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Abstract 

The paper describes the development of an automated system identification algorithm for the die 

cushion drive in hydraulic deep drawing presses. The algorithm could successfully be 

implemented on the drive controller to automatically identify the system parameters of the drive. 

Main aspect of the paper is the application driven development of an appropriate system model 

and identification algorithm with its implementation on the drive controller. It could be verified 

with experiments on a 2500 kN hydraulic deep drawing press. This thorough knowledge of the 

system model with its parameters shows a high potential to be further evaluated for system 

diagnosis and could also be used for system simulation and controller design. 

Key points are the limited processing power of the drive controller and the occurring signal noise. 

A grey-box system model was chosen and its parameters were identified by means of a recursive 

least square algorithm. The implementation on the drive controller required adaptions due to 

restricted cycle time and additional signal processing to reduce noise that will also be discussed 

in the paper.  

Keywords: industrial hydraulics, hydraulic deep drawing press, system identification, system 

simulation, grey box model, valve control, parameter estimation, orthogonal correlation, moving 

average filter, symmetrical derivative 

1 Introduction 

The requirements on modern industrial hydraulics are rising. 

The operator sets highest demands on energy efficiency, best 

dynamic and static behavior, highest reliability and even 

requests new functionality. The die cushion in deep drawing 

presses is a typical application for modern servo hydraulics 

as it offers a precise adjustability of the counter-holding force 

on the blank. With velocities of up to 300 mm/s and cylinder 

forces of more than 1000 kN the dynamic behavior needs to 

be most accurate. Modern blank materials, the raising cushion 

speeds and more complex tool geometries set an even higher 

demand on the die cushion. In addition the operator requests 

low set-up time and minimal service requirements. 

An extensive and thorough set-up process and a time 

consuming maintenance scheme with qualified and 

experienced technical staff is currently necessary to fulfil 

these demands (/1/, /2/, /3/). The intensive set-up process is 

required for every newly installed deep drawing press and 

also after every modernization of the hydraulic system. 

Model based system optimization methods offer the 

possibility to support with the set up process and even to 

increase the quality of the hydraulic drive. But on the other 

hand those simulation models and optimization methods 

require a thorough knowledge of the system and its 

parameters. This is where the method of automated parameter 

estimation steps in providing a possible solution to identify 

the system parameters within a few seconds. 

The literature offers a high variety of system identification 

methods (/4/, /5/, /6/) out of which the most suitable for the 

hydraulic die cushion drive is to be chosen. Jelali and Kroll 

/7/ proved the feasibility of system identification for 

hydraulic drives in an experimental environment. However, 

the implementation within the drive controller for an 

industrial machine has not been realized yet.  

The use of the current parameters and system model from the 

identification algorithm are versatile. They can be evaluated 

for condition monitoring, for fault diagnosis, to increase 

reliability and to reduce the required time for manual 

servicing. They can also be used for system simulation and 

controller design to reduce the set-up time and ensure a high 

control quality of the hydraulic drive. Several published 

works show that a model based controller design can be based 

on an identified system model and deliver an improved 

control accuracy. The identification algorithm is therefore an 

important step towards an improved system performance.  

The aim of the presented paper is to develop and implement 

a parameter estimation algorithm within the machine 

controller of the hydraulic die cushion system. This allows to 

easily access the current set of parameters by an identification 

process or even during regular application of the machine. 
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2 Test setup 

The research was conducted on an hydraulic deep drawing 

press that is available at the Institute of Fluid Power at the 

TU Dresden (see fig. 1). It features a hydraulic slide with a 

maximum force of 2500 kN and a modern hydraulic 

four-point die cushion with a total force of 1000 kN. The 

press can be equipped with different tools, such as a 

rectangular pan tool and a round cup tool for deep drawing, a 

cutting tool and a test block that allows the press to work at 

any possible operating point up to maximum force and speed. 

All experiments presented in this paper were conducted with 

this test block representing a deep drawing tool. The deep 

drawing press is equipped with several additional sensors for 

hydraulic, mechanic, and electric signals as well as a tailor 

made measuring system.  

 

Figure 1: Hydraulic deep drawing press at the IFD 

For the hydraulic die cushion, a model based system 

identification algorithm will be implemented on its drive 

controller. The controller, a MOOG Servo Drive MSD, 

features a 32-bit processor with 400 MHz and 256 MB of 

RAM. Available machine signals from the die cushion drive 

are the cylinder position 𝑧𝑑𝑐, the cylinder pressure in both 

cylinder chambers 𝑝𝐴 and 𝑝𝐵 and the applied valve voltage 

𝑈𝑣 at the servo valve as well as the return signal for the actual 

valve spool position 𝑦𝑣 for each of the four cylinders. All 

machine signals are read with Ether CAT connected 

IO-modules. 

