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Abstract

This paper proposes a learning support system of musical

representation by piano using teacher’s example of mu-

sical expression that is generated based on impression ex-

pressed by an adjective with our musical expression gener-

ation system. The system evaluates learner’s performance

comparing with teacher’s example using a Kansei space

and fuzzy rules expressing the relationship between musi-

cal expression and impression. The system presents good

points of learner’s performance and advice by text to a

learner for improvement of learner’s musical representa-

tion. A learner tries to improve his/her own performance

based on system’s advice, and the system presents other

advice again. From the experimental results, it is show

that the proposed system is useful to learn musical repre-

sentation and an approach of the proposed system is suit-

able because the affirmative evaluation is obtained from

the participants who have taken piano lesson. On the

other hand, it is found that to learn musical representa-

tion is difficult using the proposed system for learner of

low-performance skills.

Keywords: musical expression, impression, fuzzy infer-

ence, learning support system

1 Introduction

Musical expression is the deviation of performance from

tempo marks and/or dynamic marking in a score, which

means a suitable change of tempo or volume as music

in a real performance. Musical expression is varied ac-

cording to performance situations and/or performers. The

same musical piece gives listeners different impressions

depending on performances or performers. Then, it is

said that performing a score correctly does not necessarily

present rich musical expression. We propose a musical ex-

pression generation system called MUSAI (MUSical ex-

pression generation system by Adjective with Interaction)

(Suzuki and Onisawa, 2015) that generate a musical ex-

pression reflecting any impression expressed by an adjec-

tive, where musical expression is performed by a piano.

MUSAI has the relationship between musical expression

and impression as knowledge, which is expressed using a

Kansei space and fuzzy rules, and generates musical ex-

pression reflecting impression expressed by an adjective.

Furthermore, if a user does not feel that generated musical

expression reflects impression well, MUSAI modifies mu-

sical expression based on user’s evaluation by the interac-

tion with a user. This paper applies to MUSAI to learning

support of musical representation for a piano lesson.

There are some studies on learning support of music

as the application of musical performance generation sys-

tems (Oshima et al., 2004; Ferrari et al., 2006). These re-

searches make an effect to encourage willingness of a

learner to practice because a computer automatically cor-

rects a pitch of musical performance of a learner. If a

teacher is not great with pianos, a teacher can show a

musical representation without any concerns for a mistake

about musical performance. This paper considers the case

in which a teacher instructs a learner in musical represen-

tation using musical performance and verbal advice, and

proposes the learning support system of musical represen-

tation with the application of MUSAI.

2 Components and Parameters of

Musical Expression

This paper covers the musical expression by a piano. Ac-

cording to (Schmitz, 1977), changes of tempo, volume and

length of a note have an influence on the impression of

musical performance. Furthermore, a player can change

them during the performance of a piece of music. There-

fore, in this paper, tempo, volume and length of a note are

considered as components of musical expression that are

represented by a parameters as shown Table 1.

In this paper, the melody of a piano piece is played with

the right hand and the chords are played with left hand.

And the musical expression is added to a phrase of piano

piece of music.

3 Learning Support System of Musi-

cal Representation

The target of the proposed learning support system of mu-

sical representation is a piano learner. Figure 1 shows

the outline of learning support system of musical repre-

sentation. The learning support system presents a musi-

cal expression as an example to a learner, which is gener-

ated by MUSAI. The system also presents impression to a

learner using by an adjective. A learner listens to an ex-

ample of musical expression and practices using a digital

piano. A musical expression of a learner is recorded with
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Table 1. Parameters of musical expression

