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Abstract

This paper examines modelling the laminar dynamic fluid responses within hydraulic trans-
mission lines that have a tapered shape from the inlet to outlet. There are excellent models
available for fast simulation of pressure and flow dynamics within uniform lines, however the
established models for tapered lines have some notable inaccuracies and simulation complex-
ities. The transmission line method (TLM) structure is applied in this paper since it can be
computed quickly and has shown to accurately model the effects of frequency-dependent fric-
tion. This paper presents a method of optimizing the TLM weighting functions, minimizing
the error between the TLM transmission matrix terms and a numerical exact solution. Optim-
izations have shown that using the TLM to model tapered lines has improved accuracy over
the existing models when compared in the frequency domain. Two-dimensional interpolation
of a look-up table is possible allowing for quick selection of the optimized parameters. This
model can be used in numerous applications where line dynamic effects must be accounted
for, especially with digital hydraulic switched inertance converters.

Keywords: Transmission line method, TLM, tapered fluid lines, optimization, modelling,
simulation.

1 Introduction

Computer modelling of fluid transmission lines of constant
cross-sectional area is an area of hydraulics where extensive
research has been performed previously as well as very re-
cently [1–7]. However, the established research into the mod-
elling of tapered transmission lines has some shortcomings
which requires further study and refinement. Time domain
models describing line dynamics are greatly desired as it al-
lows for simple implementations with time domain numerical
solvers, and interfaces well with nonlinear component mod-
els such as valves and accumulators. The ability to model
pressure and flow transients within fluid lines is important for
predicting the performance of hydraulic systems, especially
those where line effects should be considered.

As shown in fig. 1, the transmission line method (TLM) is
a method of modelling which uses a network of linear trans-
fer functions and time delays to model wave propagation [1],
and has had recent enhancements accurately modelling the ef-
fects of frequency-dependent friction, all while solving within
the time domain [2, 3]. While the TLM currently works for
uniform lines of constant cross-section, it has not yet been
applied to tubes of varying cross-section. The first mention
of modelling tapered lines employs a method of character-
istics (MOC) solution to the differential equations, however,
the proposed MOC solution was only used and analyzed for
a uniform line [4]. An approximated analytical solution for
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Figure 1: Block diagram of the TLM [1].

frequency dependent flow through tapered lines was derived
in [5]. The approximate transmission matrix they derived was
taken further in [6] by applying modal analysis (MA) and ra-
tional polynomial transfer function approximations (RPTFA)
of the transcendental functions in the solution, allowing for
simulations to be performed in the time domain. No further
research into modelling tapered lines has appeared in the lit-
erature until this point, and the need for a robust, fast, and
accurate model for tapered transmission lines has heightened
with the growth in switched inertance converter research [8].

This paper will look at modelling tapered fluid lines using the
TLM model and optimization procedure similar to that in [3]
where weighted transfer functions make up the E, F , and G
transfer functions. The equations and optimization procedure
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are described in detail. Frequency domain results will be ana-
lyzed, and comparisons will be made between previous mod-
els, the exact solution, and the proposed model. Also, time
domain simulations of the model will be discussed.

2 Previous Models
The differential equations that describe one-dimensional flow,
Q, and pressure, P, through the tapered tube shown in fig. 2
are the equations of motion and continuity, expressed in the
Laplace domain, respectively [7]:

dP(x,s)
dx

+
ρs

A(x)
Q(x,s)N(x,s) = 0 (1)

P(x,s) =−∂Q(x,s)
∂x

K
A(x)s

(2)

where ρ is the fluid density, and s is the Laplace operator. N
is the frequency-dependent friction term, commonly used in
previous research defined as [1–7]

N(x,s) =−
J0

(
jr(x)

√
s
ν

)

J2

(
jr(x)

√
s
ν

) . (3)

Frequency-dependent friction has shown to be a realistic phe-
nomenon, and models that implement it have shown to be
significantly more accurate than models that use steady fric-
tion. Since the proposed model natively uses a summation of
weighting functions, it can be expected that there would be
negligible computational time savings if steady friction were
considered. As such, frequency-dependent friction will be ex-
clusively considered in this paper.