The behavior of the hydraulic die cushion will be further 

investigated within this paper and its model parameters will 

be identified. The hydraulic structure of the die cushion is 

shown in fig. 2 for one of the four die cushion cylinders. They 

are used for position- as well as force-control of the die 

cushion as there is no dedicated lifting cylinder. An axial-

piston pump with internal and external pressure control 

provides the necessary volume flow for all four cylinders. The 

hydraulic layout was adapted to allow for a permanent rapid 

traverse motion on the cylinder-out movement. The 

cylinder-in movement is simplified in the way that only the 

pressure chamber on the piston side is controlled by the servo-

valve and the pressure chamber on the rod side is directly 

connected to the axial piston pump. A changing valve 

position of the servo valve does therefore only affect the 

pressure in the piston side. 

 

Figure 2: Hydraulic structure of the die cushion and 

measured system variables 
 

3 Development of the system model 

The system model forms the basis for the identification 

algorithm and defines the possibilities for evaluating the 

model parameters and system characteristics. The system 

model should behave as close to the real system as possible 

and allow to describe the real system as accurate as possible. 

At the same time, the structure and complexity of the system 

model must meet all requirements for an automated system 

identification, so the model complexity is limited.  

The model derivation was based on the physical principles in 

order to retain the model parameters with a physical value and 

equivalent. A so-called white box model with its physically 

based mathematical equations is a common and widely 

verified tool to describe the behavior of hydraulic servo 

systems to a high level of detail. There parameters have a 

physical meaning and can therefore be checked on 

fundamental correctness as well as compared with other 

systems. It also offers a high variety of possibilities for future 

applications, such as controller design, condition monitoring 

or fault diagnosis based on the physical system model. 

However, a pure white-box model with a sufficient accuracy 

would require a high level of complexity with numerous 

parameters. Therefore, the physical behavior is described 

with basic mathematical equations for the fluidic system and 

is extended with black-box model assumptions in order to 

achieve a sufficient accuracy with reduced model complexity 

and fewer model parameters. The system was divided in a 

model for the fluidic system that is described as a white-box 

model and the valve dynamic as a black-box model. Within 

this paper, only the state of force control for the die cushion 

during the process of deep drawing is considered. This is the 

most relevant state for the die cushion as it controls the 

drawing process with the applied force and therefore directly 

influences the quality of the produced part. 
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Figure 3 shows the chosen model structure with its 

(measureable) system variables for hydraulic pressure (𝑝𝑡 , 𝑝𝐴,
𝑝𝐵 and 𝑝0), servovalve voltage 𝑈𝑣 and –position 𝑦𝑉 and the 

cylinder position 𝑧𝑑𝑐. The system boundaries are the supply 

pressure 𝑝0, the oil tank pressure 𝑝𝑡 , the cylinder position 𝑧𝑑𝑐 

and servovalve voltage 𝑈𝑣. The system and oil tank pressure 

were experimentally verified to be constant at approximately 

𝑝𝑡/0 ≈  0 𝑏𝑎𝑟. The cylinder position is determined by the ram 

of the deep drawing press, which is why the cylinder speed 

�̇�𝑑𝑐 is assumed as a constant value. 

 

Figure 3: Reduced system model for one die cushion drive 

cylinder 

The differential equations of the hydraulic model are: 

�̇�𝐴 =
𝐾′

𝑉0 + 𝐴𝐴 ∙ 𝑧𝑑𝑐

(−𝐴𝐴 ∙ �̇�𝑑𝑐 − 𝑞𝐴) (1) 

𝑄𝐴 =  𝑠𝑖𝑔𝑛(𝑝𝐴 − 𝑝𝑡) ∙
𝑄𝑣,𝑛𝑜𝑚

√𝛥𝑝𝑛𝑜𝑚

∙ √|𝑝𝐴 − 𝑝𝑡| ∙ (𝑦𝑣 − 𝑦0𝑣) (2) 

And respectively for the valve dynamics that is modelled as a 

2nd-order PT2-element with an additional dead-time: 

𝑈𝑣
∗ = 𝑈𝑣(𝑡 − 𝑇𝑑𝑒𝑎𝑑) (3) 

1

𝜔0𝑣
2  

�̈�𝑣 +
2𝐷𝑣

𝜔0𝑣

�̇�𝑣 + 𝑦𝑣 = 𝐾𝑣 ∙ 𝑈𝑣
∗ (4) 

This leads to a model with eight system variables 

(𝑝0, 𝑝𝐴, �̇�𝐴 , 𝑝𝐵 , 𝑄𝐴 , 𝑦𝑣 , 𝑧𝑑𝑐 , �̇�𝑑𝑐) and ten parameters 

(𝐴𝐴, 𝐾′, 𝑉0, 𝑄𝑣,𝑛𝑜𝑚 , Δ𝑝𝑛𝑜𝑚 , 𝑦0𝑣 , 𝑇𝑑𝑒𝑎𝑑 , 𝜔0𝑣 , 𝐷𝑉 , 𝐾𝑣). 

