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Abstract

The capability of the space environment to alter the

cells behavior seems to be an opportunity for future

researches in biology, for diseases such as cancer. This

paper highlights the importance of Interoperable

Simulation Systems as precious instruments to support

and improve space exploration projects devoted to

biological researches. The research investigates the

potential of Modeling & Simulation to reproduce a

virtual environment to support Nano-satellite

experiments in cooperation among the different

stakeholders involved in a space mission, such as

scientist, engineers and biologists.

Keywords: modeling & simulation, HLA, space
exploration; human health; cancer development and
progression

1 Introduction

The sphere of the human environment and exploration

continues to expand towards space; there is a need to

enrich the knowledge on the effect of the Sun and

“space weather” to preserve the safety of the astronauts

(Marhavilas, 2004). The space environment conditions

are extremely challenging for human body; indeed

microgravity condition are joined with ionizing

radiation sources including cosmic rays and solar

particle events (SPEs) (Benton et al., 2001; Townsend,

2005). Several studies conducted on astronauts after

they spent several months in space proved that an

extended exposure to microgravity conditions are

correlated with health problem, for example bone loss

(Lloyd et al., 2008; Lang et al., 2004)

Despite the health of the astronauts, the space

weather is a critical issue, its capability to alter the

cells behaviour seems to be an opportunity for future

researches in biology, for diseases such as cancer. This

is proved by several studies, present in literature,

describing experiments on microgravity devoted to

gain insights into its effect on living organisms.

(NASA, 2001).

Furthermore, several promising experiments have

found some correlation with the behavior of certain

cells and bacteria and the simultaneous conditions of 

microgravity joined with ionizing environment. The 

experimental results suggest that cell development and 

proliferation is different in microgravity conditions and 

within ionizing environment (Massimiani et al., 2014; 

Leys et al., 2009; Vanhavere et al., 2008; Mastroleo et 

al., 2009).  

Some scientist supposes that microgravity 

conditions may give the possibility of developing  

tissues and biological samples in three dimensions as it 

happens within human bodies: analyzing the 

experiments conducted in a cell cultures in a 1-g 

environment the proliferation is evolving only in two 

dimensions, this does not make them perfectly 

representative of what actually happens inside our 

body where the growth is tridimensional. The same cell 

types in orbital systems highlights this substantial 

difference confirming that space is a unique and 

incomparable environment for biological research.  

The reasons of this different behavior have not yet 

been fully determined, but it is supposed to be 

correlated to a number of investigated factors: 

 Interaction with terrestrial magnetic field: it could 

cause other effects in addition to those caused by 

microgravity (considering the nature of membranes 

which act as electrical capacity); 

 Microgravity: this element generates different 

behaviors in biomedical samples between real and 

simulated microgravity; indeed in the ground 

simulators it is not possible to reach the 

microgravity levels common in low-Earth orbits 

(on the range of 109 - 105 g). By altering gravity, 

we are able to investigate partially these effects on 

biological systems related to the presence and 

reaction to this unique force. However simulating 

microgravity on Earth for more than several 

seconds is impossible with existing technology. So 

by using spaceflights, we are starting to understand 

that not only gravity, but also the physical changes 

that occur in microgravity conditions, may have 

effects on the evolution of species and their 
ecologies 
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 Joint effect of microgravity and ionizing 

environment: the impossibility to reproduce the 

effects of microgravity in a laboratory (due to 

technological limits) does not allow to consider its 

combined interactions with ionizing radiations. In 

addition, the space radiation is different from the 

one that we normally experience on Earth, such as 

x-rays or γ-rays. The combined effect could result 

in additional elements affecting the radiation 

hazard caused by exposure; these are usually acting 

by “changing of body systems functioning at all 

levels: from cellular up to organism”. In facts the 

ionizing radiation exposure causes changing on 

body systems. 

 

All these factors, combined with the reduction of costs 

in space missions, increase the interest of biomedical 

research in using the space as a laboratory for its 

studies. Therefore the use of simulation could 

guarantee a right first time approach in setting up the 

experimentation & testing. 

2 Nanosatellites for Biomedical 

Experimentation 

The world’s first artificial satellite, the Sputnik 1, was 

put in space by Soviet Union in 1957. Since then, 

thousands of satellites have been launched into the 

space and are nowadays in orbit around the Earth 

(Lanius et al., 2013). 

