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Abstract
For solving multi-objective problems, MOEA/D employs
a set of weight vectors determining search directions and
assigns one solution for each weight vector. Since the
conventional MOEA/D assigns a randomly generated ini-
tial solution for each weight vector without considering
its position in the objective space, mismatched pairs of
initial solution and weight are generated, and it causes
inefficient search. To enhance MOEA/D based multi-
objective optimization, this work proposes a method ar-
ranging randomly generated initial solutions to weight
vectors based on positions of their solutions in the ob-
jective space. The proposed method is combined with
the conventional MOEA/D and MOEA/D-CRU, and their
search performances are verified on continuous DLTZ4
benchmark problems with 2-5 objectives and different
problem difficulty parameters. The experimental results
show that the proposed method improves the search per-
formances of MOEA/D and MOEA/D-CRU especially
on problems with the difficulty to obtain uniformly dis-
tributed solutions in the objective space.
Keywords: multi-objective optimization, many-objective
optimization, evolutionary algorithm, MOEA/D

1 Introduction
The aim of multi-objective optimization is to finely ap-
proximate the Pareto front, the optimal trade-off among
conflicting objectives, with a set of solutions. The pop-
ulation based evolutionary algorithms is a promising ap-
proach for multi-objective optimization since a set of so-
lutions to approximate the Pareto front can be picked
from the population in a single run (Deb, 2001). Evolu-
tionary multi-objective optimization has been intensively
studied so far, and it has been known that the Pareto
dominance based NSGA-II (Deb et al., 2002b), SPEA2
(Zitzler et al., 2001), the indicator based IBEA (Zitzler
et al., 2004), SMS-EMOA (Beume et al., 2007), HypE
(Bader et al., 2011), the decomposition based NSGA-III
(Deb et al., 2014), MSOPS (Hughes, 2005), and MOEA/D
(Zhang et al., 2007) are representative algorithms. Re-
cently, the decomposition approach is being recognized
as an effective approach for solving many-objective prob-
lems with more than three objectives. This work focuses
on MOEA/D (Zhang et al., 2007) as one of algorithms

based on the decomposition approach and tries to improve
its search performance.

MOEA/D decomposes a multi-objective problem into a
number of single-objective problems and simultaneously
optimizes them with a single population. MOEA/D gener-
ates a set of weight vectors specifying the decomposition
intervals of the objective space. Each weight vector spec-
ifies a part of the Pareto front to be approximated. To ap-
proximate each part of the Pareto front, MOEA/D assigns
one solution for each weight vector. That is, each solution
has the role to approximate a part of the Pareto front spec-
ified by its weight vector. Before the search, MOEA/D
repeats to randomly generate an initial solution for each
weight vector. Each initial solution has its own character-
istic objective vector and position in the objective space,
however, the conventional MOEA/D just sequentially as-
signs an initial solution to each weight vector without con-
sidering its position in the objective space. Consequently,
several mismatched pairs of initial solution and weight are
generated, and it causes inefficient search. The search per-
formance of MOEA/D would be improved by arranging
each initial solution to an appropriate weight vector close
to the approximative direction of its initial solution in the
objective space.

To improve the search performance of MOEA/D based
algorithms, this work proposes a method arranging ran-
domly generated initial solutions to weight vectors based
on their positions in the objective space. To arrange the
initial solutions, we extend the chain-reaction solution up-
date method (Sato, 2016) previously proposed to update
existing solutions in the population with generated off-
spring. The proposed method assigns each initial solution
to a weight vector close to its approximative direction in
the objective space. The proposed method makes more
appropriate pairs of solution and weight than the conven-
tional method, and the arranged solutions contribute to im-
proving the search performance. This work uses the con-
tinuous DTLZ4 benchmark problems with 2-5 objectives
and several problem difficulty parameters and verifies the
effects of the proposed initial solution arrangement by
combined with the conventional MOEA/D (Zhang et al.,
2007) and MOEA/D-CRU (Sato, 2016).
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(a) Conventional random pairs (b) Proposed arranged pairs

Figure 1. Pairs of solution x and weight λ in the initial population

Algorithm 1 Main MOEA/D Framework (Zhang et al.,
2007)
Input: the number of objectives m, the decomposition parameter H,

the number of weight vectors and solutions in the population N, the
neighborhood size T

