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Abstract
In this paper we show how an efficient implementation of
genetic algorithms can be done on Field Programmable
Gate Array i.e. on programmable hardware using the lat-
est hardware design language aiding verification. A
fourway number partitioning problem of 128 unsigned
16-bit integers is used as a test case of the implementa-
tion. However, other similar problems could be solved
using the proposed approach. The design was imple-
mented using a combination of reusable verified intel-
lectual property cores for arithmetic operations and
VHDL to describe the genetic algorithm operators in
register transfer level. The register transfer level compo-
nents were verified in ModelSim using SystemVerilog
assertions and covergroups. Test results show significant
improvements in performance compared to C language
implementation running on a core i-7 desktop computer.
Keywords: genetic algorithms, verification, FPGA,
system on chip (SoC)

1 Introduction
The idea of using hardware to speed up processing of evo-
lutionary algorithms is not new (Alander, 2008; Alander et
al., 1995). Here we show how the implementation can be
done in a way that uses the latest verification techniques
that are available in modern hardware design languages
such as SystemVerilog.

The proposed Genetic Algorithm (GA) implementation
is tested on a number partitioning problem that belongs to
the set of NP complete problems meaning that its solution
might be intractable in practice. However, many real life
optimization problems belong to the NP complete set and
must be somehow solved approximately for practical pur-
poses. Having enough computing power helps somewhat.
Field Programmable Gate Arrays (FPGA) are energy effi-
cient and fast due to their massive parallel processing. In
problems that they are suitable, they can be significantly
faster than a PC while using only a fraction of the en-
ergy of a corresponding processor solving the same task.
An obvious drawback of FPGAs is that they need both
programming and hardware design skills. Thus, creating
high quality implementation solution on FPGA is both de-
manding and needs a lot of testing and verification. Proto-
type Verification System (Owre et al., 1992) has been used
to verify crossover operator in GAs (Nawaz et al., 2013).

And vice versa, GAs have also been used to optimize ver-
ification (Gao et al., 2015; Cheng and Lim, 2014).

2 Formulating the GA Optimization
The basic principle of GA is that if some randomly gen-
erated solutions can produce good results, those solutions
can be combined and used as building blocks to generate
better solutions. Solutions are evaluated by calculating a
fitness function, they are then modified using techniques
inspired by natural evolution, such as inheritance, muta-
tion, selection, and crossover. The new generated solu-
tions are then re-evaluated and the procedure is repeated
until the target of fitness optimization is achieved or a pre-
defined number of iterations is reached. (Alander, 1992)

2.1 The Problem Encoding
The number partitioning problem is often labeled as the
easiest hard problem (Hayes, 2002). While being consid-
ered as one of the classical NP-hard problems of combi-
natorial optimization, it is fairly easy to understand, rep-
resent, and evaluate.

According to (Korf, 2009), "The number partitioning
problem is to divide a given set of integers into a collec-
tion of subsets, so that the sum of the numbers in each
subset are as nearly equal as possible". In this work, a
four-way partitioning problem is used to verify the func-
tionality and benchmark the performance of our hardware
GA implementation. The goal is to split a set of N=128
randomly generated positive integers Ii of length 16 bits
into four subsets so that the sums of those subsets are as
equal as possible.

Figure 1 illustrates the chromosome (solution trial) rep-
resentation.

Figure 1. Chromosome representation when N=128

Each chromosome consists of N genes. A binary rep-
resentation is used, where each gene consist of two bits.
Each gene gi (i=0, .., N-1) can take one of the following
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four binary values; "00", "01", "10" or "11" indicating that
the corresponding integer Ii belongs either to subset 0, 1,
2 or 3 respectively. A brute force search would require the
evaluation of 4128 = 1.158×1077 possible solutions which
is intractable.

2.2 The Objective Function (Fitness)
For n number of subsets, the summation of each sub-
set (S0, S1, S2,..., Sn) is computed first. Matlab simula-
tions showed that the standard deviation or variance pro-
duced good results. However, to reduce the complexity
and cost of hardware implementation, a more simplistic
fitness function is implemented. The function adds the
difference between every possible permutation pair of the
subset sums as illustrated in Equation 1. The objective is
to minimize the fitness.

n−1

∑
i=0

n

∑
j=i+1

|(Si−S j)| (1)

In case of a 4-way partitioning problem (n=4), unpack-
ing equation 1 yields to Equation 2.

