
SDNizing the Wireless LAN - A Practical Approach

Manzoor A. Khan Patrick Engelhard Tobias Dörsch

DAI Labor, TU Berlin, Berlin Germany,
{manzoor-ahmed.khan,patrick.engelhard,tobias.doersch}@dai-labor.de

Abstract
The emerging Internet of Things (IoT) paradigm and
a plethora of diverse applications provision more flexi-
ble network management. Software Defined Networking
(SDN) occupies the pivotal role in realizing such flexible
network management. However, the gain of this poten-
tial panacea is still unmeasurable in a real sense especially
when wireless medium is part of the equation, as the val-
idation frameworks mostly skip capturing realistic system
dynamics. In this paper, we study the performance gain
of SDN control implemented in a physical testbed com-
prising of a virtualized core and a WLAN access network.
With this contribution, we aim at realizing a more real-
istic environment where the impact of system dynamics
on the stakeholders (users and operators) may be studied.
We developed a mechanism to map the logical wireless
channels over the physical wireless interface of the access
point. SDN (OpenDaylight) control application for mobil-
ity management, the mapper tool, a visualization and con-
trol GUI, and Android applications are amongst the main
contribution of this work.
Keywords: software defined networking, OpenFlow,
Open vSwitch, experiment automation

1 Introduction
The recent past has advocated a rapid evolution in mo-
bile communication technologies, which enables the tran-
sition from a monolithic architecture to a shared architec-
ture and ensures ubiquitous connectivity. Such transfor-
mation, when coupled with envisioned bandwidth hungry
applications, have triggered the need for high data rates
and extremely low communication latencies. Now that
dust around 4G has settled down to a great extent, the
community is looking for newer technologies to achieve
the envisioned requirements of future mobile networks,
also referred to as 5G, aiming at improving the stake-
holders objective functions. For this concept to be re-
alized, the path is paved by the following technical and
economic evolutions: widely available broadband Inter-
net, reduced connectivity costs, more devices being man-
ufactured with built-in sensors and WiFi capabilities, and
immense market penetration of smart phones. We believe
that 5G - in contrast to earlier generations - will not only
improve the end user services, but also go beyond enabling
communication between people by realizing machine-to-
machine communication and the concept of Internet-of-

Things (IoT). The challenges stemming from realizing the
vision of connectivity everywhere for highly dynamic de-
vice layer entities and immensely heterogeneous applica-
tions define a major portion of 5G. The communication
requirements are even more stringent when the users or
sensors are mobile. The expanding networks, the inclu-
sion of many entrants and their dynamic relationships,
and virtualized network sections result in a very complex
management task of the network. SDN and autonomic
network management are seen as the enabling concepts
that come to rescue and help in solving the pressing chal-
lenges. The SDN architecture propagates the separation
of the control plane from the data plane, which enables
the flexible hosting of network control functions in dif-
ferent settings and platforms e.g., in centralized or dis-
tributed fashions, in physical machines or virtual instances
in a cloud network. When applying SDN solutions to the
wireless access and mobile networks, it promises to pro-
vide efficient management and control over wireless op-
erations by providing a unified management and control
platform. Yet, the abstraction of centralized control on
one hand and simple forwarding elements on the other,
can not be achieved easily in wireless networks. The cur-
rent SDN technology mostly caters to the needs of wired
networks in data center or enterprise network settings and
needs to be advanced to allow for monitoring of wireless
parameters and for exerting control on wireless network
infrastructure within the SDN control layer. A number
of approaches to SDNized wireless networks exist in the
research literature (e.g., (Kreutz et al., 2015), (Xia et al.,
2015) and references therein). OpenFlow is still in its in-
fancy and is evolving to meet the requirements of wireless
communication. The Open Networking Foundation pre-
sented a report (McKeown et al., 2008) identifying chal-
lenges of future wireless networks and how SDN can be a
solution to these issues. Research however struggles to in-
clude SDN in wireless networks: Some works rely on mo-
bile node cooperation (Schulz-Zander et al., 2015), others
create configuration overhead (Suresh et al., 2012), which
leads to more load on all involved nodes during handover.
Aetherflow (Yan et al., 2015) and its predecessor TinyNBI
(Casey et al., 2014) are frameworks that allow the con-
troller to manage the capabilities of a wireless access point
(e.g., mapping of logical ports to physical ports, transmis-
sion power), to receive events corresponding to the wire-
less network, or to gather statistics of wireless ports.

