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Abstract
A kinematic earthmoving simulation environment was
used to investigate job planning strategies which could
increase the performance of automated material loading
with a robotic compact skid-steered wheel loader. One
new problem studied was the subdivision of a larger rect-
angular workspace using the smaller rectangular Scoop
Area (SA). Two methods for selecting scooping ap-
proach vectors were also compared: a Zero Contour
(ZC) method which assesses all possible perpendicular
approaches along the bottom of the slope, and the pro-
posed alternative High Point (HP) method which scoops
towards the highest point in the current workspace from a
fixed point. Three jobs were simulated to determine which
scooping method and SA dimensions resulted in the high-
est excavation rate in a truck loading scenario. Assuming
the same scoop filling effectiveness, the HP method was
found to offer a higher rate than the ZC method due to its
more limited driving envelope. The maximum HP rates
were achieved with SA dimensions which were narrower
and longer than with the ZC method, while the optimal SA
dimensions were also found to be dependent on the job pa-
rameters. When a higher amount of material to excavate
per area was present, smaller SAs resulted in higher rates.
Keywords: automation, robotics, earthmoving, excava-
tion, wheel loader, simulation, job planning

1 Introduction
Using robotic earthmoving machinery at mining and con-
struction sites offers the possibility of both increasing
safety and lowering costs. By separating human opera-
tors from the worksite, exposure to potential hazards such
as collisions, rockfalls, dust and fumes is reduced, while
commuting times can also be cut by controlling machin-
ery from the safety and comfort of an office, which could
be located far from the site.

This leads to the question of how such robotic ma-
chines would be controlled. By automating parts of the
load-haul-dump work cycle and limiting direct teleopera-
tion, efficiency can be increased by allowing one human
to monitor and/or control several machines. Some com-
mercial systems such as Sandvik’s AutoMine and Cater-
pillar’s Command for Underground already make this a
reality by automating the hauling and dumping segments

of the work cycle, though the loading or excavation phase
usually needs to be controlled by a skilled human operator,
possibly remotely by teleoperation.

Automating the excavation or loading phase could fur-
ther increase efficiency by enabling fully automated work
cycles. This is made difficult, however, by the unpre-
dictable reaction forces encountered in ground material,
which can contain fragments of unknown sizes and be-
have differently depending on factors such as compaction
and moisture. Despite this challenge, solutions have
been proposed for autonomous bucket filling, with some
demonstrations being performed using full-sized machin-
ery (Lever and Wang, 1995; Sarata et al., 2008; Almqvist,
2009; Dobson et al., 2015).

Fully automated work cycles could also make systems
applicable in situations where direct teleoperation is not
possible due to a long telecommunication time delay, such
as in some space applications (e.g. 4-21 minutes to Mars
one-way). Earthmoving capabilities on other planetary
bodies would be useful for establishing a permanent hu-
man presence, for jobs such as settlement construction
and harvesting regolith for resource extraction (Macken-
zie et al.; Petrov, 2004). Given the additional hazards of
radiation exposure and risk of depressurization which hu-
mans would face operating in these environments, super-
vising fully automated robots from Earth may be the ideal
case for such jobs. Even if humans are located on site,
however, full automation would be desirable for reducing
human workload and freeing the crew for other important
tasks.

Figure 1. Compact skid-steered Avant 320 (left) and virtual
model (right).

Assuming that scooping can be controlled automati-
cally, a higher-level planning requirement for automated
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earthmoving is deciding where to dig within a designated
workspace such that progress is made towards the goal
state. It may also be desirable to optimize some criterion,
such as maximizing the excavation rate or minimizing en-
ergy use. This paper presents simulations for investigating
this problem in the case of automated material loading by
a robotic compact skid-steered wheel loader, modeled af-
ter an Avant 320 which was available to the authors for
testing (see Figure 1).