Last technological innovation, in use to support 

biomedical experimentations, is represented by 

CubeSat nanosatellite generation (Puig-Suari,et al., 

2001). These miniaturized satellites for space research, 

usually launched by a carrier rocket or launch vehicle 

are made up of multiples of 10 x 10 x 11.35 cm cubic 

units (Bouwmeester and Guo, 2010). They have a mass 

of about 1 kilograms per unit and a Geocentric Orbit at 

Low Earth Orbit (LEO) altitude, usually <0.1 times 

Earth radius. 

3 Modelling & Simulation Supporting 

Space Missions 

Space missions are extremely costly and dangerous and 

Modeling & Simulation (M&S) is extremely useful to 

support engineering and reduce risks; indeed M&S 

allows to evaluate feasibility of experimentation in 

terms of equipment and technical solutions (Baxter, 

2010) 

Decision makers as well as project leaders usually 

face limited resources and rigid time constraints for 

space experimentation; so they need to test the 

feasibility of complex systems before realizing them in 

order to avoid unexpected problems. That’s why M&S 

provides a strong support, particularly in the initial 

phase of a project giving to stakeholders a holistic view 

of the whole context (Montgomery, 2000) 

In previous researches the authors performed 

several studies on M&S reproducing complex systems 

behavior in different fields including space (Bruzzone 

et al., 2016), logistics (Bruzzone et al., 2014), 

Intelligent Agent Computer Generated Forces (IA-

CGF), disaster recovery in critical environment 

(Bruzzone et al., 2016), reproduction of intelligent 

behavior (Wooldrige and Jennings, 1995; Bruzzone et 

al., 2015), data & communications exchange among 

different entities (Bruzzone et al., 2013) and training 

(Bruzzone et al., 2011; Bruzzone et al., 2016). Despite 

all these areas are really different one each other, they 

have a common line because they reproduce complex 

problems where non-linear functions lead often to 

counter-intuitive behaviors on the system itself that 

evolves dynamically along the simulated timeline. 

Furthermore, the models allows to simulate conditions 

and situations that are often impossible to be 

reproduced in experiments on the Earth, both for the 

costs and for technological complexities.  

To this end, the authors propose a simulation 

devoted to investigate all the operations required for 

setting the real experimentation of the Nano-satellite 

technology applied in space for studying the combined 

effect of microgravity and ionizing radiation on cancer 

cells affected by GBM (Glioblastoma Multiforme). 

GBM is the most common form of malignant brain 

tumors with a median survival time of patients with 

less than one year. It represents 52% of all cases of 

primary brain tumor and 20% of all intracranial 

tumors. This type of cancer is actually treated by the 

best health facilities through the surgery and 

subsequent exposure to chemotherapeutic and radio 

therapies (Mahaley et al., 1989) 

Because of its nature ''multifaceted'', complete 

surgical tumor excision is often very difficult and 

sometimes impossible without permanent damage in 

the patient. Because of the high incidence of this type 

of cancer and its characteristics it is necessary to 

deepen the knowledge of its pathogenesis by studying 

the behavior in various environments including the 

space. A better and detailed knowledge of cells 

behavior affected by GBM, should lead to identifying 

the causes that generate it or pharmacological remedies 

to counteract their evolution and development.  

For this reason, the basic idea is referred to the 

biological effects of ionizing radiation and 

microgravity that could increase the chances of success 

of treatments and biomedical applications. 

4 Nanosatellites for Space 

Experimentation 

In this paragraph the overall architecture and nature of 

the CubeSat Systems are described. Indeed, it is 
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proposed a summary of systems, subsystems and 

components system that have to be considered for 

being simulated: 

 Mechanical Systems and Structure: the satellite is 

made mainly of Aluminum 6061T6; it is usually 

considered, also in these nanosatellites, by using 

rapid prototyping design to adopt space qualified 

materials to build some structural components and 

to reduce its weight. Biological experiments should 

be hosted in special insulated containment module 

that are designed to be equipped with monitoring 

system. 

 Observation System: an onboard observation 

system is required to monitor cell samples at 

various stages of the experiment.  

 Thermal and Heat Exchange Systems: to keep alive 

the cells during all the mission phases in necessary 

to maintain a controlled environment (around 37 

°C) despite the space extreme variation in terms of 

temperature. The thermal control system consists 

of sensors, insulating material, heat exchangers.  

 Ionization and Radiations Phenomena: to obtain 

accurate scientific results, experimenters must 

understand the radiation environment during the 

duration of the experiment. A micro-dosimeter is 

necessary to measure the amount of ionizing 

radiation that is absorbed by the samples. The 

number and type of micro-dosimeters will depend 

on the required accuracy. 