Fitness = D0,1 +D0,2 +D0,3 +D1,2 +D1,3 +D2,3 (2)

Where Di, j is the absolute value of the difference be-
tween Si and S j

2.3 Selecting The GA Operators
Since the GA is intended to be implemented and verified
in FPGA, the simplest possible set of operators that can
provide satisfactory results were investigated using Mat-
lab simulations. In these simulations, the number of gen-
erations was fixed at 2000. For each set of operators, the
experiment was repeated 1000 times. For each experi-
ment, the error was defined as the difference between the
largest and smallest of the four subsets sums divided by
the sum of the whole set. If the average error of the 1000
experiment is ≤ 1%, this insures that the sum of each of
the four subsets is deviating less than 1% from the optimal
25% of the whole set sum. The operators are considered
good enough and a simpler set of operators is simulated.
After running several simulations, the simplest set of op-
erators that was able to achieve an average error less than
1% (0.23%) was chosen as follows:

• Tournament Selection was used.

• One point crossover was used.

• For Mutation, a positive random integer x is gener-
ated for each gene, where 0 ≤ x ≤ a, a is a constant
that is used to adjust the mutation rate. The random
integer x is then compared to a predefined constant
integer c, where 0 ≤ c ≤ a. If x equals c, the cor-
responding gene is replaced with two random bits.
Otherwise no change is performed. Therefore, the

mutation rate can be controlled by changing a, and is
defined by MR = 1/(a+1).

• For replacement, the chromosome with worst
(largest) fitness value is replaced with the new off-
spring before the generations counter is incremented.

2.4 Tuning the GA Parameters
Matlab simulations are used to fine-tune the population
size, mutation rate, number of generations and the tour-
nament size. Each time, one parameter is varied and the
rest are set to fixed values. One thousand experiments,
each with a new set of 128 random integers are performed
and the best fitness of each experiment is recorded. Af-
ter 1000 experiments have been performed, the results of
those experiments are averaged. The standard deviation is
also taken into consideration in order to guarantee a lower
probability of getting a bad solution which is highly devi-
ated from the average result.

To evaluate the best size of the selection tournament,
The number of generations was set to G=2000, the mu-
tation rate was MR= 1%, and the population size was set
to Np = 128. Table 1 shows the averaged best fitness of
1000 experiments and its standard deviation using differ-
ent tournament sizes. The best results are obtained when
the tournament size is 32/128 (i.e. 1/4 of the population
size Np). Since 16 bit numbers produce large sums and
therefore large fitness values, the fitness values are illus-
trated with the k (kilo) metric prefix for convenience.

Table 1. Optimizing tournament size NT.

NT Average Fitness STD of Fitness
4/128 12.187k 7.068k
8/128 7.201k 4.103k

16/128 7.057k 4.310k
32/128 6.623k 4.158k
64/128 6.8646k 4.575k

To evaluate the best mutation rate, the number of gen-
erations was set to G=2000, the Np = 128 and the tourna-
ment size was set to NT = 1

4 Np = 32. Table 2 shows the
averaged best fitness of 1000 experiments and its standard
deviation using different mutation rates. Best results are
obtained when MR=1%.

Table 2. Optimizing mutation rate MR.

MR Average Fitness STD of Fitness
0.25% 10.924k 6.448k
0.5% 8.518k 5.513k
1% 6.623k 4.158k
2% 6.686k 3.944k
4% 13.656k 6.909k
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To evaluate the best population size, The following pa-
rameters were fixed; G=2000, the MR=1% and NT = 1

4 Np.
Larger populations did not provide significant improve-
ments as seen from table 3.

Table 3. Optimizing population size NP .

NP Average Fitness STD of Fitness
16 7.026k 4.246k
32 6.892k 4.369k
64 7.085k 4.219k

128 6.623k 4.158k

As for the number of generations, no significant im-
provement was observed after G=2000. Hence, a fixed
number of 2000 generations is selected to simplify hard-
ware implementation.

Based on the simulation results, the following param-
eters were selected for implementation; Np=16, NT =4,
MR=1% and G=2000.

3 FPGA Implementation
The simulated GA was implemented using RTL (Register
Transfer Level) description in VHDL. Each of the GA op-
erators was implemented in a separate VHDL file to sim-
plify the verification process. A top module called GA in-
stantiates, connects and controls the operation of the GA
operators using a finite state machine. Arithmetic opera-
tions were implemented using Altera’s verified fixed point
numbers IP cores. The design is optimized to achieve the
best possible performance at the expense of size.