Component Parameter Value Meaning

Tempo

TempoBase [40, 208] Basic tempo of a performance

TempoRange [0.0, 0.6] Variation range of a tempo

TempoVar constant , decrease, increase Change type of a tempo

Volume

VelocityBase [16, 127] Basic volume of a performance

VelocityRange [0.0, 0.7] Variation range of a volume

VelocityVar constant , decrease, increase Change type of a volume

Length of note

LengthSign -1, 0, 1 Show perform a note for longer or shorter

LengthBase [1.5, 10.0] Show change of note length from in score

LengthRange 0 Variation range of a length of note

LengthVar constant Change type of a length of a note
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Figure 1. Outline of learning support system of musical repre-

sentation

MIDI data. The learning support system obtains the pa-

rameters values of musical expression from data and com-

pares them with the parameter values of a musical expres-

sion example. The system estimates the range on a Kan-

sei space corresponding to learner’s musical expression,

where a Kansei space is constructed beforehand. The sys-

tem presents a good point of learner’s musical expression

and an advice for progress in musical representation based

on the comparison and the estimation. A learner continues

to practice playing the piano by reference to the presented

example of musical expression, the good point and an ad-

vice given by the system.

3.1 Generation of Example of Musical Expres-

sion

Figure 2 shows the outline of generating an example of

musical expression using by MUSAI. A teacher inputs a

piano piece as an original musical piece and an adjective

expressing musical expression impression, which is called

an image word in this paper.

The image word is mapped onto a Kansei space in

the sense that the coordinates values on this Kansei

space are obtained through the image estimation pro-

cess in Figure 2, using the concept of co-occurrence of

adjectives(Shimizu and Hagiwara, 2006). The parameter

values of musical expression are obtained by the coordi-

nates values on a Kansei space and fuzzy inference. MIDI

data is generated using the obtained parameter values and

an inputted piano piece of music, and then, the generated

musical expression is presented to a teacher. If a teacher
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Figure 2. Detail of example of musical expression generation

part

is not satisfied with the presented musical expression, a

teacher inputs a modification word consisting of an adverb

and an image word, e.g., more bright, which expresses

teacher’s evaluation of the presented musical expression.

The modification part estimates new coordinates values

of musical expression on the Kansei space according to

the modification word, and new parameter values of mu-

sical expression are obtained by fuzzy inference. Then,

the presented musical expression is modified. A teacher

evaluates the modified musical expression whether he/she

is satisfied with it or not. These procedures are repeated

until satisfactory musical expression is obtained.

3.1.1 Construction of Kansei Space

A Kansei space is constructed using data obtained by pre-

liminary experiments. In the preliminary experiments,

various musical expressions are generated automatically

by setting the parameter values of musical expression

at random and are presented to the experiment partici-

pants. The participants evaluate their impressions of pre-

sented musical expressions using the semantic differential

method (Osgood et al., 1957) with a 5-points scale. Then,

an active factor and an elegant factor are extracted by fac-

tor analysis of evaluation data. A two-dimensional Kansei

space consists of these two factors axes.

3.1.2 Image Estimation

An inputted image word is mapped onto the Kansei space

in the sense that the coordinates values on this Kansei

space are obtained through the image estimation process.
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Figure 3. Membership functions correspond to the premise in fuzzy rules

In this process, at first, the co-occurrence phrase of adjec-

tives is prepared using the inputted image word and pairs

of adjectives included in the factors composing the Kansei

space (Shimizu and Hagiwara, 2006).

The co-occurrence phrase of adjectives is searched us-

ing a Web search and the number of Web pages having

the co-occurrence phrase is counted. And the similarity

degrees of an inputted image word and the adjectives be-

longing to the factor of the Kansei space are obtained us-

ing the number of Web pages having co-occurrence phrase

of adjectives. Coordinates values on the Kansei space are

obtained using the similarity degree of an image word and

adjectives included in the factors composing the Kansei

space.