The next section begins by presenting related work in
this research area, followed by a description in Section 3
of the simulation environment used. Section 4 presents
the strategy developed for subdividing a large rectangu-
lar workspace using the smaller rectangular Scoop Area
(SA) in a truck loading scenario. Two methods for gener-
ating scooping approaches are then described in Section 5:
the Zero Contour (ZC) method which selects a perpen-
dicular approach along the bottom edge of the slope, and
the proposed alternative High Point (HP) method which
scoops towards the highest point in the workspace from a
fixed point. Section 6 presents simulation results of jobs
which were repeated using various SA dimensions, and
both scooping methods, to observe the effect on the exca-
vation rate. Different job parameters were used to also in-
vestigate the effect of less surrounding slope collapse and
a higher slope. The conclusion and areas for future work
are then discussed in Section 7.

2 Related Work
The work in this paper is partly based on the multi-
resolution planning for robotic earthmoving developed
by Singh and Cannon, which first subdivides a larger
workspace with a coarse planner, then select digging lo-
cations with a refined planner (Singh and Cannon, 1998).
Their planning for a wheel loader assumes the presence
of an independently positioned dump truck which is to be
filled, with the scooping actions limited to a region near
the truck. Scooping actions are made perpendicular to the
zero contour, or bottom edge of the slope, to achieve even
loading of the bucket. All scooping locations are assessed
before selecting one based on maximizing contour con-
vexity into the scoop (to ease loading), minimizing side
load (for an even fill) and minimizing the distance to the
truck (Singh and Cannon, 1998).

Sarata et al. demonstrated automated scooping and
truck loading cycles with a full-size wheel loader (Sarata
et al., 2008). With their method, scooping locations are
also located at the zero contour, with the scooping action
oriented so as to minimize the predicted side moment on
the bucket, to reduce wear. For the next action, the point
a certain distance to the right or left of the previous one
is chosen which is feasible and minimizes the hauling dis-
tance (Sarata et al., 2005).

Magnusson and Almqvist extend the work of Singh and
Cannon for wheel loaders by using a more complex bucket
model, and by evaluating convexity and side load along

the entire bucket fill trajectory (Magnusson and Almqvist,
2011). Magnusson et al. also developed a coarse-to-fine
planner and show how it ensures the long-term availabil-
ity of good scooping locations as a large pile is exca-
vated (Magnusson et al., 2015).

The ZC method implemented in this paper is a sim-
plified 2D version of that proposed by Singh and Can-
non (Singh and Cannon, 1998). It serves as an example
of a method that selects from a large number of feasible
actions along the contour, and is compared with the sim-
ple proposed HP method.

The second main planning investigation in this paper
has so far not been found in the literature, though it has
been alluded to (Singh and Cannon, 1998). I.e. in the case
of dump truck locations which are dependent on excavat-
ing a slope evenly, which sub-region dimensions should
be used to optimize some desired criterion (such as the
excavation rate)?

3 Earthmoving Simulator
The robotic earthmoving strategies were investigated us-
ing a simulation environment developed using Matlab,
based on previous work by the authors (Halbach and
Halme, 2013; Halbach, 2007). It is similar to that used
by Sarata and Magnusson et al. (Sarata, 2001; Magnusson
et al., 2015), and allows ground material to be removed
and deposited while maintaining a maximum angle of re-
pose and conserving the total volume of material (thereby
assuming a constant material density).

The simulator is purely kinematic and does not model
forces, an approach taken for simplicity and because it
was not intended for developing control of scooping ac-
tions, but rather for developing high-level planning strate-
gies such as where to dig and where to dump material as
a worksite changes over time. It therefore offers a com-
promise between the physics-based approach used in other
simulators (Bonchis et al., 2011; Schmidt et al., 2010; Pla-
Castells et al., 2009), and simulators developed primarily
for visualization of construction processes which do not
necessarily conserve the amount of material (Kamat and
Martinez, 2005; Lipman and Reed, 2000).

Figure 2. Avant model kinematics and range of scooping con-
figurations resulting from extension of prismatic boom joint.