3.1 GA’s HDL Entities
3.1.1 Fitness
In order to evaluate the sum of integers in each subset, a
separate parallel adder with N=128 inputs is instantiated
for each subset. The integers are multiplied with a binary
mask before being inputted to the parallel adder to zero
the integers that do not belong to the subset in question.
This approach is illustrated in Figure 2.

Figure 2. Fitness Circuit

The bit masks are generated from the genes of the
chromosome being evaluated. For example, if the fourth
gene g4 in the chromosome has the binary value "11"
(decimal three), this means that the integer with index 4

belongs to subset 3. Consequently, bit 4 in mask3 will be
assigned ’1’ while bit 4 in the three other masks will be
assigned ’0’ as shown in Figure 3.

Figure 3. Adder’s Masks

Fitness is then calculated from the subset sums using
equation 2. The fitness operator is thus purely combinato-
rial requiring only a single clock cycle to sample and store
the result.

3.1.2 Selection

The selection entity accepts 4 random candidates and uses
a pair of comparators to output the best two candidates in
a single clock cycle.

3.1.3 Crossover

The crossover entity has two parents and a 7-bit random
integer (crossover point index) as input. Each clock cy-
cle, it copies half of the genes (higher than the crossover
point index) from parent 1 and the other half of genes from
parent 2 and outputs a new offspring.

3.1.4 Mutation

For each new offspring, a positive random integer x is gen-
erated, where 0≤ x≤ N−1 . N is the number of integers
to be partitioned which is equal to the number of genes in
each chromosome. The gene that has an index equal to x is
replaced with a new randomly generated gene ∈ [0,3]. As
a result, the mutation rate MR=1/128 = 0.78125% which is
close to the best mutation rate of 1% obtained from Matlab
simulations.

3.1.5 Generating Pseudo Random Sequences

In order to generate random numbers, maximal sequence
linear feedback shift registers (LFSRs) are used. Tap lo-
cations are obtained from Xilinx tables (Alfke,1996). A
separate LFSR is used for each required random number
and initialized with a different seed to improve random-
ness.

The population LFSR is a 256-bit LFSR used to gener-
ate the initial population and replace mutated genes with
new random values. The selection LFSR is 16 bits wide
where each four bits are interpreted as an index from 0 to
15 allowing the selection entity to randomly pick 4 par-
ent candidates each clock cycle. The crossover LFSR is 7
bits wide and it describes the single point crossover loca-
tion. Similarly, the mutation operator requires a 7-bit long
index for selecting which gene will be mutated.
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3.1.6 Replacement
In order to identify the index of the individual with the
worst fitness, a 16 numbers comparator consisting of 4
stages tree of two number comparators is implemented.
The output of each stage comparators named "a greater
than or equal b" (ageb) is used to backtrack the tree and
identify the index of the individual with the worst (largest)
fitness. Figure 4 illustrates the process using, for conve-
nience, a smaller 8 number 3 level comparator. Each level
produces 1 bit of the index of the largest fitness.

Figure 4. Largest fitness evaluation for 8 values using 3 levels
tree

Each of the boxes represents a comparator of two in-
tegers. The number inside the box represents the binary
result of A>B comparison where A is the left hand side
input integer and B is right hand side input integer. Back-
tracking from stage 2 to stage 0 we obtain the binary se-
quence "100" which indicates that the largest number ex-
ists in index 4 (indexing from right to left). The same
procedure can be scaled to compare a larger number of
integers adding one extra stage of comparators and one
extra bit to the index’s LSB each time the number of com-
pared integers is doubled. However, resource utilization
and timing constrains must be carefully examined.

3.2 Performance Evaluation
A SystemVerilog testbench was created to simulate the
proposed GA in Modelsim. A state named report is added
to the state machine to be executed after reaching the max-
imum generation to send the results before resetting the
GA.

The testbench uses a class that generates N random pos-
itive integers from a user defined seed and stores them
in an array. Those random integers are buffered serially
to the GA. The GA then initializes the population and
runs for 2000 generations. After that, the GA buffers thir-
teen 32-bit words to the testbench. The first 8 words are
the best solution (chromosome) with the most significant
word buffered first. The next 5 words are the best fitness,
S0, S1, S2, S3 and finally a counter of the number of clocks
since the GA has started receiving the input.