The research community has also been actively ad-

EUROSIM 2016 & SIMS 2016

1 116DOI: 10.3384/ecp171421116 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

dressing the inherent scalability issue of SDNized net-
works. (Curtis et al., 2011) proposes to offload statistics
gathering and management of micro-flows onto switches,
thus reducing delays introduced by controller involvment.
DIFANE (Rexford et al., 2011) includes switches in the
control-plane. Authority Switches are introduced, which
store a partition of all rules required to operate the net-
work. Instead of switches sending every cache-miss to
the controller, they forward the packet which triggered
the miss to an Authority Switch, which in turn caches the
required rules in the ingress switch. In (Rexford et al.,
2011), flooding of packets causing a cache-miss is used to
reduce packet-loss during handover of mobile nodes. If a
node changes its point of attachement, the edge switch the
node was connected to floods packets for the mobile node
through the network in order to reach the new acces point.
With this approach, the new point of attachment may re-
ceive packets sent during handover and can forward them
to the mobile node, thus reducing packet loss. However,
evaluation of the approach is only done by emulating the
network and not in a physical testbed.

When it comes to SDN (wireless) networks, researchers
often use network emulators like Mininet to evaluate new
approaches to utilizing the advantages of SDN. Even
though this approach has the advantage of not having to
deal with challenges like setting up and configuring phys-
ical networks or creating a suitable network environment
to simulate real-world conditions, it still lacks the capabil-
ity to capture the realistic wireless dynamics. In general,
the validation frameworks for most of the approaches are
abstracted to higher levels, which we believe does not re-
alistically capture the system dynamics. In this work, we
discuss a full scale SDNized wireless LAN testbed that
we developed using both virtual and physical network en-
tities. The testbed is targeted to study the performance of
different contributions (e.g., mobility management, loca-
tion management, resource allocation, network selection,
etc.) in a more realistic environment which involves both
wireless and physical mediums, where the topology thick-
ness may be dynamically adjusted for different settings,
and where the network management procedures and proto-
cols are fully implemented similarly to that of real deploy-
ment. Hence, we claim that our contributed and developed
experimental setup will serve as a fitting validation frame-
work for SDN control of wireless networks.

2 SDNized Wireless LAN Testbed
The testbed is designed and developed to function in dif-
ferent modes, of which the two prominent ones are: i)
Controller communication mode - in this mode, the trig-
ger events from the forwarding entities are sent to SDN
controller, where the decision of trigger handling is car-
ried out. ii) Inter-entities communication mode - inspired
by (Jia, 2015), we propose to handle triggering events in
a way different to the SDN paradigm of centralized con-
trol, i.e. the events are sent to other forwarding entities,

which may take over partial control responsibilities dele-
gated by the controller. In this paper, we focus on pro-
viding the details of the former due to space restriction.
However, it should be highlighted that the two functional
modes add additional capability to the testbed. Solutions
which deviate from the classical SDN control principles
(where based on the Open-Flow protocol, all the trigger
events must be forwarded to controller) may be tested and
their performance gains may be measured against those
following the classical SDN rules. In what follows next,
we provide the details of the developed testbed and its
components for controller communication mode. Figure 1
pictorially presents the testbed environment, which com-
prises the following major components:

2.1 Central Manager
It is responsible for high-level policy definition and visu-
alization. The policies are translated into northbound ap-
plications, which are then executed by the SDN controller
positioned at this layer.

2.2 Aggregator and Transport Network
This component comprises a mesh of forwarding enti-
ties, which are implemented using virtual and physical
switches. This component forms topology design and de-
cides the topology thickness for different experiment set-
tings (e.g. experiments to study the impact of topology
thickness on the trigger propagation, or flow rules defini-
tion in the switches on a path).