In this environment, a worksite is modeled as a sur-
face with a 0.1 m grid resolution. The Avant 320 model
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(see Figure 1) has wheels spaced 0.79 m width-wise and
axles spaced 0.80 m apart, with the wheels, rendered as
2D disks, representing the centres of the tires. The ve-
hicle’s location and heading angle are defined in the XY-
plane, while the current pose is determined from the av-
erage height of the four surface points at the 2D wheel
locations, and the average slope between these points.

Machines in the simulator are assumed to possess ac-
curate positioning and autonomous driving capabilities.
Driving occurs by turning on the spot at a rate of 30 ◦/s
and following straight paths at 0.5 m/s. One timestep in
the simulator is 1/3 s.

The scoop has dimensions 0.89 m wide by 0.5 m long,
and a volume capacity set at 0.15 m3. Three joints are
available for scoop positioning: rotary, between the chas-
sis and boom; telescopic, for extending the boom; and ro-
tary, between the boom and bucket. Figure 2 shows kine-
matic details of the joint locations, with the vehicle (refer-
ence point in the middle of the wheels at ground level) at
y = 0, and the boom and bucket in their home positions.

Scoop-ground interaction works by checking for inter-
sections between the bottom “cutting plane” of the scoop
and the ground surface at each time step. Figure 3 (left)
shows how the cutting plane is discretized with the red
circular points. If any of the blue square ground points
are above the corresponding point in the cutting plane (as
in Figure 3, middle), the ground point is lowered and the
column volume above added to the scoop load.

Figure 3. Checking for intersection of discretized cutting plane
points (red circles) with corresponding ground points (blue
squares) during scooping action (left, centre); result of simulated
slope collapse (right).

Scooping actions are performed with the cutting plane
level (both rotary joints in home position), with a boom
extension ranging from 0 m to 0.24 m, corresponding to
the bottom of the scoop positioned 0.17 m to 0.01 m above
the ground (see Figure 2). The value to use for the next
action is determined automatically at the end of each cur-
rent action by comparing the scoop height with the de-
sired ground level. If the scoop ended up too high or low,
the boom setting is extended or retracted accordingly by
0.01 m for the next scooping action. Although the next
action is usually at a different location, this strategy gen-
erally helps to maintain the designated scooping area at
ground level. This strategy is necessary due to the kine-
matic nature of the simulator, which allows ground heights
to be lowered by any intersection with the cutting plane.
In a dynamic environment this strategy may not be nec-
essary since the bucket could collide with and/or scrape

along the ground, and a constant preset scooping configu-
ration might be possible.

During a scooping action, material is added to the scoop
load until the time step at which the current volume incre-
ment would cause the scoop capacity to be surpassed. At
this point, a certain minimum fill ratio is assumed, with the
remaining scoop capacity filled randomly and any leftover
material deposited back on the ground. With a minimum
of 0.8, for example, an average of 0.9 results over many
actions. This strategy was developed so that it would be
possible to specify the average performance of the scoop-
ing controller, which is assumed to exist, while allowing
for some random effects due to tool-ground interaction.

When the bucket is raised after a scooping action, slope
collapse is simulated by scanning in the X and Y direc-
tions for slope sections which are above the maximum
specified repose angle. These are then adjusted (conserv-
ing volume), and neighbouring sections checked, until sta-
bility is reached. Figure 3 (right) shows the result of this
simulated soil behaviour after several scooping actions
into a pile. It is assumed that after any changes to the
surface occur, the ground model would be updated by on-
board laser scanners or by other surveyor robots.

4 Workspace Subdivision with Scoop
Area

If excavating material from a large area with a wheel
loader, the best coarse planning strategy may depend on
where the material is to be deposited. If the dumping lo-
cation is a stationary bin, then the loader would be free to
select any location along the entire dig face - the scenario
studied by Magnusson et al. (Magnusson et al., 2015). If
dump trucks are being loaded, then a smaller digging re-
gion near the truck should generally be used to reduce the
amount of driving between digging actions. Singh and
Cannon studied the case of an independently positioned
truck (Singh and Cannon, 1998), however here it is as-
sumed that the main requirement is to excavate the slope
face evenly, with the dump trucks positioned as needed to
accomplish this goal.

