31:     If 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 < 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣  then 

32:          Break ; 

33:     End if 

34:     Update the current best solution 𝑔∗ 
35: End while  

 
As shown in Algorithm 2, the main algorithmic 

structure of the conventional FPA is preserved in the 

proposed FPA-GA; the supplementary part is shown in 

gray. Indeed, the intervention of these two operators 

successively is controlled by the following condition; 

𝑟𝑎𝑛𝑑 < 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢, where 𝑟𝑎𝑛𝑑 is a random 

number ∈ [0,1] and 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢 represents the 

probability of applying  these latter.  

Consequently, if this condition is checked two 

additional populations 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 and 𝑃𝑜𝑝𝑀𝑢𝑡𝑎 will be 

added respectively. Then, an elite selection takes place 

to chose the 𝑛𝑓 best solutions from the new global 

generated population  𝑃𝑜𝑝𝐺𝑙𝑜𝑏 = 𝑃𝑜𝑝 ∪ 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 ∪
𝑃𝑜𝑝𝑀𝑢𝑡𝑎. 

In addition, we note that Algorithm 2 contains two 

independent control structures form lines 22–24 and 

lines 31–33, which their purpose is to avoid execution 

of extra objective function evaluations by the 

algorithm. It is also to be noted that the number of 

objective function evaluations  𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 is 

always incremented while 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 <
𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣  by 𝑛𝑓 (see line 21 and 29).  

It should be noted that, the strong point of our 

algorithm resides in the fact that it has a simple 

algorithmic structure compared with other algorithms, 

which makes its implementation very easy.  

 

5 Experimental Study 
In this section, the FPA-GA algorithm is benchmarked 

on 25 benchmark functions from a CEC2005 special 

session (Suganthan et al, 2005). The benchmark 

functions used are minimization functions. They can be 

divided into four groups: unimodal, multimodal, fixed-

dimension multimodal, and composite functions 

(Suganthan et al, 2005). The FPA-GA algorithm was 

run 20times on each benchmark function. The number 

of decision variables is 𝑁. For each algorithm (FPA-

GA and all other algorithms used in comparative study; 

FPA, MGOFPA, CMA-ES, CLPSO, JADE, jDE and 

CoDE and each test function, 20 independent runs 

were conducted with 𝑛 × 100000 function 

evaluations. In our experimental studies, the average 

and standard deviation (𝑀𝑒𝑎𝑛 and 𝑆𝑡𝑑𝐷𝑖𝑣) of the 

function error value (𝑓(�⃗�) − 𝑓(�⃗�∗)) were recorded for 

measuring the performance of each algorithm, where �⃗� 

is the best solution found by the algorithm in a run and 

�⃗�∗ is the global optimum of the test function. All 

obtained results are given in Table 1 where the best 

results are marked in gray spaces. Moreover, 

𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛’𝑠 rank-sum statistical test was carried out at 

5% significance level to judge whether the results of 

FPA-GA algorithm differ from those of the other 

algorithms in a statistically significant way. In 

addition, ⊝ indicates that FPA-GA performs 

significantly better than the tested algorithm on the 

specified function a ⊕ indicates that FPA-GA 

performs not as good as the tested algorithm, and a ⨀  

means that the Wilcoxon rank sum test cannot 

distinguish between the simulation results of FPA-GA 

and the tested algorithm. All Wilcoxon rank-sum based 

comparison of different obtained results are 

summarized in Table 2.  

In all simulation tests, we have adapted FPA-GA, 

FPA and MGOFPA respectively with the following 

parameters combination:𝑝 = 0.2, 𝑛𝑓 = 50 

, 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢 = 0.1 𝑃𝑟𝑜𝑏_𝐺𝑂𝐵 = 0.1 (Draa, 2015), 

𝑝𝐶 = 0.55, the mutation rate 𝑝𝑚 is given by: 𝑝𝑚 = 1 −
0.1

𝑁𝑏
× 𝑖, 𝑖 = 1,…… ,𝑁𝑏 is used in the following 

condition 𝑝𝑚 <𝑝𝑚𝑟𝑎𝑛𝑑, where 𝑝𝑚𝑟𝑎𝑛𝑑 is a random 

number. Furthermore, in this paper we have used the 

EUROSIM 2016 & SIMS 2016

1 063DOI: 10.3384/ecp171421060     Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



following crossover and mutation kinds: arithmetical 

crossover (Michalewicz, 1992) and non-uniform 

mutation (Michalewicz, 1992). 

Consequently, we can observe clearly from these 

two tables that FPA-GA performed better than all other 

algorithm. More precisely (see Table 2), the FPA-GA 

performed better than FPA, MGOFPA, CMA-ES, 

CLPSO, JADE, jDE and CoDE in 24, 24, 21, 23, 20, 

23 and 21 cases (functions) respectively out of 25 and 

equal to these latter in 1 ,1,1,1,2,1,2 cases out of 25. 

