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Abstract
The emerging Internet of Things (IoT) paradigm and
a plethora of diverse applications provision more flexi-
ble network management. Software Defined Networking
(SDN) occupies the pivotal role in realizing such flexible
network management. However, the gain of this poten-
tial panacea is still unmeasurable in a real sense especially
when wireless medium is part of the equation, as the val-
idation frameworks mostly skip capturing realistic system
dynamics. In this paper, we study the performance gain
of SDN control implemented in a physical testbed com-
prising of a virtualized core and a WLAN access network.
With this contribution, we aim at realizing a more real-
istic environment where the impact of system dynamics
on the stakeholders (users and operators) may be studied.
We developed a mechanism to map the logical wireless
channels over the physical wireless interface of the access
point. SDN (OpenDaylight) control application for mobil-
ity management, the mapper tool, a visualization and con-
trol GUI, and Android applications are amongst the main
contribution of this work.
Keywords: software defined networking, OpenFlow,
Open vSwitch, experiment automation

1 Introduction
The recent past has advocated a rapid evolution in mo-
bile communication technologies, which enables the tran-
sition from a monolithic architecture to a shared architec-
ture and ensures ubiquitous connectivity. Such transfor-
mation, when coupled with envisioned bandwidth hungry
applications, have triggered the need for high data rates
and extremely low communication latencies. Now that
dust around 4G has settled down to a great extent, the
community is looking for newer technologies to achieve
the envisioned requirements of future mobile networks,
also referred to as 5G, aiming at improving the stake-
holders objective functions. For this concept to be re-
alized, the path is paved by the following technical and
economic evolutions: widely available broadband Inter-
net, reduced connectivity costs, more devices being man-
ufactured with built-in sensors and WiFi capabilities, and
immense market penetration of smart phones. We believe
that 5G - in contrast to earlier generations - will not only
improve the end user services, but also go beyond enabling
communication between people by realizing machine-to-
machine communication and the concept of Internet-of-

Things (IoT). The challenges stemming from realizing the
vision of connectivity everywhere for highly dynamic de-
vice layer entities and immensely heterogeneous applica-
tions define a major portion of 5G. The communication
requirements are even more stringent when the users or
sensors are mobile. The expanding networks, the inclu-
sion of many entrants and their dynamic relationships,
and virtualized network sections result in a very complex
management task of the network. SDN and autonomic
network management are seen as the enabling concepts
that come to rescue and help in solving the pressing chal-
lenges. The SDN architecture propagates the separation
of the control plane from the data plane, which enables
the flexible hosting of network control functions in dif-
ferent settings and platforms e.g., in centralized or dis-
tributed fashions, in physical machines or virtual instances
in a cloud network. When applying SDN solutions to the
wireless access and mobile networks, it promises to pro-
vide efficient management and control over wireless op-
erations by providing a unified management and control
platform. Yet, the abstraction of centralized control on
one hand and simple forwarding elements on the other,
can not be achieved easily in wireless networks. The cur-
rent SDN technology mostly caters to the needs of wired
networks in data center or enterprise network settings and
needs to be advanced to allow for monitoring of wireless
parameters and for exerting control on wireless network
infrastructure within the SDN control layer. A number
of approaches to SDNized wireless networks exist in the
research literature (e.g., (Kreutz et al., 2015), (Xia et al.,
2015) and references therein). OpenFlow is still in its in-
fancy and is evolving to meet the requirements of wireless
communication. The Open Networking Foundation pre-
sented a report (McKeown et al., 2008) identifying chal-
lenges of future wireless networks and how SDN can be a
solution to these issues. Research however struggles to in-
clude SDN in wireless networks: Some works rely on mo-
bile node cooperation (Schulz-Zander et al., 2015), others
create configuration overhead (Suresh et al., 2012), which
leads to more load on all involved nodes during handover.
Aetherflow (Yan et al., 2015) and its predecessor TinyNBI
(Casey et al., 2014) are frameworks that allow the con-
troller to manage the capabilities of a wireless access point
(e.g., mapping of logical ports to physical ports, transmis-
sion power), to receive events corresponding to the wire-
less network, or to gather statistics of wireless ports.