Figure 4 shows the system model as a block diagram:  

  

Figure 4: Reduced system model as block diagram 

4 Identification algorithm 

The reduced system model contains 10 parameters that need 

to be identified. The parameter for the cylinder-area 𝐴𝐴 can 

be taken from the data sheet of the hydraulic cylinder easily 

and with a high accuracy. The nominal pressure drop Δ𝑝𝑛𝑜𝑚  
is directly connected to the nominal volume flow 𝑄𝑣,𝑛𝑜𝑚 on 

the servo valve and can therefore be set to a chosen value. 

The remaining eight parameters need to be identified from the 

system behavior. An automated identification algorithm 

should be developed, as a manual process would be highly 

time consuming. 

Isermann describes different methods for system 

identification with its pros and cons (see /4/, pages 16f). The 

identification highly depends on the chosen model structure 

and in this particular case must meet all requirements for an 

online-computation on an industrial PC, respectively machine 

controller. Therefore a parameter estimation with recursive 

least square will be implemented for both subsystems, the 

hydraulics as well as the valve dynamics. The model 

estimation is capable to identify the parameters of a 

parametric model, as it was developed in the previous 

chapter. Furthermore it can be implemented on the machine 

controller as a recursive algorithm. The requirement on the 

model structure is to be linear within the parameters with the 

(𝑚 × 1)-sized parameter-vector 𝜽, the (1 × 𝑛)-sized 

systeminput-vector 𝒖 and the system output 𝛾 according to 

equation (5). The number of parameters is represented by 𝑚 

and the number of input values represented by 𝑛. 

𝛾 = 𝜽 ∙ 𝒖  (5) 

The task of the parameter estimation algorithm is to 

determine the model parameters 𝜃𝑖 such that the output error 

𝜀 is minimized. The system model is impinged with the same 

(measured) input 𝒖 as the real system. The model output can 

then be calculated with the identified system parameters for 

each timestep from eq. (5). The output error 𝜀, calculated 

from the measured output of the real system minus the output 

of the system model delivers a value for the accuracy of the 

system model and its parameters. A low value 𝜀 means that 

the system model and its parameters resemble the behavior of 

the real system very good. Figure 5 shows the identification 

process as a schematic figure. 

 

Figure 5: Identification process, schematic 
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4.1 The hydraulic subsystem 

The subsystem for the hydraulic model can be transformed to 

fit equation (5). Eliminating the volume flow 𝑞𝐴 in 

equation (1) with equation (2) leads to the complete system 

equation that has to be transformed to fit the format in eq.(5). 

It leads to the following equations: 

𝛾 = 𝐴𝐴 ∙ �̇�𝑑𝑐  (6) 

𝜽 = (

𝜃1

𝜃2

𝜃3

𝜃4

) 

𝜃1 = −
𝑄𝑣,𝑛𝑜𝑚

√Δ𝑝𝑛𝑜𝑚

 

𝜃2 =  −
𝑉0

𝐾′
 

𝜃3 =  −
𝐴𝐴

𝐾′
 

𝜃4 =  
𝑄𝑣,𝑛𝑜𝑚

√Δ𝑝𝑛𝑜𝑚

∙ 𝑦0𝑣 

 

(7) 

𝒖 = (𝑢1  𝑢2  𝑢3  𝑢4) 

𝑢1 =  𝑠𝑖𝑔𝑛(𝑝𝐴 − 𝑝𝑡) ∙ √|𝑝𝐴 − 𝑝𝑡| ∙ 𝑦 

𝑢2 =  �̇�𝐴 

𝑢3 =   𝑧𝑑𝑐 ∙ �̇�𝐴 

𝑢4 =  𝑠𝑖𝑔𝑛(𝑝𝐴 − 𝑝𝑡) ∙ √|𝑝𝐴 − 𝑝𝑡| 

(8) 

The systeminput-vector 𝒖 is calculated from four measured 

values: 𝑝𝐴, �̇�𝐴, 𝑧𝑑𝑐 and 𝑦 (with the tank pressure being set to 

𝑝𝑡 ≈ 0). Furthermore, the system output needs to be 

calculated from the derivative of the measured cylinder 

position, respectively the cylinder speed �̇�𝑑𝑐. All these values 

are available at the die cushion drive of an hydraulic press and 

can be evaluated within the machine controller. An additional 

requirement for the applicability of the chosen algorithm is 

for the elements of the input vector 𝒖 to be independent. This 

can be proven with a singular value decomposition /5/. 

Despite the elements 2 and 3 correlating by the factor 𝑧𝑑𝑐 and 

elements 1 and 4 correlating by the factor 𝑦, the singular 

value decomposition shows sufficient independency.  