3.1.3 Parameter Values Estimation using Fuzzy In-

ference

Parameter values of musical expression are obtained using

fuzzy inference by Mamdani’s min-max-gravity method

(Kruse et al., 1994) from the coordinates values obtained

by the image estimation process. In this paper, the fol-

lowing fuzzy rule form is used; if the coordinate value

of an image word on the active factor axis is Ã and that

on the elegant factor axis is B̃, then TempoBase is C̃,

where Ã, B̃ and C̃ are fuzzy sets. Figure 3(a) and 3(b)

show membership functions of fuzzy sets of the premise

in fuzzy rules. These are related to the coordinates values

on Kansei space obtained by the image estimation. Fig-

ure 3(c) shows membership functions of TempoBase of

the consequent in fuzzy rules. The membership functions

of TempoBase are defined based on tempo mark corre-

sponding to BPM (Beats Per Minute). Table 2 shows con-

structed fuzzy rules to estimate a value of TempoBase. In

this paper, twenty five fuzzy rules are constructed per one

parameter value. The weights of the fuzzy rules are same

for all fuzzy rules. Refer to (Suzuki and Onisawa, 2015)

about other fuzzy sets of the consequent in the fuzzy rules

and other fuzzy rules.

3.1.4 Interactive Modification of Musical Expression

Generated musical expression is not necessarily satisfied

with a teacher. Therefore, the generated musical expres-

sion is modified according to teacher’s evaluation and a

modification word, e.g., more bright. The musical expres-

sion is modified by changing the coordinates values on

the Kansei space according to teacher’s evaluation, and

Table 2. Fuzzy rules to estimate value of TempoBase

VIE LIE N LE VE

VI Largo Andante Andante Andante Andante

LI Andante Andante Andante Andante Moderato

N Moderato Moderato Moderato Moderato Allegro

LA Allegro Allegro Allegro Allegro Allegro

VA Allegro Allegro Allegro Presto Presto

its algorithm is based on Interactive Particle Swarm Op-

timization (hereinafter, referred to as IPSO) (Madar et al.,

2005).

In IPSO, an individual, i.e., musical expression in this

paper, has the position and the velocity, which are calcu-

lated by the following equations:

xxx j(t +1) = xxx j(t)+ vvv j(t), (1)

and

vvv j(t +1) = w(t)vvv j(t)+ c1r1(ppp j(t)− xxx j(t))

+ c2r2(ggg(t)− xxx j(t)) (2)

where xxx j(t) is the position of j-th individual at t-th iter-

ation, vvv j(t) is the velocity of j-th individual at t-th itera-

tion, r1,r2 ∈ [0,1] are uniformly distributed random num-

bers, ppp j(t) and ggg(t) are the best position of j-th individual

and the best position of population at t-th iteration, respec-

tively, w is defined by (3), and c′1 and c′2 defined by (4) and

(5) are transformed to c1 and c2.

w(t) = (RangeHigh j(t)−RangeLow j(t))×adv, (3)

c′2 =
1

1+ e−(EvalPj−5)
, (4)

and

c′1 = 1.0− c′2 . (5)

In this paper, RangeHigh j(t) and RangeLow j(t), search

ranges are defined as +1.0 and −1.0 at the first modifica-

tion step, and the search range becomes narrow at every
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iteration, and adv is defined according to a modification

word as follows: 0.25 when a little more, 0.5 when more

and 0.75 when very. As for c1 and c2, c′1 and c′2 obtained

by (4) and (5) are transformed by adding 0.5 to the values

in [0.5, 1.5]. EvalPj is the number of musical expressions

that a teacher’s evaluation is affirmative for j-th individ-

ual, i.e., j-th musical expression. According to EvalPj,

c1 and c2 are changed based on (4) and (5) so that mu-

sical expression at (t + 1)-th iteration moves to the best

position of j-th musical expression or the best position of

population at t-th iteration.

Musical expressions are generated at the first modifica-

tion step as follows. The Kansei space is divided into 25

ranges according to the fuzzy division as shown in Figure

3(a) and 3(b). The position, i.e., the coordinates values of

modified musical expression are moved to some range ac-

cording to the adverb of the modification word as follows:

the next range when a little more, the next range but one

when more and the next range but two when very. At this

time, the coordinates values are determined at random in

the range, and the velocity of modified musical expression

is defined as zero.