The research community has also been actively ad-
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dressing the inherent scalability issue of SDNized net-
works. (Curtis et al., 2011) proposes to offload statistics
gathering and management of micro-flows onto switches,
thus reducing delays introduced by controller involvment.
DIFANE (Rexford et al., 2011) includes switches in the
control-plane. Authority Switches are introduced, which
store a partition of all rules required to operate the net-
work. Instead of switches sending every cache-miss to
the controller, they forward the packet which triggered
the miss to an Authority Switch, which in turn caches the
required rules in the ingress switch. In (Rexford et al.,
2011), flooding of packets causing a cache-miss is used to
reduce packet-loss during handover of mobile nodes. If a
node changes its point of attachement, the edge switch the
node was connected to floods packets for the mobile node
through the network in order to reach the new acces point.
With this approach, the new point of attachment may re-
ceive packets sent during handover and can forward them
to the mobile node, thus reducing packet loss. However,
evaluation of the approach is only done by emulating the
network and not in a physical testbed.

When it comes to SDN (wireless) networks, researchers
often use network emulators like Mininet to evaluate new
approaches to utilizing the advantages of SDN. Even
though this approach has the advantage of not having to
deal with challenges like setting up and configuring phys-
ical networks or creating a suitable network environment
to simulate real-world conditions, it still lacks the capabil-
ity to capture the realistic wireless dynamics. In general,
the validation frameworks for most of the approaches are
abstracted to higher levels, which we believe does not re-
alistically capture the system dynamics. In this work, we
discuss a full scale SDNized wireless LAN testbed that
we developed using both virtual and physical network en-
tities. The testbed is targeted to study the performance of
different contributions (e.g., mobility management, loca-
tion management, resource allocation, network selection,
etc.) in a more realistic environment which involves both
wireless and physical mediums, where the topology thick-
ness may be dynamically adjusted for different settings,
and where the network management procedures and proto-
cols are fully implemented similarly to that of real deploy-
ment. Hence, we claim that our contributed and developed
experimental setup will serve as a fitting validation frame-
work for SDN control of wireless networks.

2 SDNized Wireless LAN Testbed
The testbed is designed and developed to function in dif-
ferent modes, of which the two prominent ones are: i)
Controller communication mode - in this mode, the trig-
ger events from the forwarding entities are sent to SDN
controller, where the decision of trigger handling is car-
ried out. ii) Inter-entities communication mode - inspired
by (Jia, 2015), we propose to handle triggering events in
a way different to the SDN paradigm of centralized con-
trol, i.e. the events are sent to other forwarding entities,

which may take over partial control responsibilities dele-
gated by the controller. In this paper, we focus on pro-
viding the details of the former due to space restriction.
However, it should be highlighted that the two functional
modes add additional capability to the testbed. Solutions
which deviate from the classical SDN control principles
(where based on the Open-Flow protocol, all the trigger
events must be forwarded to controller) may be tested and
their performance gains may be measured against those
following the classical SDN rules. In what follows next,
we provide the details of the developed testbed and its
components for controller communication mode. Figure 1
pictorially presents the testbed environment, which com-
prises the following major components:

2.1 Central Manager
It is responsible for high-level policy definition and visu-
alization. The policies are translated into northbound ap-
plications, which are then executed by the SDN controller
positioned at this layer.

2.2 Aggregator and Transport Network
This component comprises a mesh of forwarding enti-
ties, which are implemented using virtual and physical
switches. This component forms topology design and de-
cides the topology thickness for different experiment set-
tings (e.g. experiments to study the impact of topology
thickness on the trigger propagation, or flow rules defini-
tion in the switches on a path).

2.3 Network Edge
This component comprises a set of edge switches that in-
terface the Access Points (APs). It is worth highlighting
here that an AP is connected to a port of an edge switch,
whereas the wireless access port of the AP provides con-
nectivity to multiple mobile devices. This provisions the
change in per-port handling of OpenFlow i.e., a discon-
nected mobile device does not imply the disconnection
of the edge switch’s port to which the AP is connected.
Hence, the controller needs to implement efficient host
tracking to realize SDNized wireless networks. To achieve
this, we implement the WiFi-Monitor tool, the details of
which will follow later in this section.

2.4 Android Measurement Application
This component is a network traffic generating Android
application running on Mobile- and Static Node. It can act
as both a sender and a receiver. As sender, the application
sends UDP packets to a receiving device with a config-
urable rate. These packets contain the sending timestamp
and a packet id. The receiver stores these received packets.
In order to automate experiments, the application is able
to switch betwen access points by itself. After the exper-
iment execution, the sender sends a stop-packet to inform
the receiver of the end of the experiment. As logging from
the Android device during an experiment would affect the
networks performance, the application generates logs at
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Figure 1. SDNized Wireless LAN - Experimental Setup

the end of experiments.