The parameter estimation is calculated as a recursive 

algorithm for each time step 𝑘. This means that with each 

time step of the machine controller, the system values (input 

𝒖 and output 𝛾) are measured, the model output (𝜽 ∙ 𝒖 ) is 
calculated and a new set of parameters 𝜽 is determined from 

the error 𝜀. The parameter estimation algorithm calculates a 

correcting vector 𝑳 with each time step to determine the 

influence of the output error on the new set of parameters: 

𝜽(𝑘) =  𝜽(𝑘 − 1) + 𝑳(𝑘) ∙ [𝛾(𝑘) −  𝜽(𝑘 − 1) ∙ 𝒖(𝑘 − 1)] 

𝑁𝑒𝑤
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

  =   
𝑂𝑙𝑑

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
   +   

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑛𝑔
𝑉𝑒𝑐𝑡𝑜𝑟

∙ (
𝑂𝑢𝑡𝑝𝑢𝑡
𝐸𝑟𝑟𝑜𝑟

 ) 

(9) 

The correcting vector 𝑳 itself is calculated from the 

covariance matrix 𝑷, the system input 𝒖 and a forgetting 

factor 𝜆, see equation (10).  

𝑳(𝑘) =
𝑷(𝑘 − 1) ∙ 𝒖(𝑘)

𝜆 + 𝒖𝑇(𝑘) ∙ 𝑷(𝑘 − 1) ∙ 𝒖(𝑘)
 (10) 

The covariance matrix is also recalculated for each time step 

according to equation (11): 

𝑷(𝑘) =
1

𝜆
[𝑷(𝑘 − 1) − 𝑳(𝑘 − 1) ∙ 𝒖𝑇(𝑘) ∙ 𝑷(𝑘 − 1)] (11) 

In order to start the algorithm, initial values for 𝑷(0) and 

𝜽(0) need to be predefined as well as an appropriate value for 

the forgetting factor. The covariance matrix 𝑷 is of the size 

(𝑛 ×  𝑚). Its initial value should be calculated from the 

identity matrix multiplied with a constant factor 𝛼: 

𝑷(0) = 𝛼 ∙ 𝑰 (12) 

The factor 𝛼 can be chosen from a value 𝛼 = 100 … 10000 

/4/. For the investigated application of the die cushion drive, 

a value 𝛼 = 500 was chosen. It can be interpreted that the 

choice of a large value 𝛼 allows the algorithm to make large 

changes to the next set of parameters within one single time 

step at the beginning of the identification /4/. Yet the choice 

of this parameter only has marginal influence on the result of 

the identification. The forgetting factor however can 

significantly influence the result of the identification. For the 

presented identification algorithm, a factor 𝜆 = 0,998 was 

chosen. The initial value for the parameter vector 𝜽(0) was 

set to 𝜃𝑖 = 1 for each element. 

The actual system parameters of the hydraulic system 

𝐾′, 𝑉0, 𝑞𝑣,𝑛𝑜𝑚 and 𝑦0𝑣  can then be calculated from the 

parameter vector as follows: 

𝑄𝑣,𝑛𝑜𝑚 = −√Δ𝑝𝑛𝑜𝑚 ∙ 𝜃1 (13) 

𝐾′ =  −
𝐴𝐴

𝜃3

 (14) 

𝑉0 =  − 𝜃2 ∙ 𝐾′ (15) 

𝑦0𝑣 =  
√Δ𝑝𝑛𝑜𝑚

𝑄𝑣,𝑛𝑜𝑚

∙ 𝜃4 (16) 
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4.2 The valve dynamics subsystem 

The system equation for the valve dynamics subsystem from 

equations (3) and (4) is: 

1

𝜔0𝑣
2  

�̈�𝑣 +
2𝐷𝑣

𝜔0𝑣

�̇�𝑣 + 𝑦𝑣 = 𝐾𝑣 ∙ 𝑈𝑣(𝑡 − 𝑇𝑑𝑒𝑎𝑑) (13) 

The unknown system parameters are the natural frequency 

𝜔0𝑣, the damping coefficient 𝐷𝑣 , the valve gain 𝐾𝑣 and the 

dead time 𝑇𝑑𝑒𝑎𝑑 . This equation though, cannot be transformed 

to meet the requirements of the above described parameter 

estimation that was applied to the hydraulic subsystem (see 

eq. 8). In Addition, an identification in the time domain would 

require the valve position 𝑦𝑣 as well as two more derivatives 

(�̇�𝑣 and �̈�𝑣). With the technically inevitable signal noise, those 

signals cannot be calculated for the high dynamic of the servo 

valve. 

Therefore an identification within the frequency domain was 

implemented. This requires a multi-step identification with 

the determination of the frequency response from measured 

data that is followed by the parameter estimation. This 

identification cannot be implemented as an online process. It 

contains the following steps: 

1) Employ a sinusiodial test signal with a frequency 𝑓𝑝 

to the servo valve 

2) Calculate real and imaginary part of the frequency 

response with an orthogonal correlation 

3) Calculate Magnitude and Phase shift for the current 

frequency 

4) Repeat steps 1-3 for different frequencies in order to 

obtain the complete frequency response with 

magnitude and phase shift 

5) Apply a parameter estimation on the magnitude and 

identify the parameters 𝜔0𝑣, 𝐷𝑣 , and 𝐾𝑣 

6) Apply a parameter estimation on the phase shift and 

identify the last parameter 𝑇𝑑𝑒𝑎𝑑 .  