Modified musical expressions are presented to a teacher

again and a teacher evaluates whether the modified musi-

cal expression reflects impression expressed by an image

word or not as follows:

−1: not reflecting,

0: neutral,

+1: rather reflecting,

+2: reflecting.

And a teacher chooses one musical expression reflect-

ing an image word best out of presented musical expres-

sions as the best one. When a teacher wants to modify

musical expression again, a teacher inputs a modification

word. The velocity and the position of each musical ex-

pression are updated by (1) and (2) according to the evalu-

ation value for musical expression at the previous step and

the inputted modification word. After the second modifi-

cation step, the number of modified musical expression is

set as 10. If the number of musical expressions is smaller

than 10, musical expressions are generated at random so

that the number is 10. If there are ten or more musical

expressions at and after the second modification step, top

ten musical expressions having high evaluation survive at

the next modification step. Above procedures are repeated

until a teacher is satisfied with generated musical expres-

sions. In this way, the MUSAI obtains an example of

musical expression of a musical work for practice by a

teacher.

3.2 Comparison of Parameter of Musical Ex-

pression

The presented learning support system obtains the param-

eter values of learner’s musical expression, compares its

parameter values with those of an example of musical

expression, and evaluates whether a learner plays a pi-

ano according to an example of musical expression pre-

sented by the system. The eight parameter values chosen

from ones shown in Table 1, excluding LengthBase and

LengthRange, are considered for the comparison. Ob-

tained parameter values of learner’s musical expression

are evaluated from the following point of views: whether

or not fuzzy sets which the parameter values of learner’s

musical expression belong to are the ones which the same

parameter values of an example of teacher’s musical ex-

pression belong to, where the fuzzy sets are the ones in

the consequent part of fuzzy rules mentioned in Section

3.1. Based on the comparison results the learning support

system presents some good points of learner’s musical ex-

pression and some advices for improvement.

3.2.1 Advice for Parameter of Musical Expression

If some parameter value of learner’s musical expression

belongs to the fuzzy set which the same parameter value

of teacher’s example of musical expression belongs to, the

following advice is presented to a learner: “You play the

performance well for the parameter.”

If all parameter values of learner’s musical expression

belong to the same fuzzy sets which the parameter values

of teacher’s example of musical expression belong to, the

text is generated as good point the following and presented

to a learner: “Your musical expression reflects impression

expressed by an image word.”

On the other hand, if the parameter values of learner’s

musical expression does not belong to the fuzzy set which

the same parameter value of a teacher’s example of mu-

sical expression belong to, advice text is presented to a

learner showing how to play a performance.

3.3 Range of Learner’s Musical Expression on

Kansei Space

Learner’s performance of musical expression is mapped

to a range on the Kansei space using its parameter val-

ues. Text sentences are generated using the coordinate val-

ues of teacher’s example of musical expression, those of

learner’s one and information on the practice effect. Text

sentences present that what extent learner’s musical rep-

resentation reflects target impression and that what extent

impression of learner’s musical expression is changed by

playing performance of musical expression according to

the presented advice.

3.3.1 Estimation of Range of Musical Expression

The mapped range of learner’s musical expression on the

Kansei space is estimated using the parameter values of

learner’s musical expression and the fuzzy rules in MU-

SAI in the following way. At first, as for the parameter

value of learner’s musical expression that does not belong

to the same fuzzy sets which the same parameter values

of teacher’s musical expression belongs to, the ranges of

the active factor and the elegant factor axes composing the

Kansei space are estimated from the fuzzy rules having
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Figure 4. Example of evaluation values in estimated range

the fuzzy sets in the consequent part which the parameter

value of learner’s musical expression belongs to. Next, the

overlapped range of the obtained range on the active factor

axis and that on the elegant factor axis is obtained on the

Kansei space.