2.5 Experiment Automation
Running an experiment in a physical testbed is slow com-
pared to an emulated environment. In order to automate
both the setup and the execution of the experiment, we
develop several tools. The previously discussed Android
application is used to trigger the handover process while
streaming data.

A machine attached to the network runs the experiment
and configures the OpenFlow network using a script. Af-
ter the setup phase, this machine sends a signal to both
Android devices to start the experiment. It is also used to
collect logs produced during the experiment from the log
server, as well as to present a user interface to show the ex-
periment status and results in real time. We also extended
OVS to create load on the controller (configurable via ovs-
appctl) by frequently sending dummy PACKET_IN’s to
the controller. As sending this many requests to the con-
troller may have an impact on the switch performance, we
use an OVS-Node which is not playing a role in the han-
dover process.

WiFi-Monitor
We develop this tool to achive efficient tracking of mo-
bile hosts required for wireless networks. The tool is im-
plemented using C++ and runs on linux-based systems.
As shown in Figure 1, the WiFi-Monitor registers itself
as a receiver of WiFi-Events to the wpa_supplicant mod-
ule (Malinen) (1). The wpa_supplicant is responsible for
managing L2-authentication of mobile hosts. As soon as a
host connects (disconnects) to (from) an AP, the account-
ing WiFi-Monitor instance receives a callback (2), logs the
event (3), and sends a message to the SDN controller ap-
plication (4). With this message, we forward information

about the host (MAC-Address), the event (connect/dis-
connect), and which AP this event corresponds to (MAC-
Address). Using this information, the controller is aware
of the position of all hosts in the system at any time af-
ter initialization. The WiFi-Monitor may also be used for
various measurements, of which a few will be detailed in
section 3. For these measurements, messages from the
SDN controller application are received and logged (3, 5).
It should be furthermore noted, that we also modify the
OVS implementation to address scalability issues of cen-
tral control by delegating specific control responsibilities
to forwarding entities. However, the implementation de-
tails are ommited due to space constraints.

We also test the efficiency of the Wifi-Monitor against
the Host Tracker service of the OpenDaylight controller
(odl, IfIptoHost) and found that the built-in OpenDaylight
Host Tracker is not well suited to track mobile hosts. If a
mobile host changes its point of attachment, the informa-
tion received from the Host Tracker is mostly outdated and
refreshed only after a few seconds. This issue is overcome
by the contributed WiFi-Monitor. The OpenDaylight ap-
plication contains a server to which all Wifi-Monitor in-
stances connect. On each L2-Event the controller receives
from the WiFi-Monitor instances, the host-to-AP mapping
is updated in order to keep track of the hosts’ current po-
sitions.

OpenDaylight application
Our ODL application comprises three major parts:

Monitoring: This module contains the server to which
the WiFi-Monitor instances connect. It internally stores
the current Points of Attachement (PoA) of all hosts in the
system.

Mobility Learning: The learning module receives a
callback from the Monitoring-Module on every L2-Event.
These events are evaluated in order to predict a host’s
next PoA. Thereby, a probability vector per host is cre-
ated ph(t,s), which describes the probability of a host h to
connect to AP s at the discrete time-step t. Each L2-Event
triggers an update of this probability vector for the host
related to the event. The update step follows the learning
framework proposed in (Khan and Tembine, 2012). We
avoid further details of the implemented algorithm due to
space limitation and partially different focus of this work.
However, interested readers are encouraged to refer to it
for detailed information. After updating the probability
vector and the payoff vector for a host, a new prediction is
generated. This prediction estimates the target PoA of the
host.

Routing: The Routing-Module of our controller appli-
cation calculates and applies routes to the network. This
module uses the Monitoring-Module to determine the end-
points (APs) to which the two communicating hosts are at-
tached. Routing can be run in two different modes, namely
reactive and proactive. In reactive mode, the routes
are only applied when a PACKET_IN is received. The
DL_SRC and DL_DST of incoming packets are matched

EUROSIM 2016 & SIMS 2016

1 118DOI: 10.3384/ecp171421116     Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



against installed flow rules, which means source- and/or
destination MAC-address of a packet need to match for the
flow to be used. When the Monitoring-Module receives a
L2-Disconnect-Event, all routes for the disconnected host
are immediately removed. In proactive mode, the con-
troller always installs two routes per connection. For ex-
ample, consider a host h2 that has a connection to host h1.
The controller installs two routes in the network and both
are associated with h2. The first route is the active route,
which is actively used and contains all flows to connect h1
with h2. The second route is inactive. This route is gener-
ated using the Mobility-Learning-Module. The route con-
tains all flows to connect h1 (at the current PoA) to h2 at
the predicted PoA. This route has a lower priority than the
active route and is therefore never applied by OVS. When
h2 disconnects from its current PoA, the Routing-Module
will receive a callback (from the Monitoring-Module) and
all active flows of h2 are removed, which leads to the inac-
tive routes becoming active. On the next L2-Connection-
Event, the behavior depends on the correctness of the last
prediction. If the prediction was correct, the connection
between h1 and h2 is already established. If the predic-
tion was wrong, the installed flows are removed and cor-
rect flows are installed. Finally, a new inactive route is
installed for the new prediction for future movement of
h2.