Output: the non-dominated set of solutions
1: L = {λ 1, . . . ,λ N}← Generate weight vectors (H, m)
2: for each λ

i ∈L do
3: Bi = {i1, . . . , iT }← Find nearest neighbor weight indices
4: end for
5: P ← Initialize the population . Algorithm 2 or Algorithm 4
6: repeat
7: for each i ∈ {1,2, . . . ,N} do
8: p1, p2← Randomly select parent indices (Bi)
9: y← Generate offspring (xp1 ,xp2 )

10: Solution Update (y, i) . Algorithm 3 or Algorithm 5
11: end for
12: until The termination criterion is satisfied
13: return The non-dominated solutions picked from P

2 MOEA/D
2.1 Algorithm
MOEA/D decomposes a multi-objective optimization
problem into a number of single-objective optimization
problems and simultaneously optimizes them to approx-
imate the Pareto front of the original multi-objective prob-
lem. Algorithm 1 is a pseudocode of the MOEA/D algo-
rithm framework. The original MOEA/D (Zhang et al.,
2007) uses Algorithm 2 at 5th line for the population ini-
tialization and Algorithm 3 at 10th line for the solution
update. In the following, the algorithm of the original
MOEA/D is briefly described.

To decompose a m-objective problem, MOEA/D gen-
erates N = Cm−1

H+m−1 kinds of weight vectors L =

{λ 1,λ 2, . . . ,λ N} based on the simplex-lattice design with
the decomposition parameter H. Each weight vector λ

i

specifies a part of the Pareto front to be approximated, its
elements λ i

1,λ
i
2, . . . ,λ

i
m are one of {0/H,1/H, . . . ,H/H},

Algorithm 2 Conventional Population Initialization
(Zhang et al., 2007)
1: procedure CONVENTIONAL POPULATION INITIALIZATION

2: P ← /0 . Population
3: for each i ∈ {1,2, . . . ,N} do
4: xi← Randomly generate
5: P ←P ∪ xi

6: end for
7: return P
8: end procedure

and unique weight vectors satisfying ∑
m
j=1 λ i

j = 1.0 are
employed for the search. For each weight vector λ

i, a
randomly generated solution xi is assigned, and totally N
solutions become the population P = {x1,x2, . . . ,xN}. To
select parent solutions and update solutions with newly
generated offspring, MOEA/D focuses on a weight vector
and its neighbor weight vectors. For each weight vector
λ

i, its T -neighbors’ weight indices Bi = {i1, i2, . . . , iT}
are stored before the search. In the search process,
MOEA/D focuses on a weight vector λ

i, selects two par-
ent solutions from solutions assigned to neighbor weights
Bi of the focused weight λ

i, generates an offspring from
the selected parents, and tries to update the neighbor so-
lutions with the generated offspring. To compare solu-
tions, a scalarizing function is used. This work employs
the weighted Tchebycheff scalarizing function (Li et al.,
2014) defined by the following equation.

Minimize g(x|λ ) = max
1≤ j≤m

{| f j(x)− z j|/λ j}, (1)

where, z is the obtained ideal point, and its each element
zi is the minimum i-th objective value found during the
search. λ j = 0 is exceptionally replaced with λ j = 10−6

to avoid the division by zero.

2.2 Focused Issue
Each weight vector determines a search part of the Pareto
front, and its solution assigned to the weight vector tries
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Algorithm 3 Conventional Update (Zhang et al., 2007)
Input: offspring y, the focused index i
1: procedure CONVENTIONAL UPDATE (y, i)
2: for each j ∈Bi do
3: if g(y|λ j) is better than g(x j|λ j) then
4: x j ← y
5: end if
6: end for
7: end procedure

Algorithm 4 Proposed Population Initialization
1: procedure PROPOSED POPULATION INITIALIZATION

2: Y ← /0 . Temporal population pool
3: for each i ∈ {1,2, . . . ,N} do
4: yi← Randomly generate
5: Y ← Y ∪ yi

6: end for
7: P ← /0 . Population
8: for each i ∈ {1,2, . . . ,N} do
9: CHAIN-REACTION ARRANGE AND UPDATE (yi)

