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Abstract
The electrical grid is under reform; the increasing volatile
renewable energy production and distributed local gener-
ation compel the development of a future where the con-
sumption of electricity can also participate in maintaining
the production-consumption balance of the grid. There
is a vast amount of recent research activity related to ex-
ploiting residential and industrial consumption elasticity.
This paper presents a selected overview of various facets
of modeling, optimizing and simulating the demand re-
sponse potential and effects, especially with emergent soft
computing methods. In addition, some illustrating ex-
amples are presented, where various relevant approaches
from recent state-of-the-art research, including soft com-
puting methods, are reviewed.
Keywords: Smart grid, optimization, soft computing

1 Introduction
The continuing increases in electricity consumption and
volatile production in the form of renewable energy gen-
eration (Ela et al., 2011), are motivating the renewal of the
electrical grid. This coming smart grid is envisioned to
be more comprised of electronically controlled equipment
than the current electromechanical foundations (Amin and
Wollenberg, 2005). All the levels of the grid from the
production, through transmission and distribution, to con-
sumption will be fitted with metering and control devices
to allow more granular and swift control (Farhangi, 2010).

One main part of the future smart grid is participation of
electricity demand in maintaining grid health (Albadi and
El-Saadany, 2007). The development of this demand re-
sponse (DR) is motivated by the possible decrease in con-
trollable production, as well as increase in local distributed
generation (Castillo-Cagigal et al., 2011). In addition, lo-
cal energy storages in residential or industrial facilities,
such as electric vehicles (Kempton and Tomić, 2005), heat
storages (Ericson, 2009) or batteries (Vytelingum et al.,
2011), could be utilized for further enhancing the DR ca-
pabilities.

Before the actual distribution, electricity is bought and
sold on various markets. These include, especially in Eu-
rope, some kind of day-ahead auction markets, where a
price for the electricity is determined for all periods within
the day (Imran and Kockar, 2014). Various intra-day mar-

kets for further trading energy are also usually present. In
addition, the real-time balance of the production and con-
sumption of electricity is maintained by an assigned sys-
tem operator (Kirschen and Strbac, 2004). The operator
aims to ensure the balance by issuing imbalance fees to
producers and consumers who do not adhere to their day-
ahead plans, purchasing regulating energy from various
market participants and contracting reserves for continu-
ous system balancing.

The demand-side could then be possibly utilized in var-
ious stages of market operation (Palensky and Dietrich,
2011). In the first place, smart appliances could enhance
energy efficiency. With dynamic electricity prices, the
time of use of appliances and other consumption could be
shifted to minimize congestion during peak consumption.
Then, with more dynamic control, the elasticity of the con-
sumption could be utilized to participate e.g. in intra-day
markets to shift consumption for agreed upon compen-
sation. Finally, with more real-time communication and
control capabilities, the demand-side could participate in
various reserves.

These different options for market participation, in con-
junction with the more distributed nature of electricity
production and grid health maintenance, provide an am-
ple range of problems and possibilities. The relevant con-
trol problems required for demand response participation
have to be modeled carefully, due to their dual nature in-
volving the competing objectives related to grid stability
and level of comfort (Callaway and Hiskens, 2011). In
addition, the amount of uncertainties is going to even in-
crease (Varaiya et al., 2011), and thus has to be taken into
account both in the modeling and optimization stages, as
well as the final simulations. Various traditional and more
novel approaches can be found to offer solutions to the
aforementioned problems. Especially soft computing and
computational intelligence methods are seen to be able to
respond to the various complicated problems at hand (Ve-
nayagamoorthy, 2011).

Similarly to previous reviews on the subject of com-
putational intelligence methods in the smart grid context
(Venayagamoorthy, 2011), this paper presents the possi-
bilities of soft computing methods, but also with consid-
eration for traditional approaches. This paper presents a
selected overview of modeling, optimizing and simulat-
ing demand response potential, in addition to some exam-
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ples. In the examples, various relevant approaches from
recent state-of-the-art research, including soft computing
methods, are reviewed, and discussion presented on pos-
sible future research directions. At first, we outline the
elements and actors to be modeled related to demand-side
management. Then we delve into the control of those el-
ements with planning consumptions schedules and then
more real-time control related to the grid frequency, while
showing some examples. Finally, some discussion on the
findings, and challenges and possibilities of the demand
response are presented.