Another assumption is that the workspace is rectangu-
lar, thus the method followed to excavate the slope evenly
is to scan the workspace in a raster pattern from front to
back with the smaller rectangular Scoop Area (SA), shown
in Figure 4 mid-way through Job 1a. This job consists
of excavating an 11 x 2.4 m section out of a 0.87 m-
high plateau with a 30◦ slope. When a location is found
which has ground heights a certain threshold (here 0.15 m)
above ground level, the loader works there until the SA is
cleared, and the SA then scans for the next location, with
the machines repositioning there.

The graphical objects rendered in Figure 4 are inter-
active planning tools developed previously by the au-
thors (Halbach and Halme, 2013). The large rectangular
surface is used to specify and visualize the full workspace,
while the triangular prism marks the Approach Side (AS).
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Figure 4. Scoop Area (SA) scans workspace for next work-
ing location along raster pattern from front to back; SA target
dimensions (here 3 x 1 m) adjusted to divide into workspace
(11 x 2.4 m) evenly.

A scooping action begins at the Stage point (cone 1) and is
directed towards the Scooping Destination (cone 2), with
the loader reversing to point 1 after the load is extracted.

Cones 3 and 4 represent driving waypoints for load
transfer to the dump truck (at cone 5), which has a load
capacity of 1 m3 and is also skid-steered. A 2nd dump
truck waits at point 6, and when one truck is filled, it
drives to point 7 where the load is deleted, and continues
to point 6, while the other truck drives to point 5. Points 6
and 7 would be the end of a hauling road along which the
loads are transported, though this is not included here. The
points are positioned relative to the current SA location. It
should be noted that these planning strategies are specific
to skid-steered machines which can turn on the spot.

The SA scans for the next working location with steps
of one width and length. Its intended “target” dimen-
sions are sometimes altered by an algorithm which at-
tempts to divide the full workspace by the SA dimensions
evenly, to avoid SA locations which only contain a frac-
tional amount of work. The bottom of Figure 4 shows
how the workspace is divided using target dimensions of
3 x 1 m.

5 High Point and Zero Contour Meth-
ods

This section describes the two methods for generating
scooping approach vectors which are compared. The ZC
method is based on the work of Singh and Cannon (Singh
and Cannon, 1998), and selects a perpendicular approach
along the bottom edge of a slope after evaluating convex-
ity and the distance to point 3 (see Figure 4). A zero
contour is first constructed by searching the workspace
for points a certain threshold (here 0.15 m) above ground
level, then following the contour until either the edge of

the workspace is reached or the contour is closed. Fig-
ure 5 shows an example of contours constructed around
an irregular pile shape.

Figure 5. Convexity evaluation at possible scooping locations
along zero contour; small separate contour at right assigned one
possible location.

All possible scooping locations are then assessed by
tracing along the contours with a line segment as wide as
the scoop, with each end of the segment touching the con-
tour. The convexity at each location is determined in 2D
by adding the perpendicular line segments of points in be-
tween which protrude past the line, and subtracting those
beyond the line (blue and purple lines in Figure 5). A pos-
sible scooping location is selected if its convexity is over
10% greater than the best value found so far (to attempt
increasing filling effectiveness), or if it is within 10% of
the best value and closer to point 3 (to reduce driving).
Approaches which have a backwards-facing heading are
not considered (to avoid excessive maneuvering), nor are
those with non-traversable paths. If no acceptable scoop-
ing locations can be found, the HP method is used as a
backup (described next).

In Figure 6 the ZC method is being used to excavate an
SA location in Job 1a, with the yellow points showing the
contour. At left is a new SA location, with a scooping ap-
proach selected at the corner which maximizes convexity.
At right an unloading action is shown, and the different
shape of the contour is also evident after 9 actions.