Within a tapered transmission line, the radius varies linearly
from inlet to outlet given by eq. (4), and is visualized in fig.
2.

r(x) = r1 +
(r2− r1)x

l
(4)

The existing model for modelling tapered fluid lines was de-
veloped in [5, 6]. The transmission matrix, eq. (5) and (6),
is not an exact solution, but rather an approximated analyt-
ical solution to the set of ordinary differential equations pre-
viously defined. Within its derivation, higher order terms of
a Taylor series expansion were rejected in order to allow the
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Figure 2: Schematic of a tapered transmission line.

possibility of a closed form solution in the frequency domain.
This simplification creates notable inaccuracy at higher fre-
quencies.
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where,
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ν l
cr2

1
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(6)

This model is presented in nondimensional form, with para-
meters nondimensionalized with respect to the inlet radius, r1.
In its current form, this transmission matrix cannot be solved
in the time domain, a similar problem that previous research-
ers have encountered with simulating transmission lines. Fur-
ther approximation is necessary in order to solve this sys-
tem of equations in the time domain. In [6], modal analysis
(MA) and rational polynomial transfer function approxima-
tions (RPTFA) were performed in order for the transmission
matrix to be solved in the time domain. While these approx-
imations, tabulated in their paper, show good agreement with
the approximate transmission matrix proposed by [5], it is
important to note that the transmission matrix is an approx-
imated closed form solution, and has some notable discrep-
ancies to the exact analytical solution, and has a very limited
range of accuracy.

In order for a true two-port (inlet and outlet), 4-terminal (pres-
sure and flow at each end) transmission line model to work
accurately it needs to provide symmetrical solutions, meaning
that given the same boundary conditions and dimensions, the
transfer function must be the same if the ends are exchanged.
Consider 2 cases, Case 1 has a diverging tube with a blocked
outlet, and Case 2 has a converging tube with a blocked inlet.
In both cases, the blocked port has the larger radius, and the
smaller radius is open. By maintaining the same dimensions,
the pipe in Case 2 is simply a flipped version of Case 1. The
transfer functions in eq. (5) and eq. (6) were calculated and
are compared in fig. 3. The logical result of this study should
have shown the transfer functions be exactly the same, how-
ever there is a noticeable shift in the frequency peaks. The
same study was performed using the exact solution calculated
numerically from the set of ordinary differential equations
previously defined, and showed that, in this case, the results
are the same. This asymmetry in the approximate transmis-
sion matrix leads to significant inaccuracy when implemented
in the time domain.

Another issue with the existing transmission matrix is in-
accuracies at higher harmonics. Figure 3 shows how the
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Figure 3: Transfer function asymmetry and comparison to the
exact numerical solution.

P2/P1 transfer function for a blocked outlet compares from
the transmission matrix solution to the exact numerical solu-
tion. While the first resonance is modelled closely, higher
resonances of significant power are not closely matched. This
difference becomes greater with increased transmission line
taper.

3 Proposed Model
The proposed model is similar to the one developed for uni-
form transmission lines in [3]. The 2-port model relating pres-
sure and flow at the inlet, to the pressure and flow at the outlet
is given by the transmission matrix in eq. (7) [3]. The charac-
teristics C1 and C2 are related to pressure and flow by eq. (8)
and (9) [1]. The characteristic impedance of the tapered line
is Zc. (

P1
Q1Zc

)
=

(
t11 t12
t21 t22

)(
P2

Q2Zc

)
(7)

P1 =C1 +ZcQ1 (8)

P2 =C2 +ZcQ2 (9)

For a tapered line, the characteristic impedance can be de-
rived using the definition in [9] where wave propagation time
is divided by the hydraulic capacitance of the pipeline. The
volume of a tapered pipeline is that of a right circular cone
frustum, and is included in the calculation of hydraulic capa-
citance. Therefore:

Zc =
3ρc

πr2
max

(
1+λ +λ 2)−1

(10)

where λ is the taper ratio, which is simply defined as the min-
imum pipe radius divided by the maximum pipe radius:

λ =
rmin

rmax
. (11)

This parameter is the same regardless if the pipe is conver-
ging or diverging in shape. The steady state resistance of a
tapered transmission line, R, is defined by integrating uniform