 Microgravity Environment: In order to understand 

microgravity conditions during the experiment, 

researchers need to use different kinds of 

accelerometers, with accuracy and dimensions 

compatible with mission goals. In particular two 

kinds of accelerometers are used. One for high 

level of acceleration during the launch, the other to 

measure microgravity conditions. 

 Power Systems: an autonomous power system is 

needed to operate the whole systems including life 

support for keeping the cells alive during all 

mission phases. The nanosatellite uses solar cells 

and lithium batteries to provide power. The power 

is managed by a batteries charge regulator. During 

the integration and launch phases the nanosatellite 

is turned off and for this reason an umbilical 

connection with the launch site will provide power 

to the payload before the satellite release in orbit. 

Different solutions for umbilical connection need 

to be analyzed taking into account also the possible 

launch vehicle available. 

 Telemetry, Tracking and Communications System 

(TT&CS): the TT&C act as the unique 

communication system once the SC is released 

from launch vehicle system. The TT&C 
communication uplink allow the mission control 

center ground station to upload command 

sequences in order to program all the SC 

operations using a UHF/VHF radio link and also 

for the monitoring of the platform, Telemetry. 

 On Board Computer (OBC): the On Board 

Computer act as the brain of the system 

coordinating the function of all the subsystems. 

The main features of the OBC include the presence 

of two independent, but cooperative cores: one low 

power consumption microcontroller for the general 

management of the satellite (payloads, TT&C, 

specimen status, retrieving of data from sensors); 

the second core is an FPGA (Field Programmable 

Gate Array) for implementing specific tasks or 

generic systems also with IP cores (Intellectual 

Property) of third parties.  

 The OBC is provided with several sensors on 

board and a 9 degree IMU (Inertial Measurement 

Unit) made by 3 axes magnetometer, 3 axes 

accelerometer and 3 axes gyroscope. 

 Attitude and Orbit Determination and Control 

System (AODCS): this module supports the in-

orbit control of the satellite by using on-board 

sensors and actuators. This module support the 

orbit corrections, attitude and spin rate control with 

high accuracy to ensure the communications link 

and to properly analyze the results of environment 

monitoring system (e.g. radiation level). The 

AODCS controls the positioning of the satellite in 

the selected orbit, in order to understand the results 

from the micro-dosimeter according to the known 

radiation exposure levels. 

 On Board Software for Power Systems (OBSW): 

this system is compatible with OBC hardware and 

is based on a firmware that could be updated in 

terms of functions along the mission if necessary. 

 

 

Figure 1. General Architecture. 
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5 General Architecture and Model 

Description 

M&S supports strongly experimentation of space 

mission, giving the possibility to model the systems, 

subsystems and components and analyze interactions 

among them and biological samples.  

The model is used to provide a measure of the 

resilience of the system to a hostile environment such 

as space, where reliability is challenging and it is 

necessary to evaluate redundancies, systems 

availability and capabilities.  

Considering the flexibility demonstrated by the 

Intelligent Agents and Virtual Simulators developed 

within the MS2G (Modeling and Interoperable 

Simulation and Serious Games) paradigm (Bruzzone et 

al., 2014), the authors decide to realize a federation to 

be applied to Space Experimentation based on this 

approach. The authors benefits of their experience on 

past different simulators (Elfrey et al. 2011; Bruzzone 

et al., 2014; Bruzzone et al., 2016) created for 

SEE/Smackdown initiatives including SPIRALS 

(Space Interoperable Refilling and Advanced Logistics 

Simulator), IPHITOS (Interoperable simulation of a 

Protection solution based on light Interceptor Tackler 

operating in Outer Space) and SISMA (Medical 

Simulator of Astronaut including treatments, analysis 

and sickness models). 

The simulator proposed in this case is designed to 

adopt the HLA IEEE1516 (High Level Architecture) 

standards and guarantees interoperability; the Federates 

could be based on stochastic models adopting 

combined simulation (continuous and discrete events 

combined together). The VV&A (Verification, 

Validation and Accreditation) for this simulation will 

be conducted along the entire FEDEP (Federation 

Development Process) by using SME (Subject Matter 

Experts) from Simulation Team (Bruzzone et al., 2014) 

6 Description of the Different Models  

In this paragraph all the models are described. It is 

important to outline that for the purpose of this 

simulator the biological specimen encapsulated in the 

Nano-satellite are considered as a “black box” 

representing a reference for the onboard systems in 

terms of temperature to be maintained and data to be 

collected. The simulation models include: 

 Satellite Dynamics Model: the model regulates the 

physics of the satellite including motion and 

acceleration based on all its characteristics. 