The frequency response with magnitude and phase shift can 

be determined with the help of an orthogonal correlation, 

which is the “most important frequency response 

measurement technique for linear systems” (/4/, p. 134). 

Therefore a sinusoidal signal at a fixed frequency is applied 

to the servo valve. As the valve is equipped with an onboard 

position control for the spool, the current position can be 

measured. From the applied voltage as test signal and the 

returned spool position, the magnitude and phase shift for the 

current frequency can be obtained. Figure 6 shows the 

measured signals. The phase shift and magnitude can clearly 

be seen and could also be measured and calculated manually.  

 

Figure 6: Input voltage and spool position for the servo 

valve ( 𝑈𝑚𝑎𝑥 = ± 10𝑉), measurements 

The algorithm is based on the orthogonality relations of 

trigonometric functions. Its main arithmetic operations are 

the multiplication of the input and output signal followed by 

an integration. This leads to the imaginary and real part 

𝐼𝑚[𝐺(𝑗𝜔)] and 𝑅𝑒[𝐺(𝑗𝜔)] of the frequency response for the 

current test signal frequency 𝑓𝑝 and amplitude 𝑈0. The 

orthogonal correlation is an ongoing algorithm over 𝑛 full 

periods where the accuracy of the calculated frequency 

response increases with the number of periods integrated. 

Detailed description on this method can be found in /4/. The 

equations to determine the frequency response are as follows: 

𝑅𝑒[𝐺(𝑗𝜔)] =
2

𝑈0
2 ∙

𝑓𝑝

𝑛
∙ ∫ 𝑈0 sin(𝜔𝑡) ∙ 𝑦𝑣 𝑑𝑡

𝑛∙
1

𝑓𝑝

0

 
(14) 

𝐼𝑚[𝐺(𝑗𝜔)] =
2

𝑈0
2 ∙

𝑓𝑝

𝑛
∙ ∫ 𝑈0 cos(𝜔𝑡) ∙ 𝑦𝑣 𝑑𝑡

𝑛∙
1

𝑓𝑝

0

 (15) 

The correlation should not start before the system reached its 

steady state. Furthermore, the accuracy increases the longer 

the integration is calculated. Figure 7 shows the values of the 

real and imaginary part for a measurement at a test signal 

frequency of 𝑓𝑝 = 20 𝐻𝑧. Both values tend towards a static 

value after less than 0.5 seconds. This time is even lower for 

higher frequencies. 

 

Figure 7: Real- and imaginary part for a test signal 
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Magnitude |𝐺(𝑗𝜔)| and phase shift 𝜑 can then be calculated 

from the orthogonal correlation, see equations 16 and 17: 

|𝐺(𝑗𝜔)| =
𝐾𝑣

√(1 −
𝜔2

𝜔0𝑣
2 )

2

+ (2𝐷𝑣 ∙
𝜔

𝜔0𝑣
)

2

 (16) 

𝜑 =  −𝑇𝑑𝑒𝑎𝑑 ∙ 𝜔 − arctan (
2𝐷𝑣

𝜔
𝜔0𝑣

1 −
𝜔2

𝜔0𝑣
2

) (17) 

The system behavior of this second order transfer function in 

the frequency domain can now be transformed to a 

parameterlinear equation, as demanded in eq. (5). This leads 

to the following equations for the magnitude at each 

frequency 𝜔: 

𝛾𝑔𝑎𝑖𝑛 = 𝜽𝑔𝑎𝑖𝑛 ∙  𝒖𝑔𝑎𝑖𝑛 (18) 

𝛾𝑔𝑎𝑖𝑛 =  |𝐺(𝑗𝜔)|2 (19) 

𝜽𝑔𝑎𝑖𝑛 = (

𝜃1,𝑔𝑎𝑖𝑛

𝜃2,𝑔𝑎𝑖𝑛

𝜃3,𝑔𝑎𝑖𝑛

) 

𝜃1,𝑔𝑎𝑖𝑛 =
2 − (2 ∙ 𝐷𝑣)2

𝜔0𝑣
2  

𝜃2,𝑔𝑎𝑖𝑛 =
1

𝜔0𝑣
4  

𝜃3,𝑔𝑎𝑖𝑛 =  𝐾𝑣
2 

(20) 

𝒖𝑔𝑎𝑖𝑛 = (𝑢1,𝑔𝑎𝑖𝑛  𝑢2,𝑔𝑎𝑖𝑛   𝑢3,𝑔𝑎𝑖𝑛) 