Hagen-Poiseuille pressure drops over the entire length of the
pipeline. Lubrication theory is employed since the change in
radius over a small element length dx is considerably smal-
ler than the size of the pipe itself. The hydraulic resistance is
then found to be:

R =
8ρν l
πr4

max

[
1+λ +λ 2

3λ 3

]
. (12)

Having obtained expressions of characteristic impedance and
resistance, the dissipation number, β , for a tapered transmis-
sion line can be found using the following relationship:

β =
R

8Zc
=

ν l
cr2

max

[(
1+λ +λ 2

)2

9λ 3

]
. (13)

It is important to note that for a pipeline of uniform cross sec-
tion, the taper ratio would be 1, and the resulting characteristic
impedance, laminar resistance, and dissipation number would
reduce to the same as used in the previous models for uniform
tubes [2, 3].

The TLM structure contains linear transfer functions E, F ,
and G which are arranged in the configuration shown in fig. 1
and are defined by the weighting functions as follows [3].

E(s) = Zc

k

∑
i=1

mEi

ni +T s
(14)

F(s) = Zc +bE(s) (15)

b = 1− 8β

∑k
i=1

mEi

ni

(16)

G(s) = 1−
k

∑
i=1

mGiT s
ni +T s

(17)

T ′ = τT = τ
l
c

(18)

The weighting factors mEi, mGi, and τ are found using a con-
strained optimization which is explained in the following sec-
tion. Here, the F transfer function is scaled off of the E trans-
fer function. This gives the model the ability to accurately
compute the pressure drop during steady state conditions. The
weighting factors ni, are the same as in the series proposed
in [3], which are given as follows:

n1 =
0.3

1+3β
, ni+1 = 3ni. (19)

Using separate weighting factors for F was also investigated,
but it provided no significant increase in accuracy, and ad-
ded considerable time to the optimization procedure. Similar
to [3], better results were obtained by slightly modifying the
wave propagation time T by a factor, τ . From the TLM struc-
ture and applying some algebra, the transmission matrix terms
can be found as follows:

t∗11 =
(E +Zc)G−1e jωT ′ +FGe− jωT ′

E +Zc +F
(20)

Peer-reviewed Paper,Accepted for publication on 2017-04-07. 199 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144


t∗12 =
(E +Zc)

2G−1e jωT ′ −F2Ge− jωT ′

E +Zc +F
(21)

t∗21 =
Ge− jωT ′ −G−1e jωT ′

E +Zc +F
(22)

t∗22 =−t∗11. (23)

Unlike uniform hydraulic transmission lines, tapered lines are
asymmetrical in their geometry. This lead to the investigation
of using different transfer functions for the inlet and outlet in
order to see if there was an increase in accuracy of the TLM
approximation. The following scenarios were examined:

• Separate G transfer functions with separate weighting
factors. Resulted in no increase in accuracy, and in-
creased optimization effort.

• Separate wave propagation times T ′ for either direction.
Resulted in increased error.

• Separate E transfer functions, with the corresponding F
transfer function scaled from it. Resulted in no increase
in accuracy, and increased optimization effort.

• Separate E and F transfer functions where F is not
scaled off of E. Resulted in significant error in mag-
nitude and phase, as well as substantial increase in op-
timization effort.

These investigations showed no increase in accuracy over the
standard TLM configuration, and all resulted in longer com-
putation time, which was not desirable.

4 Optimization Algoritm
As with all optimization problems, an objective function to be
minimized must be defined. In [3], Johnston et al. define an
objective function for a uniform tube that minimizes the error
in t12 and t21 in eq. (21) and (22), but ignores t11 and t22. Here,
the objective function, f , similar to the function used in [3], is
used but with the addition of the t11 and t22 terms. This object-
ive function attempts to minimize the error between the exact
transmission matrix and the TLM approximated transmission
matrix.

f = ∑
0.01≤ωT≤nk

∣∣∣∣
t12− t∗12

Zc

∣∣∣∣
2

ωT
+ ∑

0.01≤ωT≤nk

|(t21− t∗21)Zc|2
ωT

+

∑
0.01≤ωT≤nk

|(t11− t∗11)|2
ωT

+ ∑
0.01≤ωT≤nk

|(t22− t∗22)|2
ωT

+εE +εG

(24)