 Vector Dynamics Model: a specific model for the 

vector is included to reproduce the release process. 

 Mechanical Model: Mechanical Systems devoted 

to release the CubeSat from the vector, the 

umbilical connections for power support during 

launch and interactions with movable parts. 

 Observation Systems Model: simulates the sensors 

that are interacting directly with the black box 

constituting the biological specimen as well as the 

links of the sensors to the CubeSat Core Systems 

devoted to conduct measurements during the 

experiments on the specimen. This model should 

include failures and performance estimations 

related to the experimentation on the cells based on 

the data collection, boundary conditions, status of 

components and sensors.  

 Thermal and Heat Exchange Model: considers the 

thermal effects and heat exchange in the CubeSat 

with special attention to the cells for the 

experimentation. The aim of this module is to 

control the temperature of the cells at a constant 

value of 37°C balancing the radiated heat from and 

to the CubeSat. 

 Ionizing and Radiations model: is devoted to 

evaluate performances of the sensors respect the 

“solar weather” and the estimated exposure to the 

radiation of the specimen. In addition these models 

could reproduce the effect of radiations in terms of 

noise over the signals.  

 Microgravity Environment model: it is the model 

of the sensors adopted to measure microgravity 

acceleration. 

 Power Systems model (PS): the model deals with 

the computation of power absorbed and 

consumed/provided by the battery. It considers the 

power request to keep the temperature of the cell 

constant as well as consumptions due to sensor 

operations and communications. It considers then 

dynamic charge-discharge curve of the lithium 

battery in the cell depending from solar power and 

conditioning system consumption; this model 

coupled with the satellite dynamic model allows to 

estimate the exposure of the solar panels to the 

sunshine and their efficiency in the different asset 

configuration respect Sun and Earth relative 

positions. 

 Telemetry, Tracking and Communications System 

(TT&CS) model: reproduces the datalink, a crucial 

component for correct operational profile. The 

cyber space is modeled to analyze the 

performances of the communication systems: it 

allows to visualize the information packet flow and 

evaluate communication system performances 

changing parameters characterizing the 

communication nodes and links in terms of 

availability, reliability and confidentiality. TT&CS 

are coupled with the dynamic evolution of the 

CubeSat around the Earth and respect the Ground 

Base that receive the experimental data to identify 

when/how communicate;  the coupling with the 

Power System Model allows to consider the 

relative power consumption. 
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 On Board Computer model is crucial to implement 

and test on board computer system in a simulated 

environment before executing the mission. It also 

enables the possibility to evaluate the performance 

of Artificial Intelligence module (AI) devoted to 

direct dynamically the operation based on the level 

of decisional autonomy of the system during 

mission stochastic events. 

 Attitude and Orbit Determination and Control 

System model (AODCS) simulates the 

performances of the sensors and modules devoted 

to control the orbit during the dynamic evolution of 

the mission. It could be used by reverse 

engineering to define the requirements of this 

system to achieve a specific overall performance. 

 On Board Software for Power Systems model 

(OBSW) simulates the control firmware addicted 

to the control system for the Power System Module 

Table 1.Description of the Simulation Parameters 

Solar Exposition Dynamic Model 

Earth Sun distance [m] Ground Station lat., long. & altitude 

Earth diameter [m] 

CubeSat latitude, longitude & 

altitude  

Exposure Average angle [rad] 

CubeSat Asset: Pitch, Yaw. 

Roll[rad] 

Starting Shadow Angle [rad] CubeSat linear and angular speeds 

Ending Shadow Angle [rad] CubeSat Status of Operations 

Power coefficient [W/cm^2] Vector latitude, longitude & altitude  

Solar Panel Surface [cm^2] Vector Asset: Pitch, Yaw. Roll[rad] 

number of panels Vector linear and angular speeds 

Potential Solar Power [W]  

Current Efficiency of Solar 

Panels  

Thermal Model and Heat 

Exchange 

Current Battery Charging 

[mAh] Solar Constant [W m^-2] 

 Stefan's coefficient [W m^-2 K^-4] 

 T Sunshine Side of the CubeSat [K] 

SATCOM T Shadow Side of the CubeSat [K] 

max distance [m] Emissivity Factor 

max power consumption [W] Radiation Factor 

Gain transmitter [dBi] CubeSat Surface [m
2
] 

Gain receiver [dBi] Heat to be dispersed [W] 

frequency [Hz] Insulation factor 

N Exponent for Env. 