10: end for
11: return P
12: end procedure

to approximate the specified part of the Pareto front.
Therefore, for each weight vector, an appropriate solu-
tion should be paired are different. However, when the
initial solutions are generated, the conventional MOEA/D
does not consider pair matchings between solution and
weight vector. According to Algorithm 2, the conven-
tional MOEA/D repeats to assign a randomly generated
initial solution for each weight vector without considering
its position in the objective space. Therefore, several mis-
matched pairs of solution and weight are generated. Fig-
ure 1 (a) shows an example of N = 6 initial pairs of solu-
tion and weight generated by the conventional MOEA/D
with Algorithm 2. This figure shows a two-dimensional
weight space (λ1− λ2) and an objective space ( f1− f2)
which both objective functions should be minimized. A
set of weight vectors λ

1,λ 2, . . . ,λ 6 and a set of initial
solutions x1,x2, . . . ,x6 are shown in this figure, and six
double-headed arrows indicate pair relations of solution
and weight vector. In this figure, x6 has the second worst
(highest) value of f2 among all solutions. However, x6

is assigned to λ
6 to find the minimum value of f2 on the

Pareto front. If x4 having the minimum f2 among all so-
lutions is assigned to λ

6 instead of x6, the search directed
by λ

6 would be enhanced. Since Figure 1 (a) also includes
other mismatched pairs of solution and weight, the search
to find the Pareto front would be inefficient. Although the
initial solutions must be generated randomly, the search
would be efficient by arranging each of initial solution to
its appropriate weight vector as shown in Figure 1 (b).

3 Proposed Method: Chain-Reaction
Initial Solution Arrangement

3.1 Aim and Concept
To improve the search performance of MOEA/D based
algorithms by enhancing a number of single objective
searches directed by weight vectors, this work proposes
a method appropriately arranging randomly generated ini-
tial solutions to weight vectors. Since the conventional
method just sequentially assigns each initial solution to a
weight vector without considering its position in the ob-
jective space, and several mismatched pairs of solution
and weight are obtained as shown in Figure 1 (a). On the
other hand, the proposed method tries to assign each initial
solution to an appropriate weight vector with considering
its approximative direction, the objective balance vector,
in the objective space. Consequently, more appropriate
pairs of solution and weight are obtained as shown in Fig-
ure 1 (b).

3.2 Method
To arrange the initial solutions, this work extends the
chain-reaction solution update method (Sato, 2016). The
chain-reaction solution update effectively replaces exist-
ing solutions in the population with generated offspring
by adaptively determining target existing solutions to be
updated based on the position of generated offspring. In
the previous work, the chain-reaction solution update is
used only for the update of existing solutions with gener-
ated offspring. To appropriately arrange initial solutions,
this work extends the chain-reaction update, and utilize
it in the process at 5th line of Algorithm 1 as an alter-
native of the conventional Algorithm 2. Algorithm 4 is
the pseudocode of the chain-reaction solution arrangement
proposed in this work. Algorithm 4 performs Algorithm 5
which is the extended chain-reaction solution update pro-
cedure (Sato, 2016) also for the initial solution arrange-
ment. In Algorithm 5, 9-13th lines are newly added to the
previously proposed chain-reaction solution update pro-
cedure. Since newly added 9-13th lines in Algorithm 5 do
not affect to the solution update process, the same Algo-
rithm 5 can be employed also in the solution update pro-
cess.

The proposed method performs Algorithm 4 at 5th line
of Algorithm 1 instead of Algorithm 2. The conventional
Algorithm 2 generates the population P by repeating the
random generation of an initial solution to be paired with
each weight vector N times. Thus, the conventional
method does not care about the positions of randomly gen-
erated solutions in the objective space and just sequen-
tially assigns them to weight vectors. On the other hand,
to check the relative position and approximative direction
of each initial solution in the objective space, the pro-
posed Algorithm 4 first randomly generates N solutions yi

(i = 1,2, . . . ,N) and temporally stores them in the tempo-
ral population Y before assigning them to weight vectors
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Algorithm 5 Proposed Chain-Reaction Arrange and
Update
Input: solution y
1: procedure CHAIN-REACTION ARRANGE AND UPDATE (y)
2: b←Calculate balance of objective values (y) . Eq. (2)
3: D ←{d1,d2, . . . ,dN} . Distances from all weight vectors
4: for each i ∈ {1,2, . . . ,N} do
5: di← Calculate Euclidean distance (b,λ i)
6: end for
7: D ← Sort elements in ascending order (D)
8: for each d j ∈D do
9: if x j is not exist in the population P then

10: x j ← y
11: P ←P ∪ x j

12: break
13: end if
14: if g(y|λ j) is better than g(x j|λ j) then
15: tmp← x j . Preserve temporally
16: x j ← y
17: CHAIN-REACTION ARRANGE AND UPDATE (tmp)
18: . Call recursively
19: break
20: end if
21: end for
22: end procedure

(3-6 lines). Next, the proposed method makes pairs of so-
lution and weight by repeating Algorithm 5 for each yi in
the temporal population Y (8-10th lines).