Figure 6. Excavation of SA with ZC method, with new Stage
point (1) and Scooping Destination (2) for each scooping action;
(left) first action at new SA, (right) after 9 actions with unloading
at truck illustrated.

The HP method is a simple alternative which was pro-
posed in previous work by the authors (Halbach and
Halme, 2013), whereby the Stage point remains station-
ary and scooping actions are directed towards the highest
point in the SA (see Figure 4). This results in a fan-shaped
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pattern as the highest point shifts due to slope collapse, il-
lustrated at left in Figure 7. In this example from Job 1a,
18 actions were needed to level the SA location. This
coverage pattern can be compared with that using the ZC
method at right, which consisted of 19 actions to clear the
SA. The ZC driving paths appear to require more turning
and driving, since they approach the SA more from the left
side.

Figure 7. Coverage pattern for leveling 2.8 x 1.2 m SA location
with HP method (left) using 18 actions, and ZC method (right)
using 19 actions.

The HP method was not originally intended to be an im-
provement over others that have been proposed, but was
meant to be a simple way of generating commands in or-
der to test excavation jobs in the simulator. Its real-world
effectiveness, which would need to be tested, may be hin-
dered by the fact that it does not consider contour con-
vexity or side loading, and can result in non-perpendicular
approaches into the slope. If it could work well enough in
practice, however, it may offer the benefit of reduced total
driving, which is investigated next.

6 Simulation Results and Discussion
To find the SA dimensions which result in the maximum
excavation rate, Job 1a was repeated with various SA
widths and lengths, using both scooping methods. The
minimum scoop filling ratio was kept constant at 0.8 (av-
erage fill of 0.9), thus a main assumption is that both the
HP and ZC methods perform with the same scooping ef-
fectiveness.

A constant plateau height was chosen for this job in
an attempt to reduce the factors which could affect the
excavation rate, so that the SA dimensions would be the
main variables during each simulation. With this constant-
height plateau, each row excavated should have the same
amount of material collapsing in from uphill, though the
amount collapsing from the sides would initially increase
as the front slope is excavated.

Two more versions of Job 1 were simulated to observe
the effect of less surrounding slope collapse and a higher
plateau (see Figure 8). Job 1b (at left) is a stand-alone
plateau which fits in the same 11 x 2.4 m workspace, and
has the same height and slope angle. Job 1c (at right) is
similar to Job 1a, with the same workspace dimensions,
however with the plateau height doubled to 1.73 m.

The excavation rate results for these jobs are plotted in

Figure 8. Job 1b (left), 0.87 m-high stand-alone plateau or pile,
and Job 1c (right), 1.73 m-high plateau, both with 30◦ slopes.

Figure 9. Included in these plots are the ranges of SA di-
mensions which were chosen manually to show the rise
and fall of the rate, with the width on the X-axis and dif-
ferent lines plotted for each length value. Each point is
the average rate recorded after repeating the job 10 times,
which was assumed to be sufficient given the randomness
introduced in the scoop filling. The error bars represent
one standard deviation.

Figure 9. Excavation rate for Jobs 1a-c with varying SA target
dimensions using HP and ZC method; 0.8 minimum scoop load
ratio; 10 trials per data point.

In these plots, each data point represents a range of tar-
get SA dimensions which map to that value due to the al-
gorithm which attempts to divide the workspace evenly.
For the width dimension, the ranges are represented by
the dotted lines. Target SA widths of 2.0-2.4 m, for exam-
ple, map to a width of 2.2 m (5 SA locations along 11 m
width). Similarly, a line for the target length of 1.0 m is

EUROSIM 2016 & SIMS 2016

1 106DOI: 10.3384/ecp171421102     Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



Table 1. Maximum Excavation Rate (Rate 1) and Volume per
Combined Drive Time (Rate 2) for Jobs 1a-c

HP Method ZC Method
Job Max. Target Target Max. Target Target

Rate 1 Width Length Rate 1 Width Length
(m3/h) (m) (m) (m3/h) (m) (m)