2.3 Network Edge
This component comprises a set of edge switches that in-
terface the Access Points (APs). It is worth highlighting
here that an AP is connected to a port of an edge switch,
whereas the wireless access port of the AP provides con-
nectivity to multiple mobile devices. This provisions the
change in per-port handling of OpenFlow i.e., a discon-
nected mobile device does not imply the disconnection
of the edge switch’s port to which the AP is connected.
Hence, the controller needs to implement efficient host
tracking to realize SDNized wireless networks. To achieve
this, we implement the WiFi-Monitor tool, the details of
which will follow later in this section.

2.4 Android Measurement Application
This component is a network traffic generating Android
application running on Mobile- and Static Node. It can act
as both a sender and a receiver. As sender, the application
sends UDP packets to a receiving device with a config-
urable rate. These packets contain the sending timestamp
and a packet id. The receiver stores these received packets.
In order to automate experiments, the application is able
to switch betwen access points by itself. After the exper-
iment execution, the sender sends a stop-packet to inform
the receiver of the end of the experiment. As logging from
the Android device during an experiment would affect the
networks performance, the application generates logs at

EUROSIM 2016 & SIMS 2016

1 117DOI: 10.3384/ecp171421116 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

WMWMWMC
o
re

 N
e
tw

o
rk

SDN Controller

O
p
e
n
Fl

o
w

 N
e
tw

o
rk

Logging ServerMobile NodeStatic Node

WiFi Monitor (WM)
TCP Socket

wpa_supplicant

Event Handler

1 2

4

Logging

35

WiFi Monitor (WM)
TCP Socket

wpa_supplicant

Event Handler

1 2

4

Logging

35

Modified Open vSwitch

D
a
ta

p
a
th

Flow Table
static mobile

Trigger Match

Userspace

ovs-appctl
controllerLoad(rate)

6 7

8

9

10

Control Plane

Data Plane (gre)

Data Plane (WLAN)

Control Plane (WLAN)

OVS-WLAN-Linux-Device 1

OVS-WLAN-Linux-Device 2

OVS-Linux-Device 1

OVS-Linux-Device 2

C
e
n
tr

a
l
M

a
n

a
g

e
r

A
g

g
re

g
a
to

r
a
n

d
Tr

a
n
sp

o
rt

 N
e
tw

o
rk

N
e
tw

o
rk

 E
d

g
e

Figure 1. SDNized Wireless LAN - Experimental Setup

the end of experiments.

2.5 Experiment Automation
Running an experiment in a physical testbed is slow com-
pared to an emulated environment. In order to automate
both the setup and the execution of the experiment, we
develop several tools. The previously discussed Android
application is used to trigger the handover process while
streaming data.

A machine attached to the network runs the experiment
and configures the OpenFlow network using a script. Af-
ter the setup phase, this machine sends a signal to both
Android devices to start the experiment. It is also used to
collect logs produced during the experiment from the log
server, as well as to present a user interface to show the ex-
periment status and results in real time. We also extended
OVS to create load on the controller (configurable via ovs-
appctl) by frequently sending dummy PACKET_IN’s to
the controller. As sending this many requests to the con-
troller may have an impact on the switch performance, we
use an OVS-Node which is not playing a role in the han-
dover process.

WiFi-Monitor
We develop this tool to achive efficient tracking of mo-
bile hosts required for wireless networks. The tool is im-
plemented using C++ and runs on linux-based systems.
As shown in Figure 1, the WiFi-Monitor registers itself
as a receiver of WiFi-Events to the wpa_supplicant mod-
ule (Malinen) (1). The wpa_supplicant is responsible for
managing L2-authentication of mobile hosts. As soon as a
host connects (disconnects) to (from) an AP, the account-
ing WiFi-Monitor instance receives a callback (2), logs the
event (3), and sends a message to the SDN controller ap-
plication (4). With this message, we forward information

about the host (MAC-Address), the event (connect/dis-
connect), and which AP this event corresponds to (MAC-
Address). Using this information, the controller is aware
of the position of all hosts in the system at any time af-
ter initialization. The WiFi-Monitor may also be used for
various measurements, of which a few will be detailed in
section 3. For these measurements, messages from the
SDN controller application are received and logged (3, 5).
It should be furthermore noted, that we also modify the
OVS implementation to address scalability issues of cen-
tral control by delegating specific control responsibilities
to forwarding entities. However, the implementation de-
tails are ommited due to space constraints.