Conditions 

Absorbed Energy on Exposed Face 

[Wh] 

Power receiver [W] 

Dispersed Energy on shadow faces 

[Wh] 

Communication Status Current Energy Balance [Wh] 

Bandwidth [Mb/s] 

Battery Use for Heat Exchange 

[mAh] 

Efficiency Level  

Data to be Transmitted [Mb] Battery 

Transmission Time [s] Nominal Capacity [mAh] 

Power Consumption [W] Operational Voltage [V] 

Energy Consumption [Wh] Nominal Battery Energy [Wh] 

Battery Use for SATCOM 

[mAh] Initial State of Charge 

 Current capacity Level [mAh] 

Observation System Model Current State of Charge 

Dbase Capacity [Mb]  

Data to be Transmitted [Mb] On Board Computer Model 

Current Data Flow [Mb/s] 

Availabilities of the different 

Systems 

Observation System Status  Current Battery Use [mAh] 

 

The  models reproduce CubeSat dynamics in terms of 

orbit, power generation and consumption, battery re-

charging and communication management. It considers 

heating exchange and temperature control of the 

nanosatellite from the launching moment.  

Major model parameters are summarized in Table 

1. The  simulation aims to evaluate the performance 

with special attention to the power required to keep the 

internal satellite temperature at 37°C and communicate 

with the ground station. The total power is obtained by 

the interaction of different systems  models (e.g. 

AODCS, OBC, TT&CS and PS). The energy to the 

different CubeSat systems is provided by battery and  

solar panels. 

 

 

Figure 2. Generated Energy by Solar Panels 

 

 

Figure 3.Thermal Energy Balance 

 

Figure 4. Energy required for Communications 
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Figure 5. Communication Opportunities: CubeSat–

Ground Base

The CubeSat is released by its vector when it is reached

the proper operational orbit altitude; this process is

activated by a simple spring mechanical device that

releases it at a relative speed of 2.4 m/s perpendicular to
the vector trajectory.

Obviously the model computes the CubeSat orbit

respect the movements of Earth and Sun, in order to

evaluate dynamically the solar exposure and the

conditions of low efficiency when the solar panels are

affected by atmosphere (CubeSat relative sunset and

sunrise); this allows to estimate the power generated by

the solar panels in different conditions. In general there

are different situations including darkness, (no charge),

shadow (partial charge) and full exposure (full charge).

Under the hypothesis of omnidirectional antenna,

the cyber layer is modelled to analyze the conditions

when communications are possible as well as the

exchange of information with the ground station

considering the relative orbital position of the satellite.

Indeed, the TT&CS model simulate all the data

exchanges with the ground base, considering the

different delay and the noise of the signal due to the

position of the satellite. Since the CubeSat have a

different rotation speed compared to the Earth, there

are conditions where the satellite could not be able to

transfer the data.

In these cases the TT&CS close the communication

with the Ground Base in order to save power and the

OBC stores the experimental data in its Dbase for late

transmission opportunities.

7 Conclusions

In the paper is described a simulation model of the

systems devoted to conduct an experiment on tumor

cells under micro-gravity and radiation conditions on a

nanosatellite in space.

The conceptual model has been developed and

implemented in order to support design, engineering,

virtual prototyping and risk analysis about the different

systems.

The simulation resulted very useful to create a

virtual prototype to deal with the complexity of the

different systems and their interactions as well as with

the large number of the variables; in addition, the

stochasticity related to the potential failures affects the 

mission success and requires proper risk analysis to 

identify most convenient satellite configurations and 

redundancies to mitigate problems.  

By this approach it is possible to reduce risks and 

guarantee success in this context dealing with 

nanosatellite, so a pretty compact system of systems 

that needs to operate in space guaranteeing success 

despite limited budget. Indeed the use of simulation 

allows to improve design and reduce overall costs and 

risk; obviously it is fundamental to proper model the 

different systems and their interactions to proper 

reproduce the different operations and conditions even 

considering potential failures and interferences. 

This paper proposes the preliminary models 

developed and their general structure; currently the 

authors are working on the interoperability of this 

simulator to construct a federation able to guarantee 

that the final result of this research will be flexible and 

open to be integrated with other interoperable 

simulators. Indeed by this approach the simulator will 

be modular and available to be adapted for reproducing 

other similar space experiments. 
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