The SystemVerilog testbench then uses the reported
best solution to split the integers into 4 subsets and cal-
culate the sum of each subset. The fitness value is calcu-
lated using equation 2. The testbench will then assert if

the calculated sums and fitness match the ones reported
by the GA implemented in VHDL. In case of a mismatch,
an error message is printed and simulation is interrupted.
Otherwise, results are printed and a new set of random in-
tegers is generated and buffered to the GA.

Initializing the integers requires 128 clock cycles (in
case there are no wasted clock cycles by the input between
successive integers). Np number of clock cycles are re-
quired to initialize the population, one item per cycle. In
each generation, 4 clock cycles are required to sequen-
tially calculate selection, crossover, mutation, and finally
the replacement of the worst individual with the new off-
spring. Additional Np clock cycles are required to com-
pare the fitness values of the final generation and extract
the best solution. Thirteen clock cycles are consumed re-
porting the results. Finally, 4 extra clock cycles are re-
quired for switching between other internal states in the
state machine. The total number of required clock cycles
thus becomes (equation 3).

CLK(G,Np) = 4G+2Np +145 (3)

ModelSim simulations report a clock count of 8177
when G=2000 generations and Np=16, which matches ex-
actly Equation 3. Using a clock with 25MHz, the required
time per experiment is 8177/25MHz = 0.32708 millisec-
onds. In other words, the expected performance of the
implemented GA is 3057 experiments (each consisting of
partitioning N=128 integers) per second.

3.3 Functional Verification
The verification is performed with SystemVerilog asser-
tions and covergroups. We use random inputs and require
that certain coverage for each input will be achieved. At
each iteration step we check that the results of the opera-
tor under verification are correct. Measuring the coverage
is an essential step in verification (Wile et al., 2005). In
addition to verifying the results, we verify that certain in-
termediate results inside the modules are correct. For this
purpose we need to create new output ports to the mod-
ules. The verification is performed by a person other than
the designer, but the approach is still that of grey-box ver-
ification where the verifier is aware of certain features of
the source code of the system.

3.3.1 Fitness
In the verification of the fitness module we verify that
the sums and the final fitness value are correct. Since
the amount of possible values for the input chromosome
is large (2256), we divide the possible values into 216
bins and require that each of them will be covered. In
addition, we require that the four special cases where
all the genes of the chromosome are the same (0000002,
0101012, 1010102 or 1111112) will be covered. We also
require that at least 6 of the cases where all the numbers
belong only to 2 groups will be covered, one for each com-
bination of groups. The same is required for 3 groups,
where 4 cases are required, one for each combination of
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groups. Also a case where all 4 groups are present must
be covered. The numbers to be partitioned are 16-bit and
every possible value for them must be covered. However,
since there are 128 numbers, not each value for every num-
ber have to be covered, but each value must occur at least
once among the numbers. In addition we require that the
case where all the numbers to be partitioned have the max-
imum value (216), will be covered. This case must also be
cross covered with the cases where all the numbers be-
long only to 1, 2 or 3 groups. In this way we verify that no
overflow occurs in the fitness calculation.

In the calculation of the sums the fitness module utilizes
masks that tell which group each number belongs to. Each
number should belong to exactly one group. To verify this
we sum the masks pointwise. The sum should be 1 at each
index. In this test we use the same coverage requirements
as when verifying the results.

3.3.2 Selection

The selection module selects the parents for the next
crossover. We verify that the operator selects the cor-
rect parents specified by the input selection LFSR and
the fitness values, and reports the correct worst individ-
ual. There are sixteen 25-bit fitness inputs, and for each
of them we create 216 bins which must be covered. Every
value of the 16-bit selection LFSR must be covered. In
addition we require that at least one of the cases where all
the fitness values are the same will be covered.

3.3.3 Replacement

The selection module also contains the replacement func-
tionality. We verify that the replacement works as in-
tended. For this purpose we add a new port which con-
tains the array of fitness values that are stored inside the
module. We require that each possible value for the new
fitness input will be covered. We also verify that the se-
lection works correctly after the replacement. For that pur-
pose we use the same coverage requirements as described
in the Selection section.