3 Mobility Management - A Use-Case
Scenario Implementation

Consider the scenario presented in Figure 2, where the
mobile user is streaming video from a video server while
the mobile device is connected to AP1. The transport net-
work consists of a set of switches. The user now enters
the coverage of AP2 and thereby triggers the handover
process. We now detail how we realized this scenario and
discuss how the handover procedures are carried out in the
two modes of developed testbed.

Figure 3 depicts the basic structure of technical com-
ponents for the use case scenario implementation. All
the nodes in the network (with the exception of the hard-
ware switch HWS) are commodity laptops. Where multi-
ple NIC’s are required USB-(Ethernet/WiFi) adapters are
used. As can be seen in Figure 3, all devices are con-
nected to a switch via Ethernet. The OpenFlow network
we use for this scenario, as described in Figure 1, is real-
ized by connecting the OVS-Nodes using GRE Tunnels.
Each end-point of the tunnels is seen by the OpenDaylight
Controller as a logical port. On the device OVS-WLAN-
Linux-Device 1, there are two instances of OVS running.
Each instance has control over one physical WiFi inter-
face. One of these WiFi interfaces is the built-in NIC, the
other WiFi interface is a plugged in USB-WiFi adapter.
For simplicity of the scenario, the IP addresses of the mo-
bile nodes are static. This implies that the APs are using
the same subnet.

Figure 2. Use case scenario
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3.1 Mobility Handling in Developed Testbed
Upon generation of the first handover trigger, i.e. host
M1 disconnects from AP1, the edge switch running WiFi-
Monitor generates a Disconnect-Event that is forwarded to
the SDN-Control-Application. The Application reacts to
this event by replying to the WiFi-Monitor and by delet-
ing all active flows available for M1 while updating its
internal database to store the hosts PoAs. Upon gener-
ation of the second handover trigger, i.e. host M1 con-
nects to AP2, the edge switch generates a corresponding
Connect-Event, which is forwarded to the SDN-Control-
Application, which handles this event depending on the
current mode (reative/proactive), as described in Section
2.

In this experiment, we capture different delay compo-
nents, which impact the overall handover cost. To mea-
sure the Propagation-Delay (the time the trigger event
takes to reach the controller over the transport network)
of a layer 2 event, the WiFi-Monitor starts a timer di-
rectly before sending an Event-Message (connect/discon-
nect) to the SDN-control-Application, which immediately
answers to this event upon reception. The previously
started timer is stopped as soon as the WiFi-Monitor re-
ceives the answer from the controller.

The process to measure L2-Delays is similar. All de-
vices that run an instance of the WiFi-Monitor (i.e., ev-
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ery AP) are synchronized using the NTP protocol (D.L.
Mills, 1985). Every L2-Event is logged to our logging
server. The difference in the timestamps of an L2-Event-
Pair (i.e., Disconnect-Event and corresponding Connect-
Event) is considered to be the L2-Delay.

The Pre-Compuation-Delay is measured within the
SDN-Controller and describes how long the reception of
the PACKET_IN and the handling of it are apart. It de-
scribes how long a PACKET_IN was queued before being
processed.

The Compuation-Delay is also captured within the
SDN-Controller and indicates how much time the Con-
toller needed for calculating the new routes and flows that
are created due to a PACKET_IN.

The Flow-Setup-Delay is the counterpart to the
Propagation-Delay. It describes the time between sending
a FLOW_MOD from the SDN-Controller and applying it
in the OVS. When the Controller sends a FLOW_MOD,
a timer is started. Each OVS immediately answers to a
FLOW_MOD. When the Controller receives this answer,
the corresponding timer is stopped.

The Flow-Application-Delay is captured within the
OVS and describes the time between the modification/in-
sertion of a new flow and the first application of it.