We also test the efficiency of the Wifi-Monitor against
the Host Tracker service of the OpenDaylight controller
(odl, IfIptoHost) and found that the built-in OpenDaylight
Host Tracker is not well suited to track mobile hosts. If a
mobile host changes its point of attachment, the informa-
tion received from the Host Tracker is mostly outdated and
refreshed only after a few seconds. This issue is overcome
by the contributed WiFi-Monitor. The OpenDaylight ap-
plication contains a server to which all Wifi-Monitor in-
stances connect. On each L2-Event the controller receives
from the WiFi-Monitor instances, the host-to-AP mapping
is updated in order to keep track of the hosts’ current po-
sitions.

OpenDaylight application
Our ODL application comprises three major parts:

Monitoring: This module contains the server to which
the WiFi-Monitor instances connect. It internally stores
the current Points of Attachement (PoA) of all hosts in the
system.

Mobility Learning: The learning module receives a
callback from the Monitoring-Module on every L2-Event.
These events are evaluated in order to predict a host’s
next PoA. Thereby, a probability vector per host is cre-
ated ph(t,s), which describes the probability of a host h to
connect to AP s at the discrete time-step t. Each L2-Event
triggers an update of this probability vector for the host
related to the event. The update step follows the learning
framework proposed in (Khan and Tembine, 2012). We
avoid further details of the implemented algorithm due to
space limitation and partially different focus of this work.
However, interested readers are encouraged to refer to it
for detailed information. After updating the probability
vector and the payoff vector for a host, a new prediction is
generated. This prediction estimates the target PoA of the
host.

Routing: The Routing-Module of our controller appli-
cation calculates and applies routes to the network. This
module uses the Monitoring-Module to determine the end-
points (APs) to which the two communicating hosts are at-
tached. Routing can be run in two different modes, namely
reactive and proactive. In reactive mode, the routes
are only applied when a PACKET_IN is received. The
DL_SRC and DL_DST of incoming packets are matched

EUROSIM 2016 & SIMS 2016

1 118DOI: 10.3384/ecp171421116 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

against installed flow rules, which means source- and/or
destination MAC-address of a packet need to match for the
flow to be used. When the Monitoring-Module receives a
L2-Disconnect-Event, all routes for the disconnected host
are immediately removed. In proactive mode, the con-
troller always installs two routes per connection. For ex-
ample, consider a host h2 that has a connection to host h1.
The controller installs two routes in the network and both
are associated with h2. The first route is the active route,
which is actively used and contains all flows to connect h1
with h2. The second route is inactive. This route is gener-
ated using the Mobility-Learning-Module. The route con-
tains all flows to connect h1 (at the current PoA) to h2 at
the predicted PoA. This route has a lower priority than the
active route and is therefore never applied by OVS. When
h2 disconnects from its current PoA, the Routing-Module
will receive a callback (from the Monitoring-Module) and
all active flows of h2 are removed, which leads to the inac-
tive routes becoming active. On the next L2-Connection-
Event, the behavior depends on the correctness of the last
prediction. If the prediction was correct, the connection
between h1 and h2 is already established. If the predic-
tion was wrong, the installed flows are removed and cor-
rect flows are installed. Finally, a new inactive route is
installed for the new prediction for future movement of
h2.

3 Mobility Management - A Use-Case
Scenario Implementation

Consider the scenario presented in Figure 2, where the
mobile user is streaming video from a video server while
the mobile device is connected to AP1. The transport net-
work consists of a set of switches. The user now enters
the coverage of AP2 and thereby triggers the handover
process. We now detail how we realized this scenario and
discuss how the handover procedures are carried out in the
two modes of developed testbed.