3.3.4 Crossover

The crossover module is a rather simple, one-point
crossover. The crosspoint is a 7-bit input ranging from
0 to 127. We require that every possible value of the 7-
bit crosspoint will be covered. We especially focus on the
case where the value is 0 or 127. The crossover compo-
nent should change the value 0 to 1 and the value 127 to
126, because otherwise the result would comprise only of
parent1 or parent2. For both 256-bit parents we create 216
bins which must all be covered. Because the area near the
crossing point is the most error-prone, we require that per
each index, every combination of 6 gene values around the
index is covered, 3 genes for both parents. We require that
a case where the parents are the same is covered.

3.3.5 Mutation

The inputs of the mutation module are the 256-bit child
to be mutated, the 7-bit index to the gene to be mutated

and the random 256-bit individual, the population LFSR,
which will provide the new content for the gene to be mu-
tated. We verify that the operator will mutate the correct
gene with correct value specified by the inputs. We require
that for the child and the population LFSR, 216 bins will
be covered. We also require that all 27 values for the index
will be covered. No cross coverage requirements will be
set.

Each gene of the child has a probability of P=1/128 to
proceed into mutation phase, where the content of the gene
will be replaced with the content from the corresponding
gene from the population LFSR. We call the probability
P as the internal mutation rate. The probability that the
new content is different than in the original gene is C=3/4.
Thus the overall probability that the content of a particular
gene will change is CP = C×P = 3/512. We call C as the
external mutation rate and CP as the overall mutation rate.

We verify that the mutation rate of the component is
correct. We use the same coverage requirements as when
verifying the results. We examine one gene and check if
the content will change in CP of the cases. We repeat
this for each gene. If the actual mutation rate differs from
the correct rate, it may be because the testbench does not
generate purely random but pseudo random values for the
index and population LFSR inputs. To verify that this is
the reason we make a test where the effect of the exter-
nal mutation rate is eliminated, by keeping the population
LFSR always different than the child to be mutated. Now
the result should be close to P. If the result still differs, it
may be due to the fact that the index input is also pseudo
random. However the difference should be smaller than
when the effect of the external mutation rate is present.

3.3.6 LFSRs

The sequence generated by an LFSR is a binary numeral
system just like natural binary code or Gray code. Even-
tually the shift register enters a repeating cycle. To obtain
good pseudo random numbers the cycle should be as long
as possible This is called maximal length sequence. The
maximal cycle length is 2n− 1 where n is the number of
bits in the LFSR.

We wanted to verify that the sequences generated by the
LFSR module were maximal-length. For the shortest out-
puts this is possible by using covergroups. During a cycle
of 2n− 1 executions every possible value except all ones
should be covered. With the 256-bit population LFSR we
cannot do this. For this output we will simply verify that
the sequence is correct for the first 216 cases. We can do
this because we know the seed and the random sequence
generating function. We verify the correctness of the se-
quence also in the case of the smaller LFSRs. At least 216
first numbers are checked for each output sequence.

3.3.7 Comparator

The system also contains a comparator module for deter-
mining the largest of sixteen 25-bit numbers. For each
input we create 216 bins which must be covered. Also
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at least one of the cases where the numbers are the same
must be covered.

4 Integrating GA into the SoC
In this work, GA was implemented and tested on Terasic’s
SoCKit hardware, which contains the 925 MHz, Dual-
Core ARM Cortex-A9 MPCore Hard Processor System
(Terasic, 2015).

4.1 Interfacing GA with the HPS
In order to communicate with and control the GA from the
HPS, Xillybus IP core was used. As the authors describe
it in their website, "An FPGA IP core for easy DMA over
PCIe with Windows and Linux" (Xillybus, 2017). Xilly-
bus comes with a Linux distribution called Xillinux that
runs on the FPGA embedded ARM processor and com-
municates with the Xillybus IP core via a device driver.
The driver allows the developers to easily communicate
with the FPGA using C language’s read() and write() com-
mands with FIFO buffers. Xillybus allows users to create
online accounts to customize then download IP cores. The
IP core factory is available to try for free for researchers
(Xillybus, 2017). However, it requires licensing for com-
mercial usage. Using Xillybus provides several advan-
tages:

• Streaming data to and from FPGA is done using
DMA without impacting the performance of the op-
erating system.

• Xillybus supports a wide range of both Altera and
Xilinx FPGAs and is part of the official Linux Kernel
device drivers making the design more portable.

• The same design can also be used by connecting
the FPGA as a coprocessor via PCI Express with an
external host running either Microsoft windows or
Linux.