3.1.1 Logging

We utilize the widely used logging module rsyslog (log-
ging) for remote logging, which provides the option to for-
ward the system logs to a remote server. We use this mech-
anism to forward log messages (i.e. previously described
delay measurements) from all involved devices to our log-
ging server, which is attached to our local network via Eth-
ernet. Additionally, the logging server connects to one of
the APs to be available from within the OpenFlow net-
work. In the SDN-Control-Application, we realize special
handling of the logging server. If the Monitoring-Module
recognizes the MAC-Address of the logging server, an ac-
tion is triggered to install routes from all APs to the log-
ging server solely using the DL_DST field as a match.
This way, the logging server is at all times reachable
within the OpenFlow network. To realize the forwarding
of the Android logs, we utilize the Android Application
Logcat to UDP (Madzik). We configure Logcat to UDP to
forward the logs of our Android Application to the remote
logging server.

3.1.2 Running the Experiment

Having the testbed setup as described above, we carried
out the experiments, in which two Android devices are
used to measure the network’s behavior during handover.
Static Node (as given in Figure 3) is connected to WiFi in-
terface 1 of OVS-WLAN-Linux-Device 1. Mobile Node is
switching between the two other available WiFi networks.
When the experiment starts, Static Node acts as a sender
while Mobile Node runs in receiving mode. After Static
Node starts sending, Mobile Node switches its PoA sev-
eral times.

As we know that as the Android device associates to or
disassociates from an Access Point, the new topology of
the network requires changes to flow tables in switches.
These changes are applied differently depending on con-
troller mode. For instance, in reactive mode, the con-
troller installs flows after the first PACKET_IN from the
OVS-Node at the Access Point from which Mobile Node
disconnected. The message to the controller contains the
header of the received packet and, depending on the con-
figuration, the packet content. The controller receives the
PACKET_IN and calculates the path through the network
and installs the flows in switches along that path.

However, if the controller is running in proactive mode,
the controller predicts to which Access Point a mobile host
will connect to in the future. This allows the controller to
preconfigure the network with a second route from Static
Node to the future location of Mobile Node. This route
is installed with a lower priority than the actual route so
that only the actual route is used. When Mobile Node dis-
connects from its current Access Point, the WiFi-Monitor
detects the disassociation and sends the information about
the topology change to the controller. The controller re-
acts by deleting the current route, resulting in the 2nd pre-
installed route to be the active one. It should be high-
lighted that proactive controller mode reduces handover
delay especially if the disassociation event is propagated
to the controller as quick as possible. The vanilla Open-
Flow implementation however does not immediately no-
tice that a device left. Together with the WiFi-Monitor
detecting (dis-)association events much faster, proactive
controller mode can significantly reduce handover delay.

3.1.3 Parsing and aggregating results

Each run of the experiment generates log files for each
node running software: OVS-Nodes, controller, and An-
droid devices. In order to obtain results, logged events
have to be matched to their counterparts and events caused
by a single move between Access Points aggregated to
evaluate the networks behavior during a single handover.
All events but those occuring on the Android devices are
immediatly logged to the log server. As we can expect
events to have a certain order, only information logged by
the Android devices have to be mapped to their respective
groups of network events.

The WiFi-Monitor is used to improve detection of con-
nection events. We compare the speed and accuracy of
Host Tracker to the developed WiFi-Monitor. Table 1
shows the statistics of Host Tracker. The Bad Answers col-
umn describes how often Host Tracker returned a wrong
PoA for a queried host. The Time Lost column shows how
much time was lost until a correct answer was received.
This time also depends on the request frequency, which is
depending on the amount of PACKET_INs generated. One
can see that the behavior is quite unstable with high peaks
in the amount of bad answers as well as the lost time.
When using the WiFi-Monitor, we achieve an average of
9.42ms delay over 400 handovers due to the propagation
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Table 1. Error Measurement of Host Tracker in 136 Handovers

Bad Answers Time Lost(ms)
Average 1.65 121.7
Sum 225 16,556
Max 16 2415

delay. This means that the maximum delay using the Host
Tracker (2415ms) is higher than the overall delay in 136
runs using the WiFi-Monitor (9.42ms ·136= 1,281.12ms).
Since the control application reacts to the L2-Events, we
do not obtain any bad answers.

4 Conclusions
In this paper, we provided the details of authors’ designed
and developed testbed for SDNized wireless LAN. We dis-
cussed different components of the testbed and elaborated
on the technologies used therein. To give better insight of
the demonstrator and assist the researchers of SDN topics,
we have also provided a discussion on our proposed SDN
application and its implementation. The use case scenario
summarizes the use of the developed testbed for mobility
management.
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