Figure 3 depicts the basic structure of technical com-
ponents for the use case scenario implementation. All
the nodes in the network (with the exception of the hard-
ware switch HWS) are commodity laptops. Where multi-
ple NIC’s are required USB-(Ethernet/WiFi) adapters are
used. As can be seen in Figure 3, all devices are con-
nected to a switch via Ethernet. The OpenFlow network
we use for this scenario, as described in Figure 1, is real-
ized by connecting the OVS-Nodes using GRE Tunnels.
Each end-point of the tunnels is seen by the OpenDaylight
Controller as a logical port. On the device OVS-WLAN-
Linux-Device 1, there are two instances of OVS running.
Each instance has control over one physical WiFi inter-
face. One of these WiFi interfaces is the built-in NIC, the
other WiFi interface is a plugged in USB-WiFi adapter.
For simplicity of the scenario, the IP addresses of the mo-
bile nodes are static. This implies that the APs are using
the same subnet.

Figure 2. Use case scenario

A
c
c
e
ss

 N
e
tw

o
rk

SDN Controller

Static Node

OVS-
Linux-Device 2

OVS-
Linux-Device 1

C
o
re

 N
e
tw

o
rk

Logging Server

OVS-WLAN
Linux-Device 1

OVS-WLAN
Linux-Device 2

Mobile Node

Figure 3. Physical Testbed Setup

3.1 Mobility Handling in Developed Testbed
Upon generation of the first handover trigger, i.e. host
M1 disconnects from AP1, the edge switch running WiFi-
Monitor generates a Disconnect-Event that is forwarded to
the SDN-Control-Application. The Application reacts to
this event by replying to the WiFi-Monitor and by delet-
ing all active flows available for M1 while updating its
internal database to store the hosts PoAs. Upon gener-
ation of the second handover trigger, i.e. host M1 con-
nects to AP2, the edge switch generates a corresponding
Connect-Event, which is forwarded to the SDN-Control-
Application, which handles this event depending on the
current mode (reative/proactive), as described in Section
2.

In this experiment, we capture different delay compo-
nents, which impact the overall handover cost. To mea-
sure the Propagation-Delay (the time the trigger event
takes to reach the controller over the transport network)
of a layer 2 event, the WiFi-Monitor starts a timer di-
rectly before sending an Event-Message (connect/discon-
nect) to the SDN-control-Application, which immediately
answers to this event upon reception. The previously
started timer is stopped as soon as the WiFi-Monitor re-
ceives the answer from the controller.

The process to measure L2-Delays is similar. All de-
vices that run an instance of the WiFi-Monitor (i.e., ev-

EUROSIM 2016 & SIMS 2016

1 119DOI: 10.3384/ecp171421116 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

ery AP) are synchronized using the NTP protocol (D.L.
Mills, 1985). Every L2-Event is logged to our logging
server. The difference in the timestamps of an L2-Event-
Pair (i.e., Disconnect-Event and corresponding Connect-
Event) is considered to be the L2-Delay.

The Pre-Compuation-Delay is measured within the
SDN-Controller and describes how long the reception of
the PACKET_IN and the handling of it are apart. It de-
scribes how long a PACKET_IN was queued before being
processed.

The Compuation-Delay is also captured within the
SDN-Controller and indicates how much time the Con-
toller needed for calculating the new routes and flows that
are created due to a PACKET_IN.

The Flow-Setup-Delay is the counterpart to the
Propagation-Delay. It describes the time between sending
a FLOW_MOD from the SDN-Controller and applying it
in the OVS. When the Controller sends a FLOW_MOD,
a timer is started. Each OVS immediately answers to a
FLOW_MOD. When the Controller receives this answer,
the corresponding timer is stopped.

The Flow-Application-Delay is captured within the
OVS and describes the time between the modification/in-
sertion of a new flow and the first application of it.

3.1.1 Logging

We utilize the widely used logging module rsyslog (log-
ging) for remote logging, which provides the option to for-
ward the system logs to a remote server. We use this mech-
anism to forward log messages (i.e. previously described
delay measurements) from all involved devices to our log-
ging server, which is attached to our local network via Eth-
ernet. Additionally, the logging server connects to one of
the APs to be available from within the OpenFlow net-
work. In the SDN-Control-Application, we realize special
handling of the logging server. If the Monitoring-Module
recognizes the MAC-Address of the logging server, an ac-
tion is triggered to install routes from all APs to the log-
ging server solely using the DL_DST field as a match.
This way, the logging server is at all times reachable
within the OpenFlow network. To realize the forwarding
of the Android logs, we utilize the Android Application
Logcat to UDP (Madzik). We configure Logcat to UDP to
forward the logs of our Android Application to the remote
logging server.