2 Modeling demand-side manage-
ment

There are multiple facets to modeling the effects and po-
tential of demand response in a smart grid. Traditionally
electricity delivery and consumption has been a hierarchi-
cal system, with electricity provided by large power plants
and consumed by customers behind the transmission and
distribution networks (Kirschen and Strbac, 2004). How-
ever, with the coming smarter electricity grid, the direction
of electricity transfer can vary and role of the various ac-
tors is expanded (Amin and Wollenberg, 2005). The ob-
jectives of these actors and their communication have to
be properly modeled, especially if they are to operate in
an independent manner. The main players in the electric-
ity market to be modeled include the electricity markets,
electricity producers, independent system operator, retail-
ers and finally electricity consumers (Kirschen and Strbac,
2004). In addition, the actual grid, or parts of it, might
have to be modeled depending on the effects that are un-
der study.

2.1 Markets
Auction-based electricity markets facilitate the trading
of electricity by aggregating production and consump-
tion bids of electricity, and determining an hourly price
(Kirschen and Strbac, 2004). Electricity retailers partici-
pate on these markets on behalf of the end-consumers by
aggregating their consumption. If the customer electricity
consumption schedules can be affected, the aggregating
retailers can reduce electricity acquisition costs by acquir-
ing more electricity during lower priced hours.

The markets can be modeled by the retailers by assum-
ing that their effect on the market is minimal, and mod-
eling the resulting electricity price as a stochastic process
(Zugno et al., 2013). The model for the price can take into
account various influences, including climate and weather
data, hydro-power availability and electricity demand (Ve-
hviläinen and Pyykkönen, 2005). In addition, the uncer-
tainties in the realizations manifest as normal variation as
well as larger price peaks (Voronin et al., 2014). Vari-
ous methods can be utilized in modeling and forecasting
the prices, such as ARMA, GARCH, neural networks and
GMMs (Voronin et al., 2014). Alternatively, the price of
electricity can be assumed to directly reflect the amount

of demand. For example, in many studies the cost of elec-
tricity is set to rise quadratically w.r.t. the amount of total
consumption (Mohsenian-Rad et al., 2010; Samadi et al.,
2010).

2.2 Actors
The aggregating retailer in the context of a smart grid is
often referred to as a virtual power plant (VPP), which
can aggregate the consumption as well as elasticity of the
consumption, and possible distributed production, of mul-
tiple industrial or residential customers (Pudjianto et al.,
2007). The VPP has to be modeled with both the techni-
cal and commercial roles in mind (Pudjianto et al., 2007).
When participating in the various markets and providing
system balancing services, the VPP has to be able to affect
the consumption profiles of its managed customers. There
are various alternative approaches for controlling the con-
sumption, which are discussed in more detail in the fol-
lowing Section 3.

Conversely, the consumers are mainly concerned with
maintaining their level-of-comfort or production dead-
lines. In addition, depending on the contract made with
the VPP, they have to be able to shift their consumption
either under command or voluntarily through compensa-
tion (Albadi and El-Saadany, 2007). The customers can
have various loads that they use their electricity on. For
example, various thermostatically controlled loads such
as direct heating or refrigerators could be modeled and
utilized for various grid maintenance activities (Callaway
and Hiskens, 2011). One general application involves
a stochastic load and some intermediate energy storage,
such as storage space heating (Ali et al., 2014). Ali et
al. (Ali and Koivisto, 2013) devised such a model for a
particular consumer n, where the storage charging Pn,t is
constrained by the heating demand Qn,t and storage limits
Cmax,n:

0≤ Pn,t ≤ Pmax,n (1)
t

∑
k=1

(
Pn,k−Qn,k

)
∆t ≥−Cn,0 (2)

t

∑
k=1

(
Pn,k−Qn,k

)
∆t ≤Cmax,n−Cn,0 (3)

A more detailed model would be required for industrial
applications for providing demand response (Ding et al.,
2014), Examples of models for industrial applications in-
clude production planning with detailed constraints for
operating mode switching with proper ramping behaviour
by Mitra et al. (Mitra et al., 2012), and the work by Castro
et al. which takes into account discrete events such as due
dates and utility availabilities (Castro et al., 2009).