1a 18.182 1.8 0.6 17.433 2.8 0.4
1b 17.938 2.2 0.6 17.253 3.6 0.4
1c 18.710 1.6 0.6 17.891 2.2 0.4

Max. Target Target Max. Target Target
Rate 2 Width Length Rate 2 Width Length
(m3/h) (m) (m) (m3/h) (m) (m)

1a 15.519 2.8 0.8 15.003 3.6 0.6
1b 15.148 2.8 0.8 14.722 5.6 0.6
1c 15.999 2.2 0.6 15.458 2.8 0.6

not plotted since this is mapped to 1.2 m. The maximum
rates and corresponding SA dimensions for each method
and version of Job 1 are summarized in Table 1.

The table also includes results with the volume per com-
bined drive time measure (plots not shown), which is the
volume excavated divided by the total driving and turning
time of the loader and two dump trucks. This is included
to consider the case where excavating with minimal driv-
ing would be more important than excavating quickly, e.g.
if energy is limited such as in a planetary construction sce-
nario.

One observation is that in each case, the HP method
achieves a higher maximum rate than the ZC method,
likely due to the HP method’s more limited coverage pat-
tern with less turning and driving. This, again, assumes
the same bucket filling effectiveness for both methods.

Another observation is that with the HP method, the
maximum rates are achieved with SAs which are narrower
and longer than with the ZC method. One reason for this
could be that after unloading at the truck, with the HP
method the loader always turns 90◦ at point 3 to reach
point 1 (see Figure 7), therefore narrower SAs may be
preferred to reduce further turning. The ZC method may
prefer shorter SAs because they cannot contain contours
with much curvature, and more curvature could result in
more maneuvering to approach from the side. Short SAs
would then need to be wider to contain enough material
so that the SA does not reposition too frequently, which
increases driving. Since with the ZC method the loader
turns at point 3 by varying amounts towards the moving
Stage point, far ends of wider SAs can perhaps be reached
sooner than with the HP method.

It can also be observed when comparing the different
job versions that when there is more material to excavate
per area, such as with the higher plateau of Job 1c com-
pared with Job 1a, or with more surrounding slope col-
lapse in Job 1a compared with Job 1b, higher rates result.
These are also usually achieved with smaller SAs, likely

because with more material to excavate per area, smaller
SAs become beneficial since they can be covered with less
driving. Smaller SAs have the disadvantage of more repo-
sitioning of the machines between SA locations, however
this is evidently outweighed by the advantage of less driv-
ing within the SAs.

Finally, the optimal SA dimensions with the volume per
combined drive time measure are larger than with the stan-
dard excavation rate. This could be expected, since al-
though larger SAs require more driving within them, they
also require less repositioning between SAs. Reposition-
ing would impose a bigger penalty with this measure since
it involves all three machines driving simultaneously.

7 Conclusions and Future Work
The simulation results presented in this paper showed that
the HP method resulted in higher excavation rates than the
ZC method for various slope excavation jobs. One area for
future work would be to check if a real loader could indeed
fill its bucket as effectively with the HP method, despite
the possible drawback of occasional non-perpendicular
approach vectors which could result in asymmetrical load-
ing. Future work would also include implementing the
system with robotic machines and demonstrating the nec-
essary site modeling, autonomous driving and scooping
control capabilities.

The ZC method tended to reach its maximum rates with
SA dimensions which were wider and shorter than with
the HP method. It was also found that when more ma-
terial was present per area, due to a higher plateau or
more surrounding slope collapse, smaller SAs resulted in
higher excavation rates. For reducing total machine driv-
ing, larger SAs were beneficial.

In general applications, piles and slopes could have ir-
regular shapes and heights, thus as another area for fu-
ture work, an algorithm could be developed which first
analyzes the properties of the slope to excavate, then es-
timates optimal SA dimensions. During the job, the di-
mensions could be adjusted automatically based on the
observed slope properties, or also in a speculative way to
see if a higher rate can be achieved.
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