Xillybus bus clock runs at 100 MHz supporting a max-
imum bandwidth of 400 M-Bytes/sec (32-bit interface).
To analyze timing requirements for the GA clock, Altera’s
Time Quest Timing Analyzer was used. A timing netlist
based on the "Slow 1100mV 85C Model" with 0 IC de-
lays option unchecked was used to reflect the worst possi-
ble case scenario. Altera’s tool reported an Fmax of 36.99
MHz. The GA was tested practically on the device and
found to operate correctly at 50 MHz. However, the GA
clock was restricted to 25 MHz to ensure reliable oper-
ation in the worst conditions. This clock is derived from
the Xillybus bus clock using Altera’s Phased Locked Loop
IP core. In order to enable cross clock domain commu-
nication between GA and Xillybus, two Altera DCFIFO
(dual clock FIFO buffers) entities were instantiated and
connected to the GA inside a new top module. The result
top module has only standard FIFO ports plus the required
clocks and resets and can be directly port mapped to any
HDL design that contains standard 32-bit FIFO buffers
without any further modification.

4.2 Controlling GA from the Linux host
The Xillinux is a standard Ubuntu desktop for ARM pro-
cessor that comes with the gcc compiler and a rich prein-
stalled collection of packages and libraries.

In order to test the GA on the SoCKit, a C program
that performs the same functionalities as the SystemVer-
ilog testbench was written and compiled using gcc run-
ning on Xillinux. The C program opens Xillybus drivers
which exist under the Linux /dev directory using the C
open() command. It then uses the C write() command to
write random integers to the Xillybus write FIFO buffer
and waits for the GA report. When GA is finished, it
buffers the results to Xillybus read FIFO buffer and re-
sets waiting for new integers. The results are then read by
the C program using the C read() command and verified.

If no errors are detected, the C program visualizes the
results by using the Linux system API to call GNUplot and
pass the sums of the initial partitions as well as the opti-
mized sums reported by the FPGA. GNUplot generates
and displays two charts stacked horizontally to visually
compare the optimized and non-optimized partitions.

On the SoC FPGA, the reported clock count averaged
at 200000 ± few thousand clock cycles per experiment.
Running 1000 experiments required about 10 seconds.
However, this is much slower than the reported clock
counts by Modelsim’s simulations. After examining the
buffers interfaces using Altera’s Signal Tap 2 Logic ana-
lyzer, it was found that the C function write() is causing
large delays. A quick remedy is to increase the size of the
FIFO buffers and write all the required integer for 1000 ex-
periments (1000*128*4=512000 bytes) as one block. This
indeed reduced the delay of performing 1000 experiments
to less than 2 seconds.

For performance comparison, the same GA was imple-
mented using C language and compiled using GNU GCC
"gcc (tdm64-1) 5.1.0" with CodeBlocks on a desktop com-
puter running Windows 10. The PC has has an Intel core
i-7 4770 @ 3.4 GHz with 8 GB DDR3. Ten experiments
were perfomed. In each experiment, 1000 number parti-
toning problems are solved. The average time was cal-
culated at 9.8063. These results show and improvement
of 500% in performance when using FPGA versus a PC
due to the massive parallelism of the FPGA implementa-
tion. However, in order to utilize the full performance of
the GA, it must be either controlled by a real time operat-
ing system, or at least by a C program running as a kernel
module.
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5 Conclusion and Future Work
In this work, we have designed, simulated and verified the
functionality of a genetic algorithm to solve a 4-way NP
complete partitioning problem of 128 16-bit unsigned in-
tegers. GA operators and parameters were selected based
on Matlab simulations. The GA was implemented us-
ing VHDL and Altera’s IP cores and verified using Sys-
temVerilog with ModelSim. The design was then tested on
Terasic’s SoCKit as a coprocessor to accelerate the algo-
rithm’s execution on the embedded ARM Cortex-A9 MP-
Core processor. Test results demonstrate that using the
massive parallelism of FPGAs, it is possible to achieve
multiple times higher performance while using a fraction
of the size and energy consumption of modern desktop
computers. We are currently working on the comprehen-
sive functional verification of the proposed design. In the
future, we are planning to use a combination of standard
functional coverage and rigorous formal verification tech-
niques to meet industrial verification standards. GA could
also be used in software testing (Mantere and Alander,
2005) and the objective could be e.g. the verification of the
recently proposed flexible floating point numbers called
unums (Gustafson, 2015).
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