3.1.2 Running the Experiment

Having the testbed setup as described above, we carried
out the experiments, in which two Android devices are
used to measure the network’s behavior during handover.
Static Node (as given in Figure 3) is connected to WiFi in-
terface 1 of OVS-WLAN-Linux-Device 1. Mobile Node is
switching between the two other available WiFi networks.
When the experiment starts, Static Node acts as a sender
while Mobile Node runs in receiving mode. After Static
Node starts sending, Mobile Node switches its PoA sev-
eral times.

As we know that as the Android device associates to or
disassociates from an Access Point, the new topology of
the network requires changes to flow tables in switches.
These changes are applied differently depending on con-
troller mode. For instance, in reactive mode, the con-
troller installs flows after the first PACKET_IN from the
OVS-Node at the Access Point from which Mobile Node
disconnected. The message to the controller contains the
header of the received packet and, depending on the con-
figuration, the packet content. The controller receives the
PACKET_IN and calculates the path through the network
and installs the flows in switches along that path.

However, if the controller is running in proactive mode,
the controller predicts to which Access Point a mobile host
will connect to in the future. This allows the controller to
preconfigure the network with a second route from Static
Node to the future location of Mobile Node. This route
is installed with a lower priority than the actual route so
that only the actual route is used. When Mobile Node dis-
connects from its current Access Point, the WiFi-Monitor
detects the disassociation and sends the information about
the topology change to the controller. The controller re-
acts by deleting the current route, resulting in the 2nd pre-
installed route to be the active one. It should be high-
lighted that proactive controller mode reduces handover
delay especially if the disassociation event is propagated
to the controller as quick as possible. The vanilla Open-
Flow implementation however does not immediately no-
tice that a device left. Together with the WiFi-Monitor
detecting (dis-)association events much faster, proactive
controller mode can significantly reduce handover delay.

3.1.3 Parsing and aggregating results

Each run of the experiment generates log files for each
node running software: OVS-Nodes, controller, and An-
droid devices. In order to obtain results, logged events
have to be matched to their counterparts and events caused
by a single move between Access Points aggregated to
evaluate the networks behavior during a single handover.
All events but those occuring on the Android devices are
immediatly logged to the log server. As we can expect
events to have a certain order, only information logged by
the Android devices have to be mapped to their respective
groups of network events.

The WiFi-Monitor is used to improve detection of con-
nection events. We compare the speed and accuracy of
Host Tracker to the developed WiFi-Monitor. Table 1
shows the statistics of Host Tracker. The Bad Answers col-
umn describes how often Host Tracker returned a wrong
PoA for a queried host. The Time Lost column shows how
much time was lost until a correct answer was received.
This time also depends on the request frequency, which is
depending on the amount of PACKET_INs generated. One
can see that the behavior is quite unstable with high peaks
in the amount of bad answers as well as the lost time.
When using the WiFi-Monitor, we achieve an average of
9.42ms delay over 400 handovers due to the propagation

EUROSIM 2016 & SIMS 2016

1 120DOI: 10.3384/ecp171421116 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Table 1. Error Measurement of Host Tracker in 136 Handovers

Bad Answers Time Lost(ms)
Average 1.65 121.7
Sum 225 16,556
Max 16 2415

delay. This means that the maximum delay using the Host
Tracker (2415ms) is higher than the overall delay in 136
runs using the WiFi-Monitor (9.42ms ·136= 1,281.12ms).
Since the control application reacts to the L2-Events, we
do not obtain any bad answers.

4 Conclusions
In this paper, we provided the details of authors’ designed
and developed testbed for SDNized wireless LAN. We dis-
cussed different components of the testbed and elaborated
on the technologies used therein. To give better insight of
the demonstrator and assist the researchers of SDN topics,
we have also provided a discussion on our proposed SDN
application and its implementation. The use case scenario
summarizes the use of the developed testbed for mobility
management.