3.3.2 Advice about Impression

The system verifies whether or not the coordinate values

of teacher’s example of musical expression are included

in the overlapped range on the Kansei space. If the coor-

dinate values are included in the range, advice about im-

pression of learner’s musical expression is presented to a

learner using the evaluation values of teacher’s example of

musical expressions included in the range, the number of

musical expression example with the same evaluation, and

inputted modification words.

The system estimates whether target impression is re-

flected by learner’s musical expression or not using evalu-

ation values of playing performances of learner’s musical

expression. Let teacher’s example of musical expression

get evaluation values during generation of teacher’s exam-

ple as shown in Figure 4. Impression of learner’s musical

expression is estimated as rather as shown below because

the number of evaluation value +1 is the largest.

✓ ✏
Your musical performance has rather bright impres-

sion.
✒ ✑

If any teacher’s example of musical expression are not

included in the overlapped range, the system does not give

any advice.

The system gives a learner another advice using the cen-

ter coordinate values of the obtained range and the coor-

dinate values of a teacher’s example of musical expres-

sion on the Kansei space. According to the distance be-

tween the center coordinate values of the range and the

coordinate values of a teacher’s example of musical ex-

pression, i.e., dist, the degree adverb in advice is selected

as follows: a little more when 0 ≤ dist ≤ 0.25, more when

0.25< dist ≤ 0.5, and very when 0.5< dist ≤ 0.75. As for

the image word in advice, the system chooses the image

word according to the number of affirmative expressions

in the modification words and the number of negative ones

in the modification words during practice. For instance,

let us assume that the system gives a learner affirmative

advice more bright, and a little more bright, and negative

advice, not bright during the practice. In this instance, a

learner is given affirmative advice twice and negative ad-

vice once. Then, the image word bright is chosen as ad-

vice. If the musical expression is not included in the esti-

mated range or the number of affirmation advices is equal

to or less than the number of negative ones, the following

text is presented to a learner.

✓ ✏
Play the piano as given advice, then your perfor-

mance of musical expression has bright impression.

✒ ✑

4 Experiment

Experiment is performed in order to verify the usefulness

of the proposed learning support system of musical rep-

resentation. Participants are 10 males or females of 16

through 26 years old. 8 out of all participants have taken

a piano lesson and other 2 participants have never taken

it. In the experiment, two examples of musical expression

are generated by an experimenter using MUSAI. That is,

an experimenter is a piano teacher. And the participants

have practice in musical representation using a digital pi-

ano and proposed learning support system until the system

evaluates that learner’s musical expression reflects impres-

sion, where the upper limit number of practice repetition

is fixed at 10.

Table 3 shows questionnaire items in this experiment.

The participants answer the questionnaire items from Q1

to Q4 every one practice, and answer Q5 and Q6 after the

experiment with the 7-points scale. Points from 1 to 3

mean negative evaluation and points from 5 to 7 mean af-

firmative evaluation, and point 4 means neutral. Musical

pieces used in this experiment are Gnossienne No. 1 writ-

ten by Erik Satie and Ecossaise in G Major, WoO.23 writ-

ten by Ludwig van Beethoven. The example of musical

expression of Gnossienne No. 1 reflects hard impression

and the example of musical expression of Ecossaise in G

Major, WoO.23 reflects light impression.

Table 3. Questionnaire items

Item

Q1 Is advice helpful?

Q2 Do you think the contents of advice is suitable?

Q3 Do you have a easy to understand advice?

Q4 Do you think you can perform musical expression close to

an example by advice text?

Q5 Do you think you will learn musical representation using

this system?

Q6 Do you think you want to practice musical representation

using this system?