Also, FPA-GA performs worse in 3, 1,3,1,2 cases out 

of 25 than CMA-ES, CLPSO, JADE, jDE and CoDE 

respectively.  

It is clear from this simple presentation, that adding 

these two operators (crossover and mutation) to the 

main algorithmic FPA structure allows to improve 

significantly its performance. Thus, this is due 

primarily to an improvement of the diversity of the 

population (three sub-populations 𝑃𝑜𝑝, 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 and  

𝑃𝑜𝑝𝑀𝑢𝑡𝑎) which greatly increases the chance to find 

the best solution, and also to an enhancement of the 

intensification ability by the association of these two 

operators and the elite selection mechanism. 
 

6 Conclusions
A new hybrid optimisation method named FPA-GA is

introduced in this paper, which considerably improves

the performance of the original FPA algorithm by

integrating the conventional FPA with two GAs main

operators; crossover and mutation. In FPA-GA, the aim

of using these latter is to improve the diversification

and the intensification characteristics. The

experimental studies were carried out on 25 global

numerical optimization problems used in the CEC2005
special session on real-parameter optimization. FPA-

GA was compared with; the standard FPA, a new FPA

variant called MGOFPA, the CMA-ES, the CLPSO,

and three DE variants called respectively JADE, jDE

and CoDE. The obtained experimental results shown

clearly that FPA-GA performances are better than the

seven competitors.

The proposed FPA-GA algorithm should be used to

solve multi-objective optimization problems in the

future to validate its performance. In addition, there

exists many NP- hard problems in literature, such as

traveling salesman problem, graph-coloring problem,

finder of polynomials based on root moments (Huang

et al, 2004) and knapsack problem. In order to test

performance of FPA-GA comprehensively, it should be

used to solve these NP-hard problems in the future.
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Table 1. Experimental Results of FPA, MGOFPA, CMA-ES, CLPSO, JADE, jDE, CoDE and FPA-GA over 20 Independent runs on 25 test functions of 𝑛 = 30 variables 

with 100000 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣. 

 
Function FPA-GA FPA MGOFPA CMA-ES CLPSO JADE jDE CoDE 

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

1 0.00e+00 0.00e+00 4.03e-29 1.08e-28 1.26e-29 4.59e-29 1.80e-25 4.65e-26 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

2 3.38e-11 7.54e-11 3.44e-18 8.02e-18 1.55e-02 1.79e-02 6.37e-25 1.78e-25 8.12e+02 2.32e+02 9.37e-29 1.07e-28 8.84e-07 1.12e-06 1.77e-15 2.19e-15 

3 3.77e-10 1.65e-10 1.38e+06 1.87e+06 1.27e+06 8.95e+05 5.13e-21 1.30e-21 1.70e+07 2.61e+06 6.57e+03 3.64e+03 2.02e+05 9.92e+04 1.08e+05 5.38e+04 

4 4.66e-06 1.15e-06 2.46e-04 4.79e-04 3.73e-01 3.87e-01 6.11e+05 1.68e+06 6.79e+03 1.10e+03 2.56e-14 8.55e-14 3.07e-02 5.68e-02 8.09e-03 2.24e-02 

5 1.64e-04 1.27e-04 5.92e+01 2.21e+01 4.80e+01 7.00e+00 3.35e-10 8.62e-11 4.13e+03 4.76e+02 7.89e-06 3.52e-05 5.65e+02 5.22e+02 5.14e+02 4.42e+02 

6 1.07e-11 4.12e-12 2.16e+01 4.26e+01 1.75e+01 2.00e+01 3.98e-01 1.22e+00 5.90e+00 1.27e+01 1.00e+01 2.85e+01 2.47e+01 2.69e+01 7.39e-10 1.99e-09 

7 8.32e-05 5.38e-06 1.85e-02 1.43e-02 2.68e-02 3.52e-02 1.81e-03 4.39e-03 4.48e-01 8.44e-02 8.17e-03 7.32e-03 1.19e-02 7.76e-03 7.41e-03 8.51e-03 

8 4.67e-02 1.46e-04 2.10e+01 9.79e-02 2.10e+01 7.65e-02 2.04e+01 6.89e-01 2.09e+01 5.05e-02 2.09e+01 6.48e-02 2.09e+01 3.31e-02 2.01e+01 1.05e-01 

9 1.76e-03 1.42e-04 5.27e+01 2.38e+01 2.55e+01 9.76e+00 4.00e+02 1.15e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

10 1.13e-03 1.47e-04 1.15e+02 8.63e+01 4.36e+01 3.58e+01 4.41e+01 1.49e+01 1.04e+02 1.77e+01 2.25e+01 2.96e+00 5.33e+01 8.70e+00 3.82e+01 1.14e+01 

11 2.00e-02 1.04e-03 3.29e+01 8.41e+00 2.12e+01 7.49e+00 6.72e+00 2.23e+00 2.60e+01 1.72e+00 2.54e+01 2.27e+00 2.76e+01 1.46e+00 1.32e+01 3.84e+00 