Acknowledgment
This work is partially funded by iMoveFAN, a collabora-
tive project with Huawei Research Germany.

References
C Jasson Casey, Andrew Sutton, and Alex Sprintson.

tinyNBI: Distilling an API from essential openflow abstrac-
tions. In Proceedings of the third workshop on Hot topics in
software defined networking, pages 37–42. ACM, 2014.

Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Sujata
Banerjee, Praveen Yalagandula, and Puneet Sharma. De-
voFlow: scaling flow management for high-performance net-
works. ACM SIGCOMM Computer Communication Review,
41(4):254–265, August 2011.

D.L. Mills. Network Time Protocol (NTP). RFC 958, Sept.
1985.

Xiaozhou Jia. SBMP: An SDN-based Mobility Management
Protocol to Support Seamless Handover. Master’s thesis, The
University of Tokyo, 2015.

M. A. Khan and H. Tembine. Random matrix games in wire-
less networks. In Global High Tech Congress on Elec-
tronics (GHTCE), 2012 IEEE, pages 81–86, Nov 2012.
doi:10.1109/GHTCE.2012.6490129.

Diego Kreutz, Fernando MV Ramos, Paulo Esteves Veris-
simo, Christian Esteve Rothenberg, Siamak Azodolmolky,
and Steve Uhlig. Software-defined networking: A com-
prehensive survey. Proceedings of the IEEE, 103(1):14–76,
2015.

logging. RSYSLOG The Rocket-Fast System For Log Process-
ing. Website. http://www.rsyslog.com/; revised
July 12, 2016.

J. Madzik. Chemik/logcatudp. Website. https://github.
com/Chemik/logcatudp; revised July 12, 2016.

J. Malinen. Linux wpa/wpa2/ieee 802.1x supplicant. Website.
https://w1.fi/wpa_supplicant/; revised July 12,
2016.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. Openflow: Enabling innovation in cam-
pus networks. SIGCOMM Comput. Commun. Rev., 38(2):
69–74, March 2008. ISSN 0146-4833.

odl. Controller projects’ modules/bundles and interfaces. Web-
site. https://wiki.opendaylight.org/view/
Controller_Project’s_Modules/Bundles_
and_Interfaces; revised July 12, 2016.

Jennifer Rexford, Michael J Freedman, Minlan Yu, and Jia
Wang. Scalable flow-based networking with DIFANE. ACM
SIGCOMM Computer Communication Review, 41(4):351–
362, October 2011.

Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru, Stefan
Schmid, and Anja Feldmann. Opensdwn: programmatic con-
trol over home and enterprise wifi. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Network-
ing Research, page 16. ACM, 2015.

Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feld-
WLANs with Odin. In Proceedings of the first workshop on
Hot topics in software defined networks, pages 115–120.
ACM, 2012.

W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie. A
Survey on Software-Defined Networking. Communica-
tions Surveys Tutorials, IEEE, 2015. ISSN 1553-877X.
doi:10.1109/comst.2014.2330903.

M. Yan, J. Casey, P. Shome, A. Sprintson, and A. Sutton. Aether-
flow: Principled wireless support in SDN. In 2015
IEEE 23rd International Conference on Network Protocols
(ICNP), pages 432–437, Nov 2015. doi:10.1109/
ICNP.2015.9.

EUROSIM 2016 & SIMS 2016

1 121DOI: 10.3384/ecp171421116 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://dx.doi.org/10.1109/GHTCE.2012.6490129
http://www.rsyslog.com/
https://github.com/Chemik/logcatudp
https://github.com/Chemik/logcatudp
https://w1.fi/wpa_supplicant/
https://wiki.opendaylight.org/view/Controller_Project's_Modules/Bundles_and_Interfaces
https://wiki.opendaylight.org/view/Controller_Project's_Modules/Bundles_and_Interfaces
https://wiki.opendaylight.org/view/Controller_Project's_Modules/Bundles_and_Interfaces
http://dx.doi.org/10.1109/comst.2014.2330903
http://dx.doi.org/10.1109/ICNP.2015.9

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