𝑢1,𝑔𝑎𝑖𝑛 = 𝜔2 ∙ |𝐺(𝑗𝜔)|2 

𝑢2,𝑔𝑎𝑖𝑛 =  −𝜔4 ∙ |𝐺(𝑗𝜔)|2 

𝑢3,𝑔𝑎𝑖𝑛 =   1 

(21) 

Applying the above described algorithm of the parameter 

estimation on equations 18 to 21, the valve parameters 𝜔0𝑣, 

𝐷𝑣 , and 𝐾𝑣 can be identified. Only the parameter 𝑇𝑑𝑒𝑎𝑑  

remains unknown. It can be identified from the phase shift 𝜑: 

𝛾𝑝ℎ𝑎𝑠𝑒 = 𝜃𝑝ℎ𝑎𝑠𝑒 ∙  𝑢𝑝ℎ𝑎𝑠𝑒  (22) 

𝛾𝑝ℎ𝑎𝑠𝑒 = 𝜑 + arctan (
2𝐷𝑣 ∙

𝜔
𝜔0𝑣

1 −
𝜔2

𝜔0𝑣
2

) (23) 

𝜃𝑝ℎ𝑎𝑠𝑒 = −𝑇𝑑𝑒𝑎𝑑  
(24) 

𝑢𝑝ℎ𝑎𝑠𝑒 = 𝜔 
(25) 

5 Practical implementation on the drive 

controller 

The processing power of the controller and the available 

signal quality are the key points for the practical 

implementation. The identified system sets its characteristic 

requirements towards high signal quality and sampling time. 

5.1 Signal quality 

The noise on the measured signals is a major problem during 

the practical implementation of the identification algorithm. 

Due to electromagnetic interferences, the existing signal 

quality is rather low. Mainly the frequency converters and 

electric motors induce a significant noise level on the 

machine signals. The identification of the valve dynamics 

does only require the movement of the valve spool. Therefore 

the frequency converters and electrical motors are completely 

switched off and only marginal noise occurs such that no 

additional filters are necessary. 

However, for the identification of the hydraulic system, the 

deep drawing press needs to be in full operation where high 

electromagnetic interferences and signal noise occur. The 

machine signals are filtered and the derivatives are calculated 

as symmetrical derivative over several measure points. The 

aim was to retrieve an acceptable signal quality while at the 

same time retaining the dynamic of the signal with a 

reasonable effort and complexity towards the applied filter. 

The chosen signal filter is a moving-average filter (see /8/ for 

further information). More complex filter algorithms may 

offer a better filter behavior, especially in the frequency 

domain, but the moving average filter offers best usability for 

the chosen application. It can easily be implemented within 

the machine controller as well as connected to the 

identification algorithm while at the same time delivering 

sufficient results for the time domain encoded and processed 

signal. For every time step 𝑘, the filter calculates the average 

over a set number of measure points. Equation 26 shows the 

moving average filter for a width of 𝑀 = 5. The equation for 

the symmetrical derivative is given in eq. 27 for a width of 5. 

The effect of a rising filter width is shown in figure 8. The 

equations are formulated for an offline-processing in order to 

reduce the time delay. For the practical implementation on the 

controller this requires to save (𝑀 +  1) data points where 

the filtered data is calculated with a time delay of 

[0,5 ∙  (𝑀 + 1) ∙ 𝑇𝑎] . This needs to be applied to all measured 

signals in order to retain synchronism. 

𝑦𝑓𝑖𝑙𝑡,𝑘 =
𝑦𝑘+2 + 𝑦𝑘+1 + 𝑦𝑘 + 𝑦𝑘−1 + 𝑦𝑘−2

5
 (26) 

�̇�𝑓𝑖𝑙𝑡,𝑘 =
𝑦𝑘+2 + 𝑦𝑘+1 − 𝑦𝑘−1 − 𝑦𝑘−2

6
 (27) 
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Figure 8: Effect of different filter parameters on the signal 

processing 

In order to determine the optimal filter parameters, a 

simulation model of the hydraulic system was used together 

with a model of the occurring noise. With the help of the 

simulation model, a noise-free reference could be found for 

the identification. The filter parameters could be optimized in 

a way that the identification result with noise and the result 

without noise were compared for best results. The method is 

shown in Figure 9: 

 

Figure 9: Method for finding optimal filter parameters 

The machine simulation is a verified system model of the 

deep drawing press from previous research activities (see /9/ 

and /10/). The noise model was generated from analyzing the 

actual occurring noise as seen in figure 10. Signal noise can 

be considered as white noise for most applications /11/. 

Therefore the measured signal noise was evaluated. Its 

deviation is similar to a normal distribution, though it does 

not pass the Chi-Squared-Test. This can be explained as there 

are specific frequencies that occur more frequent, such as at 

50 Hz and 100 Hz. Nevertheless, most frequencies are evenly 

distributed and the parameters for a normal distributed white 

noise signal can be obtained with reasonable effort. The 

corresponding parameters of an ideal white noise signal for 

the current test setup are given in table 1. The median 𝜇 is 

zero for all measured signals and the standard deviation 𝜎 

differs due to the different gain factors for the analog signal 

processors. 