For each initial solution y in the temporal population
Y , Algorithm 5 calculates its objective balance vector b
by the following equation (2nd line).

b j =
f j(y)− z j

∑
m
`=1 { f`(y)− z`}

( j = 1,2, . . . ,m). (2)

Next, the proposed method calculates the Euclidean dis-
tances between the balance vector b and all weight vectors
λ

i (i = 1,2, . . . ,N) and sorts their distances in ascending
order (3-7th lines). Then, the proposed method tries to ar-
range y to a weight vector in short-distance order (8-21th
lines). If solution x j paired with weight vector λ

j which
is the closest to the balance vector b still does not exist
in the population P , y is assigned to λ

j (x j ← y). Oth-
erwise, scalarizing function values of x j and y are com-
pared in the same way of the chain-reaction solution up-
date (Sato, 2016). If y shows better scalarizing function
value than the existing x j, y becomes new x j, and Algo-
rithm 5 is recursively performed with the previous x j like
a chain-reaction. For each initial solution y, the above pro-
cedure is repeated in the short-distance order of the objec-
tive valance vector b and weight vectors until y is assigned
to a weight vector.

Since the effects of the proposed solution arrangement
depend on the distribution of randomly generated solu-
tions in the objective space, all solutions cannot be as-
signed to their nearest weight vectors. However, the above
procedure can improve the relations between initial solu-
tion and weight vector compared with the conventional

Table 1. MOEA/D based algorithms compared in this work

Algorithm 1 using
Initialization Solution Update

Conventional MOEA/D Algorithm 2 Algorithm 3
Proposed MOEA/D-A Algorithm 4 Algorithm 3
Conventional MOEA/D-CRU Algorithm 2 Algorithm 5
Proposed MOEA/D-CRU-A Algorithm 4 Algorithm 5

method. In the case of the example solutions and weight
vectors shown in Figure 1, we experimentally verified that
pairs of solution and weight becomes the relations shown
in Figure 1 (b).

4 Experimental Settings
To verify the effects of the proposed chain-reaction so-
lution arrangement, this work compares the search per-
formances of four MOEA/D based algorithms. They
are the conventional MOEA/D (Zhang et al., 2007) and
MOEA/D-CRU (Sato, 2016) without the proposed so-
lution arrangement and the proposed MOEA/D-A and
MOEA/D-CRU-A with the proposed solution Arrange-
ment. The differences among four algorithms are de-
scribed in Table 1.

As the test problems, this work employs DTLZ4 prob-
lem framework (Deb et al., 2002a). In the DTLZ test suite,
DTLZ4 is the problem framework which can control the
difficulty to obtain uniformly distributed non-dominated
solutions in the objective space by the problem parame-
ter α . DTLZ4 with α = 1 is equivalent to DTLZ2 prob-
lem, and α = 100 is generally used problem setting for
DTLZ4. This work uses 36 patterns of DTLZ4 problems
combining m = {2,3,4,5} objectives and the parameters
α = {1,5,10,20,50,100,200,500,1000}. Also, the num-
ber of variables are set to n = m+10.

All algorithms employ the decomposition parame-
ters H = {200,19,10,7} and the population sizes N =
{201,210,286,330} for m = {2,3,4,5} objective prob-
lems, respectively. Also, the neighbor size is set to T = 20.
To generate offspring solutions, SBX with its ratio 0.8 and
distribution index 20 and the polynomial mutation with its
ratio 1/n and distribution index 20 are used. Also, the ter-
mination condition is set to the totally 1,000 generations.

As the search performance metric, this work uses Hy-
pervolume (HV ). HV is the m-dimensional volume en-
closed by the obtained non-dominated solutions and the
reference point r = (1.1,1.1, . . . ,1.1) in the objective
space. The higher HV , the higher search performance.
In the following experiments, the average HV of 100 in-
dependent runs of each algorithm and its 95% confidence
intervals are compared.