εE =
k

∑
i=3

[max(0,mEi−3mEi−1)]
2 (25)

εG = 10

[
max

(
0,

k

∑
i=1

(mGi)−1

)]2

(26)

In this case, the transmission matrix terms denoted with an
asterisk represent the approximation from the TLM, while

the terms without the asterisk represent the numerical solu-
tion yielded from solving the boundary value problem of
eq. (1) and (2). The terms εE and εG are the same soft
constraints presented in [3]. The optimization was calcu-
lated with 50 points per decade over the frequency range of
0.01≤ ωT ≤ nk.

The optimization procedure first required the exact solution
of eq. (1) and (2). The exact solution is calculated numeric-
ally using MATLAB R© and its bvp4c boundary value prob-
lem solver. The exact solution is the transmission matrix in
eq. (7) for a given tapered tube. By setting Q2 to 0, t11 and
t21 can be found. Then by setting P2 to 0, t12 and t22 can be
calculated. It is important to note that solving this bound-
ary value problem does add significant computation time to
the optimization procedure. However, computation time can
be reduced when the problem is solved in parallel, and with
more available cores, the problem becomes faster to solve.
Also, the boundary value problem only needs to be solved
once for each parameter set. After computing the numerical
solution, the optimization of eq. (24) is performed using the
fmincon function in MATLAB R©, where the only set con-
straint was a lower bound of 0 on the parameters. This en-
sures the parameters are all positive, similar to the constraint
in [3]. The results for a uniform tube given in [3, 10] were
used as an initial guess for the iterative solver. Using this al-
gorithm and initial guess does not necessarily find the global
minimum, but for this application, the local minimum appears
to provide adequate accuracy.

It was found that the same weighting factors would result as
long as the taper ratio and dissipation number were held con-
stant. This allows for a look-up table to be used, and only
β and λ are required to find all the parameters. The optim-
ization was performed over a range of dissipation numbers
of 10−4 ≤ β ≤ 100 with 8 points per decade. Providing the
boundary value solver any smaller values of β resulted in a
singular Jacobian within the solver. Adjusting solver toler-
ances and improving initial guesses provided no solution to
this error. The range of taper ratio considered for the op-
timization was 1 ≥ λ ≥ 0.5, linearly spaced with 10 points.
For this paper, only 6 parameters for mE and mG were con-
sidered (k = 6); it has been shown that varying the number
of parameters has a noticeable effect on accuracy for uniform
tubes [3], and the same result is expected here.

A smooth transition between the weighting factors was de-
sired as it allows for interpolation for in-between values of
dissipation number and taper ratio. The optimization first se-
lected a value of β and performed the optimization for a λ
value of 1 using the initial guess from [3,10]. Once complete,
the taper ratio was reduced to the next value (λ = 0.95), while
maintaining the same dissipation number. In order for the
series to be smooth, the initial guess parameters for success-
ive iterations were the optimized parameters from the previ-
ous λ . The result of the optimization are 2 three-dimensional
matrices of mE and mG, and 1 two-dimensional matrix of τ .
Two-dimensional interpolation is required to find the weigh-
ing factors and propagation time modifier for a given trans-
mission line.
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5 Frequency Domain Results
Figure 4 shows the results of the optimization for a dissipa-
tion number of 10−3 and a taper ratio of 0.75. The t12 and
t21 (anti-diagonal) transfer functions resulting from the TLM
are closely matched to the exact solution. The other two
functions t11 and t22 (principal diagonal) are still accurately
approximated, however not to the extent of the other anti-
diagonal terms. As can be seen in t11 and t22, the first resonant
peaks are not perfectly aligned, but all subsequent peaks are
matched well. Also to note, the magnitude of the principal di-
agonal transfer functions are shifted slightly within the exact
solution, however, the TLM approximation does not follow
this shift. This magnitude shift becomes greater as more taper
is added to the model. In all cases, this new model is a better
approximation than the previous models given in [5, 6].
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Figure 4: Transmission matrix for β = 0.001 and λ = 0.75.