Table 1: noise parameters for the modelled white noise 

signal with normal distribution 

 Pressure Position Valveposition 

𝜇 0 𝑃𝑎 0 𝑚 0 % 

𝜎 2,2 × 105 𝑃𝑎 1,2 × 10−4 𝑚 6,8 × 10−3 % 

 

 

Figure 10: noise on the valve position signal and the 

occurring deviation 

The quality of the filter will be evaluated by computing 150 

parameter estimations with the added noise model with one 

set of filter parameters. Due to the chosen random noise 

generator, the estimated parameters 𝜃𝑖 will result in a 

different result for every single simulation. The bias and 

standard deviation of all 150 estimation results will be used 

to evaluate the quality of the chosen filter parameters. 

Figure 11 shows the deviation of the system parameter 𝜃3 for 

150 simulation with the noise parameter as shown in table 1 

and no filter applied. All values are normalized. The mean 

value of the identification result is at 6% of the value without 

noise (Bias) and the standard deviation within the 150 

simulations is at 48% (interval from -42% to 54%). This 

means that the parameter estimation does not deliver reliable 

results. 
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Figure 11: Bias and Standard deviation for 𝜃3 without filter 

This process is repeated for a different set of filter parameters 

from 𝑀 = 0 … 50 for the moving average filter as well as for 

the symmetrical derivative with 150 simulations for each 

filter. The bias of the identified system parameters for 𝜃1…3 is 

shown in figures 12 to 14 in dependence from the filter 

parameters for a time step of the machine controller of 

𝑇𝑎 =  2𝑚𝑠. It can be seen that the parameter 𝜃1 delivers best 

results with a maximum relative deviation of 0,702 %. This 

is because there is no signal derivative necessary to calculate 

its value: 

 
Figure 12: Bias of 𝜃1 for different numbers of data points 

for the moving average filter and the symmetrical derivative 

Both other parameters 𝜃2,3 show a clear dependence. For 𝜃2 

the number of data points on the symmetrical derivative and 

the moving average filter should be similar and even a high 

filter parameter still delivers good results.  

 
Figure 13: Bias of 𝜃2 for different numbers of data points 

for the moving average filter and the symmetrical derivative 

However, the accuracy of parameter 𝜃3 decreases with rising 

filter parameters. The optimum for the filter parameters can 

be found at about 𝑀 = 20 … 30 for the moving average filter 

as well as for the symmetrical derivative. 

 

Figure 14: Bias of 𝜃3 for different numbers of data points 

for the moving average filter and the symmetrical derivative 

The standard deviation shows a similar behavior for all 

identification parameters. The value decreases monotonous 

with rising filter width, as shown in figure 15. 

 
Figure 15: Standard deviation for 𝜃2 for different numbers 

of data points for the moving average filter and the 

symmetrical derivative 

5.2 Sampling time 

A constant sampling time of the machine controller is 

essential for the algorithm as all signal derivations are 

calculated within the algorithm. The Nyquist-Shannon 

sampling theorem states that the measuring frequency 

theoretically should be double the highest frequency content 

of the signal. Otherwise, aliasing would occur. The 

identification algorithms requires a signal that includes no 

less than the highest system frequency, otherwise the system 

cannot be identified correctly. Each of the subsystems has its 

own dynamic and for each identification, the sampling time 

must be low enough to measure this dynamic and additionally 

to allow for sufficient filtering in order to suppress noise. For 

the valve dynamics subsystem the limiting frequency is the 

eigenfrequency of the valve, respectively the highest applied 

test signal frequency. The hydraulics subsystem can be 
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characterized by means of a step response test and the 𝑡63 

time constant for an assumed PT1 first-order lag element. The 

𝑡63 time constant was derived from a sample step response 

test at the machine. With a step function on the valve, the 

pressure response was measured. The 𝑡63 time constant is 

when the pressure signal passes 63% of its final static value. 

For the assumed first-order lag element, the 𝑡63 is equivalent 

to the time constant 𝑇, respectively the inverse breakpoint 

frequency 1/𝜔𝐵. The sampling time should be as low 

as 0.1 𝑡63. 

The investigated servo-valve has a high eigenfrequency and 

the test signal frequency goes up to 𝑓 = 160𝐻𝑧, so the 

sampling time should be at about 𝑇𝑎 ≈  1 𝑚𝑠. The time 

constant of the hydraulic system is at 𝑡63 ≈ 90𝑚𝑠 

(breakpoint frequency of merely 𝜔𝐵 = 69 𝐻𝑧), sampling 

time should be no higher than 𝑇𝑎 = 9 𝑚𝑠. It has to be noted, 

that the investigated hydraulic deep drawing press has a 

comparable low ram speed of 𝑣𝑟𝑎𝑚 = 40 𝑚𝑚/𝑠. Industrial 

servo presses feature speeds of up to 300 𝑚𝑚/𝑠. 