5 Results and Discussion
5.1 Search Performance at Final Generation
Figure 2 shows the average HV values obtained by the
four MOEA/D based algorithms at the final genera-
tion. Figure 2 (a)-(d) are results on problems with m =
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Figure 2. HV at the final generation as the difficulty parameter α is varied

{2,3,4,5} objectives, respectively. In each figure, the hor-
izontal axis indicates the problem parameter α . α = 1 is
equivalent to DTLZ2, and α = 100 is the typical DTLZ4.
Also, each figure also shows the 95% confidence intervals.

First, from the results on the problem with α = 1 which
has the minimum difficulty to obtain uniformly distributed
solutions in the objective space, we can see that there is no
difference in HV values among four algorithms at the fi-
nal generation. However, HV is gradually decreased by
increasing α and the difficulty to obtain uniformly dis-
tributed solutions. Next, from the results on the problem
with α = 100, we can see that the proposed MOEA/D-
A achieves higher HV than the conventional MOEA/D.
Also, the proposed MOEA/D-CRU-A achieves higher HV
than the conventional MOEA/D-CRU. The similar ten-
dency can be seen on DTLZ4 problems with all objec-
tives used in this work. Also, the proposed MOEA/D-
CRU-A achieves the highest HV on the all problems at
the final generation. These results reveal that the pro-
posed chain-reaction solution arrangement contributes to
improving the search performance of MOEA/D based al-
gorithms, and its effectiveness becomes significant espe-
cially on the problems with a large α which has the dif-
ficulty to obtain uniformly distributed solutions in the ob-
jective space. However, there is the tendency that the ef-
fectiveness of the proposed chain-reaction arrangement is
deteriorated on the problems with α = 1000. In problems
with a large α , since the distribution of randomly gen-
erated initial solutions is strongly biased in the objective
space, the effect of the proposed method is weakened even
if initial solutions are arranged by the proposed method.

5.2 Search Performance over Generations
Next, we observe the transitions of the average HV val-
ues obtained by four algorithms over generations. Figure
3-6 shows the results on problems with 2-5 objectives, re-
spectively. In each of them, (a)-(d) show results on prob-
lems with different α , respectively. Note that the horizon-
tal axis is the number of generations and logarithmic scale
in all figures.

From the results on problems with α = 1 which is
equivalent to DLTZ2 with the lowest difficulty, we can
see that the proposed MOEA/D-A achieves higher HV

than the conventional MOEA/D until about 50 gener-
ations. The proposed MOEA/D-CRU-A also achieves
higher HV than the conventional MOEA/D-CRU until
about 50 generations. However, after that, the difference
of HV values of four algorithms disappears. Next, form
the results on problems with α = {50,200,500}, in al-
most all cases, we can see the tendency that HV values
are saturated after about 100 generations. The proposed
MOEA/D-A with the chain-reaction solution arrangement
achieves higher HV than the conventional MOEA/D with-
out the proposed method, however, both HV values are not
significantly improved after about 100 generations. On
the other hand, until the first 10 generations, HV values
of MOEA/D-CRU and MOEA/D-CRU-R employing the
chain-reaction solution update proposed in our previous
work are lower than the ones of MOEA/D and MOEA/D-
A without the chain-reaction solution update. However,
the algorithms employing the chain-reaction solution up-
date achieve higher HV than the algorithm without the one
at the final generation. Also, we can see that MOEA/D-
CRU-A shows higher HV than MOEA/D-CRU through-
out the entire search.

These results reveal that the proposed chain-reaction
solution arrangement improves the search performance of
MOEA/D algorithms at any generation number.

6 Conclusions
To improve the search performance of MOEA/D based al-
gorithms on multi-objective problems by enhancing the
simultaneous optimization of many single objective prob-
lems directed by weight vectors, this work proposed the
chain-reaction solution arrangement method to appro-
priately arrange randomly generated initial solutions to
weight vectors based on their positions in the objective
space. The proposed method is an extension of the chain-
reaction solution update and calculates the objective bal-
ance vector of each initial solutions and tries to assign it
to an appropriate weight vector close the objective balance
vector. The experimental results using DTLZ4 problems
showed that the proposed chain-reaction solution arrange-
ment contributes to improving the search performance of
MOEA/D based algorithms.
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Figure 3. Transitions of HV in DTLZ4 with m = 2 objectives and different difficulty parameters α
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Figure 4. Transitions of HV in DTLZ4 with m = 3 objectives and different difficulty parameters α
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As a future work, we will verify the effects of the pro-
posed method on problems with many objectives and dis-
crete solution spaces.
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