2.3 Other elements
In addition, other elements have to be taken into ac-
count when modeling demand response potential and ef-
fects on a larger scale. Locational aspects affect the re-
alization of demand response on a larger scale. Among
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these locational aspects are the communication networks
enabling coordination of the demand response (Güngör
et al., 2011). The communication infrastructure of the
smart grid is envisioned to consist of a combination of
existing networks and technologies (Güngör et al., 2011),
where the latencies and other characteristics are impor-
tant considerations (Lu et al., 2013). These communica-
tion channels can be included in the models by integrating
external communication network simulators (Mets et al.,
2011), or more directly by utilizing various probability
distributions for the relevant parameters (Kilkki et al.,
2014). In addition, constraints on locational grid limits
might have to be taken into account (Wang et al., 2015).

3 Controlling consumption
Responsive demand can be utilized for various system
balancing activities on various timescales (Palensky and
Dietrich, 2011). Related to the various services that the
VPP can offer to the grid and markets, are the ways in
which the control can be exerted on the consumer loads.
The main classification of different demand response pro-
grams, based on the ways the consumers are incentivized
and contracted to react, can be started with a split into
incentive based programs and price based programs (Al-
badi and El-Saadany, 2007). In incentive based programs
the incentives can be paid out either by directly assuming
them into the consumer contracts or by determining them
with on market based methods, e.g. bidding.

In contrast, with price-based programs, the VPP or
other controlling entity would choose a dynamic price for
the electricity it is offering to its customers (Albadi and
El-Saadany, 2007). The type of dynamic price can vary
from day-ahead chosen time-of-use prices, to critical peak
pricing, or real-time pricing.

3.1 Optimizing scheduling
Two major areas of research involve planning of consump-
tion and charging schedules, and then dispatching the ac-
tual consumption. The main objectives usually include
taking into account the utility of the consumers, cost of
electricity and any possible grid constraints. Traditional
optimization methods such as linear programming (LP),
mixed-integer linear programming (MILP) or quadratic
programming (QP), or a mixture thereof, are routinely uti-
lized in obtaining consumption schedules. Electric vehi-
cle charging aggregation is a thoroughly researched topic,
where the charging schedules can be optimized for exam-
ple w.r.t. uncertain renewable generation (Pantoš, 2011),
or taking into account the risks involved in the costs and
profits (Momber et al., 2015).

In addition, heating is another large part of electricity
consumption which could be temporarily deferred. For
example, Nguyen et al. (Nguyen and Le, 2014) propose
a method for planning heating schedules w.r.t the day-
ahead electricity acquisition costs, while considering var-
ious uncertainties. In Section 2.2 we detailed a simplified
model for an energy storage in conjunction with a heating

load, and we have previously also proposed (Kilkki et al.,
2015a) an optimization algorithm for its charging sched-
ules. We utilized a genetic algorithm to optimize the dy-
namic price Kt an aggregator charges from its independent
consumers, in order to achieve a desirable aggregate con-
sumption profile. The consumers aim to minimize their
electricity costs by optimizing

min
w.r.t. P

H

∑
t=1

KtPn,t (4)

while holding the constraints (1)-(3). The aggregators
profits comprise of the expectation function

maxE
[ H

∑
t=1

Kt(Pt +Lt)−Ks
t Et −π

↑
t ∆E↑t +π

↓
t ∆E↓t

]
(5)