12 2.55e-02 1.54e-03 4.19e+01 7.61e+00 3.19e+01 8.43e+00 1.36e+04 1.42e+04 1.95e+04 5.56e+03 6.30e+03 7.21e+03 6.05e+03 5.30e+03 2.63e+03 1.91e+03 

13 5.83e-04 2.58e-04 7.50e+00 7.29e+00 3.91e+00 2.97e+00 3.22e+00 8.63e-01 2.10e+00 2.21e-01 1.51e+00 6.68e-02 1.68e+00 1.21e-01 1.56e+00 3.17e-01 

14 6.88e-02 7.40e-04 1.34e+01 5.76e-01 1.35e+01 2.98e-01 1.47e+01 2.33e-01 1.27e+01 2.28e-01 1.22e+01 2.76e-01 1.29e+01 2.20e-01 1.24e+01 4.91e-01 

15 7.51e-04 4.35e-05 2.53e+02 8.60e+01 3.00e+02 1.12e+02 3.67e+02 2.10e+02 6.12e+01 4.10e+01 3.51e+02 1.14e+02 3.89e+02 8.78e+01 4.00e+02 7.94e+01 

16 7.87e-04 1.05e-04 2.66e+02 1.15e+02 9.27e+01 8.02e+01 3.65e+02 3.10e+02 1.70e+02 3.47e+01 1.28e+02 1.42e+02 7.81e+01 2.23e+01 6.45e+01 1.64e+01 

17 7.58e-04 1.29e-04 1.90e+02 1.29e+02 2.68e+02 8.71e+01 4.97e+02 3.47e+02 2.54e+02 4.25e+01 1.18e+02 1.00e+02 1.46e+02 4.27e+01 6.51e+01 1.27e+01 

18 6.82e-04 2.44e-05 8.26e+02 2.01e+00 9.04e+02 1.07e+00 9.03e+02 2.12e-01 9.14e+02 1.34e+00 9.03e+02 2.61e-01 9.04e+02 1.23e+00 9.04e+02 9.64e-01 

19 6.86e-04 2.96e-05 8.25e+02 1.77e+00 2.12e+02 3.13e+00 9.03e+02 2.12e-01 9.09e+02 2.20e+01 9.04e+02 1.06e+00 9.04e+02 1.04e+00 9.04e+02 1.04e+00 

20 6.96e-04 3.14e-05 8.25e+02 2.28e+00 9.03e+02 7.08e-01 9.03e+02 2.99e-01 9.12e+02 8.11e+00 9.04e+02 7.62e-01 9.04e+02 1.07e+00 9.04e+02 1.34e+00 

21 6.23e-04 1.69e-05 7.39e+02 1.80e+02 5.33e+02 1.32e+02 5.00e+02 2.63e-12 5.00e+02 1.25e-12 5.00e+02 5.05e-14 5.00e+02 3.91e-14 5.00e+02 8.65e-14 

22 4.71e-04 4.94e-05 5.08e+02 4.57e+00 8.74e+02 2.22e+01 8.19e+02 1.30e+01 9.64e+02 1.05e+01 8.66e+02 2.05e+01 8.74e+02 1.54e+01 8.58e+02 2.23e+01 

23 6.31e-04 2.32e-05 7.88e+02 1.83e+02 5.90e+02 1.73e+02 5.36e+02 3.89e+00 5.34e+02 2.04e-04 5.54e+02 9.00e+01 5.34e+02 2.59e-04 5.34e+02 4.51e-04 

24 6.17e-04 1.53e-05 2.12e+02 3.13e+00 5.77e+02 3.57e+02 2.00e+02 6.18e-14 2.00e+02 1.46e-12 2.00e+02 2.91e-14 2.00e+02 2.91e-14 2.00e+02 2.91e-14 

25 5.05e-04 1.05e-05 2.16e+02 6.91e-01 1.56e+03 1.09e+01 2.10e+02 6.05e+00 2.00E+02 1.96E+00 2.13e+02 7.95e-01 2.11e+02 7.31e-01 2.13e+02 9.12e-01 

 
Table 2. Summarised Wilcoxon rank-sum comparisons between the proposed algorithm as reference and FPA, MGOFPA, CMA-ES, CLPSO, JADE, jDE, CoDE 

 
Functions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ⊝ ⨀ ⊕ 

Algorithms  

FPA ⊝ ⨀ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 24 1 0 

MGOFPA ⨀ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 24 1 0 

CMA-ES ⨀ ⊕ ⊕ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 21 1 3 

CLPSO ⨀ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 23 1 1 

JADE ⨀ ⨀ ⊝ ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 20 2 3 

jDE ⨀ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 23 1 1 

CoDE ⨀ ⊕ ⊝ ⊝ ⊝ ⨀ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 21 2 2 
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