Experimental data shows that the characteristic time constant 

for these machines is at 𝑡63 = 3 𝑚𝑠. The sampling time 

should be equally lower. With regards to the applied digital 

signal filters, an even lower sampling time is preferred. 

Therefore an individual task for signal processing was 

implemented within the machine controller that runs at 2 𝑚𝑠. 

The identification algorithm is executed every 10 𝑚𝑠. This 

leads to sufficient results for the hydraulic subsystem with 

minimal required processing power. However, the 

identification for the valve subsystem is calculated in a 

specific task at 1 𝑚𝑠 to take the high system dynamic into 

account. 

6 Identification results 

The above described parameter estimation algorithm was 

successfully implemented on the machine controller of the 

die cushion in a hydraulic deep drawing press. 

The identification of the valve dynamics subsystem is shown 

in figure 16. A frequency of ( 10, 20 … 160)𝐻𝑧 at 0.5 𝑉 (5 % 

of the nominal valve voltage) was applied at the servo valve 

and the magnitude and phase shift calculated by means of the 

orthogonal correlation. Due to the low voltage level, no spool 

velocity saturation should occur. This also means that the 

different behavior for different amplitudes is not modelled 

and the model is only valid for low voltage magnitudes. 

During identification, no signal filter was applied as all 

machine drives were switched off and there was no 

significant signal noise. The parameter estimation algorithm 

identified the system parameters for the assumed second 

order system with an additional dead-time (see eq. 13). The 

system parameters are as follows: 

Damping ratio:   𝐷 =  0.6735 

Natural frequency:   𝜔0𝑣 =  183.9 𝐻𝑧 

Gain:   𝐾𝑣 =  1.005 and 

Dead Time:   𝑇𝑑𝑒𝑎𝑑 = 0.00 𝑠 

The Bode plot of the identified system model shows a good 

accuracy in comparison to the measured data (see fig. 16). 

 

Figure 16: Magnitude and Phase shift for the identified 

servo valve in in the deep drawing press 

The identification of the hydraulic subsystem is more 

difficult, as it sets higher standards towards signal quality and 

correct implementation of a signal filter. With the applied 

filter, the identification algorithm delivers good results. 

Figure 17 shows the identification of the bulk modulus over 

time from the machine controller with the implemented 

recursive least square identification algorithm. It can be seen 

that it approaches towards a constant end value. The 

parameters were as follows: 

Sampling time (signal processing):   𝑡𝑆 =  2 𝑚𝑠 

Sampling time (identification):   𝑡𝑖 = 10 𝑚𝑠 

Moving average filter (width):   𝑏 = 31 

Symmetrical derivative (width):   𝑑 = 25 

Forgetting factor:   𝜆 = 0,998 

Parameter initial values:   𝜃1…4 = 1 

 

 

Figure 17: Identification of the bulk modulus 
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The identification result and the speed at which it approaches 

towards the static value can be improved by setting initial 

values as a “good guess”. However, the algorithm still shows 

good results at a reasonable speed even with the defined 

initial values being set at ‘1’. 

The identification algorithm was executed numerous times in 

order to determine its stability and robustness. The 

identification results for 30 consecutive measures are shown 

in figure 18 for the nominal volume flow, the dead volume 

and the bulk modulus. The figure also shows the mean value 

though all identifications with a solid line. It has to be noted 

that the oil temperature is not constant throughout all 30 

measures, but rises from 26°C for the first identification to 

32°C for the last identification. This explains the 

characteristic of the nominal volume flow 𝑄𝑣,𝑛𝑜𝑚 due to 

changing properties of the hydraulic fluid. 

 

Figure 18: Identification results for 30 consecutive 

experiments 

7 Outlook 

The paper shows the successful implementation of an 

identification algorithm within the machine controller of an 

industrial type hydraulic deep drawing press. This offers a 

high potential for further applications to reduce manual 

maintenance and increase the performance of the hydraulic 

drive. The online-identification algorithm is able to detect 

changing system parameters that can be used for condition 

monitoring, predictive maintenance or fault diagnosis. The 

described method can further be applied for other hydraulic 

systems and is not limited to the deep drawing press. In 

addition, the now fully identified system model can be used 

for controller design. The implementation of a feed-forward 

element based on the volume flow characteristics of the servo 

valve is a common method to improve the control quality of 

hydraulic die cushion drives [12] and the system parameters 

𝑄𝑣,𝑛𝑜𝑚, Δ𝑝𝑛𝑜𝑚   and 𝑦0 could significantly improve the system 

behavior. Experimental results for the control behavior of the 

die cushion that was described in this paper are shown in 

Figure 19.  

 

Figure 19: Control accuracy of the die cushion 
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