where Pt is the aggregate consumption, Ks
t the day-ahead

market price, π
↑/↓
t and ∆E↑/↓t the imbalances, costs and

payments for positive and negative deviations from the
planned schedules, respectively. The optimization aims
to minimize these costs as well as the acquisition costs,
while maximizing profit that can be acquired from the con-
sumers. The imbalances that are however realized during
the day, were proposed to be minimized by offering fa-
vorable changes to the electricity price of the consumers
for them to shift their consumption. The price discount
amount and percentage of consumers to offer to were
also optimized using genetic algorithms with the to-be-
maximized function defined as

max
w.r.t. ∆K,n

π
↑/↓
t (∆E↑/↓t +Pd

t −Pt)+
H

∑
k=t

n(Kd
k Pd

k −KkPk) (6)

where Kd
k is the discounted price (with discounts ∆K ≤ 0)

and Pd
k the consumption of the consumers after the dis-

count. Figure 1 shows results obtained from the afore-
mentioned optimizations, when discounts were given at
hours 3, 14 and 20. The upper subfigure shows the real-
ized load consisting of the storage space heater charging
and other inflexible consumption sources. The lower sub-
figure them shows the distribution of realized imbalances
from the acquired electricity schedule, that occur due to
various uncertainties. It can be seen how during the hours
with discounts, the amount of imbalances is reduced sig-
nificantly, resulting in positive effects for the aggregator,
consumers, and the grid.

An evolutionary approach has also been utilized for
various other problems, such as by Logenthiran et al.
for scheduling general shiftable loads (Logenthiran et al.,
2012). In addition to genetic algorithms, various other
soft computing methods have been utilized in planning
consumption schedules (Venayagamoorthy, 2011). For
example, Soares et al. developed a day-ahead schedul-
ing method for electric vehicles, with considerations for
demand response. The resulting mixed-integer nonlin-
ear programming problem was solved utilizing traditional
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Figure 1. Realized charging and inflexible consumption as well
as remaining imbalances from the acquired schedules after dis-
counts. (Kilkki et al., 2015a)

nonlinear optimization methods but was found to be sig-
nificantly faster to solve with a particle swarm optimiza-
tion approach (Soares et al., 2013). Various fuzzy logic
(Dubey et al., 2015; Ma and Mohammed, 2014) and neural
network solutions (Siano et al., 2012), and combinations
thereof (Ozturk et al., 2013; Shahgoshtasbi and Jamshid,
2011) have been also employed, in optimizing day-ahead
electricity consumption schedules.

3.2 Controlling (via) frequency
The instantaneous balance of total aggregate production
and consumption in the electrical grid can be inferred to
some extent from the frequency of the grid (Kundur et al.,
2004). The system operator is in charge of maintain-
ing this frequency close to its nominal value. The main-
tenance is performed by purchasing regulating power to
minimize larger imbalances, and contracting either power
plants or consumption for providing continuous reserves.
Involving the consumption in this frequency control is
widely researched with applications to power plants such
as hydro (Doolla and Bhatti, 2006) and wind turbines
(Ramtharan et al., 2007), as well as to demand.

In its most simplest form, frequency regulation can be
implemented by implementing the traditional droop con-
trol with consumers increasing and decreasing their loads
w.r.t. to the deviation of grid frequency from its nominal
value (Palensky and Dietrich, 2011). Figure 2 displays the
traditional droop of a frequency controller, where Pr is the
amount of reserves promised, ∆ fdb is the deadband of the
frequency deviations and ∆ fmax the frequency deviation
where the maximal control has to be exerted. Thermo-
statical loads can be similarly co-ordinated to perform the
droop control by issuing frequency limits after which they
turn their loads on or off, respectively.