EUROSIM 2016 & SIMS 2016

1 092DOI: 10.3384/ecp171421088     Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



4.1 Results and Discussions

Figure 5 shows the evaluation results. Although all partic-

ipants musical expressions are not evaluated by the sys-

tem that they reflect target impression, it is found that

from Figure 5 that affirmation ratios in Q1, Q2 and Q4

are 90.0%, 95.0% and 88.2%, respectively. This means

that the participants feel that presented advices are use-

ful for the practice of musical representation using the

learning support system. It is also found from Figure 5

that the affirmation ratios in Q5 and Q6 are 80.0% and

90.0%, respectively. This means that the participants feel

that the learning support system is useful to learn musical

representation. The participants have taken a piano les-

son who have the following free descriptions about advice

presented by the learning support system: “The system is

useful because the system evaluates my performance ob-

jectively when practicing the piano alone.” and “It was

easily practice because the system presents good points

and advice for my performance.” Furthermore, the two

participants have never taken a piano lessen who have the

following free descriptions: “I think good about the sys-

tem presents quantified my performance.” and “It was

easy to understand that attend to my performance because

the system presents example of musical expression and

advice.”
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Figure 5. Evaluation results for learning support system

On the other hand, the affirmation ratio in Q3 is 50.0%

lower than its in other questionnaire items. It is found

the participants feel that it is hard to understand advice

presented by the learning support system. Some partici-

pants have free descriptions about the easiness of under-

standing advice: “I understand the presented advice, but

I don’t imagine how I should improve my performance.”

One of the reasons is that although the system compares

learner’s performance with a teacher’s example of musi-

cal expression, it does not compare the current learner’s

performance with learner’s former ones.

From the above experimental results, it is said that pro-

posed learning support system is useful to learn musical

representation. And an approach of learning support of

musical representation by the proposed system is suitable

because the affirmative evaluation is obtained from the

participants who have taken a piano lesson.

Figure 6 show the changes of the average number of
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Figure 6. Change of average number of parameters of Gnossi-

enne’s and Ecossaise’s musical expression

parameter values of participant’s musical expression for

Gnossienne and Ecossaise matching to the parameter val-

ues of teacher’s example in the sense that fuzzy sets in

the consequent part of fuzzy rules mentioned in Section

3.1 which the parameter values of participant’s musical

expression belong to are the same as the ones which the

parameter values of teacher’s musical expression belong

to. Although there is no significant difference between

the matching degree at the first practice and that at the

tenth practice for the both performances, the increasing

tendency is observed from these figures. In fact, the cor-

relation coefficient between the number of times of prac-

tice and the average value of the matching degree is 0.771

for Gnossienne, and 0.496 for Ecossaise. This means that

the parameter values of participant’s musical expression

approach to those of teacher’s example of musical expres-

sion as the participants repeat practice. On the other hand,

in the participant H and I who have never taken a piano

lesson, the correlation coefficient between the number of

times of practice and the matching degree of participant

H for Gnossienne and Ecossaise are −0.572 and −0.078

respectively, and that of participant I for Gnossienne and

Eccosaise are 0.232 and −0.087 respectively. One reason

for this is the piano performance skill of these 2 partici-

pants is not high.

From the above, although to learn the musical repre-

sentation is difficult for a learner having low performance

skills by learning support system, it is said that a learner

can learns how to play performance of musical expression

by learning support system’s advice.

5 Conclusions

This paper proposes the learning support system of mu-

sical representation using the musical expression genera-

tion system called MUSAI and verifies the validity of the

proposed learning support system by the experiment. The

learning support system obtains the parameter values of

musical expression from learner’s performance. And the

system compares the parameter values of learner’s musi-

cal performance with those of an example of musical ex-

pression and gives a learner an advice about good points

and improvement of learner’s musical expression. From
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the experimental results, it is found that proposed learning

support system is useful to learn the musical representa-

tion. And it is said that the approach of proposed learning

support system is suitable because the affirmative evalua-

tion is obtained by the participants who have taken a piano

lesson. On the other hand, it is found that to learn the mu-

sical representation is difficult for a learner of low perfor-

mance skills using proposed system. A performance skills

of a learner is considered as future works.
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