Molina-García et al. (Molina-Garcia et al., 2011) pro-
posed a similar method while including time characteris-
tics to the frequency control thresholds. In their proposed
approach, different load types were given different charac-
teristics on how fast to respond to varying sizes of devia-
tions of varying lengths. For an alternative approach, Call-

Pr

∆ fdb ∆ fmax
∆ f

P

Figure 2. Droop.

away proposed an aggregated continuous control method
for a group of thermostatically controlled loads (Callaway,
2009), which could be utilized for frequency regulation.
The control was achieved by directly altering the temper-
ature setpoints of the thermostats, while maintaining an
aggregated load model of all of the loads under control.
Callaway and Hiskens also proposed similar methods for
energy storage charging devices, such as electric vehicles,
where a hysteresis-based on-off charging cycle is manip-
ulated by adjusting the deadbands of the cycles (Callaway
and Hiskens, 2011).

In addition to the more traditional approaches, the var-
ious proposed methods have utilized soft computing so-
lutions. A fuzzy logic based frequency control method
was developed by Datta (Datta, 2014), where electric ve-
hicle charging was controlled to provide frequency reg-
ulation. Similar fuzzy methods were also utilized for
photovoltaics inverter control (Datta and Senjyu, 2013).
Bevrani & Shokoohi utilized a fuzzy approach as well in
their work (Bevrani and Shokoohi, 2013), where they de-
veloped a model-free generalized droop control scheme
for microgrids. The model-free controller was obtained
by a neural network approach, where the generated net-
work was trained with historical training data to achieve
the desired co-ordinated droop control. Debbarma and
Dutta propose (Debbarma and Dutta, 2016) a fractional
order controller for controlling the charging of electric ve-
hicles. A flower pollination algorithm was then utilized
for tuning the actual parameters of the controller. The
flower pollination algorithm is a metaheuristic optimiza-
tion algorithm (Yang, 2012), which takes inspiration from
the pollination process of flowers with elements such as
seperation to local and global pollination and a random
walk based on the Lévy flight.

There have also been multiple studies on taking into
account frequency regulation capacity in day-ahead plan-
ning and market operation. For example, the author has
previously proposed an approach for scheduling the charg-
ing of energy storages utilized in heating, while including
participation in frequency reserve markets (Kilkki et al.,
2015b). Conversely, Yuen et al. proposed an algorithm
for provisioning reserves from multiple microgrids (Yuen
et al., 2011). Vayá and Andersson developed a method for
planning the day-ahead charging schedules of an aggrega-
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tor, while simultaneously optimizing for frequency regu-
lation participation (Vayá and Andersson, 2013), as well
as a real-time dispatch algorithm for the regulation. The
aggregated vehicle charging patterns utilized in the opti-
mization of the day-ahead schedules were obtained by uti-
lizing a co-evolutionary algorithm for optimization. Sim-
ilarly optimizing electric vehicle charging was also pro-
posed by Sortomme and El-Sharkawi (Sortomme and El-
Sharkawi, 2012). Their algorithm also takes into account
reserve participation, and additionally includes in the op-
timization the uncertainties in departure times of the vehi-
cles.

4 Discussion and conclusions
The modernification of the electrical grid brings with it
many challenges. As the grid transforms from a more
hierarchical system to a more diverse collection of more
dynamic actors, the control and its various effects have
to be carefully considered. However, many opportunities
also arise as the penetration of relevant ICT devices can
enable responsive demand. Both residential and indus-
trial demand could be included in various demand-side
management programs, ranging from day-ahead schedul-
ing and market bidding, to more real-time applications
such as participation in frequency reserves. For modeling
and optimizing the responsiveness of the demand, vari-
ous methods can be utilized. Traditional methods can pro-
vide a more predictable response, but with the increase
in the complexity of the system, various soft computing
methods become attractive alternatives. We found multi-
ple proposed applications of genetic algorithms and fuzzy
methods in scheduling the consumption, as well as in co-
ordinating frequency control. Soft computing methods we
found to be utilizable in the optimization of scheduling, as
well as tuning of more real-time control. In addition, with
the various uncertainties involved in the optimization and
control of consumption, various methods are required for
identifying the time-series models related to the uncertain-
ties. Computational intelligence methods are again often
utilized.
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