In order to show some contrast, fig. 5 shows the transmission
matrix results for the less extreme case of a larger dissipation
number of 10−1 and a taper ratio of 0.9. In this case it can be
seen that there is a closer approximation of the first resonant
peak. Also, it can be seen that the anti-diagonal terms of the
transmission matrix are approximated accurately.

Unlike uniform lines of constant cross sectional area, the
weighting factors that make up the transmission line model
not only vary with dissipation number, β , but vary also with
the taper ratio, λ . In order to evaluate the accuracy of the
model over a range of β and λ , an overall value of error must
be defined in order to make relative comparisons. The error
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Figure 5: Transmission matrix for β = 0.1 and λ = 0.9.

function indicating the accuracy of fit is given below. This er-
ror value was chosen over the optimized minimum calculated
from eq. (24) since it is not scaled by frequency. This error
value quantifies the exact difference between the magnitude
of the transmission matrix terms:

(27)
ε =

1
Ω

Ω

∑
i=1

[∣∣∣∣
t12 − t∗12

Zc

∣∣∣∣+ |(t21 − t∗21)Zc|+ |(t11 − t∗11)|

+ |(t22 − t∗22)|
]
.

where Ω is the number of frequency points on which the op-
timization was performed. The error value in this case is an
average of the overall error function. Figure 6 is a visualiza-
tion of how the error varies with dissipation number and taper
ratio. A general observable trend is that the error between
the approximated TLM and the exact solution increases with
the amount of taper (i.e. decreasing taper ratio) and increases
with dissipation number. The optimizations performed in [3]
were considered acceptable as long as β ≤ 0.5. So by main-
taining the same error from λ = 1 to lower dissipation num-
bers and taper ratios, an approximately triangular region of
acceptance can be found. In order to keep error low, it is re-
commended to stay within the bounded region as shown in
the figure (ε < 0.5).

In order to better demonstrate the improvement this model has
over previous tapered transmission line models, consider fig.
7. The same error plot was calculated as previously, except
in this case the error was calculated using the approximated
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Figure 6: Error analysis for tapered TLM. The black lines
show the region of acceptable error, as defined by ε < 0.5.

transmission matrix from eq. (5) for comparison to the exact
solution. In general, the error is significantly higher, with its
scale around 4 times larger than that in fig. 6. When λ = 1,
the approximated transmission matrix analytically becomes
the exact solution. This is the reason for the low error region
around this value. However, the amount of error increases
rapidly with any increase in the amount of taper in the trans-
mission line for the full range of dissipation numbers. Using
the same error level as previouly, the enclosed region of ac-
ceptability indicated in fig. 7 is considerably smaller. It is
also important to note that in its current form eq. (5) can-
not be implemented in the time domain. The work performed
in [6] approximates eq. (5) for simulations in the time do-
main. However, being based off this approximated transmis-
sion matrix, it can be expected that the error would only be
greater than the error shown in fig. 7.

6 Time Domain Results
In order to simulate the proposed model in the time domain,
a MATLAB R© Simulink R© model was created, available for
download at [11]. The overall model can be seen in fig. 8.
The E, F , and G transfer functions were implemented using
the equations described previously. The e− jωT block con-
tains a transport delay of time T ′ which applies the modified
wave propagation time to the model. The E transfer function
block is shown in fig. 9 to demonstrate how the summation of
weighted transfer functions was implemented.

The TLM can be arranged with any combination of inputs
and outputs depending on how it needs to fit into a simula-
tion model, and what other models it needs to connect to. For
simplicity, only one combination of inputs and outputs is ex-
amined here. The inputs to the TLM are inlet flow and outlet
pressure, while the outputs are inlet pressure and outlet flow.
The outlet pressure was held constant at 0, and the flow inlet
was given a step in flow rate. The simulation arrangement is

Figure 7: Error analysis for approximate solution from [5].
The black lines show the region of acceptable error, as defined
by ε < 0.5. Note that the error scale is different than the scale
in fig. 6

 

Figure 8: MATLAB R© Simulink R© model of the tapered TLM.

shown in fig. 10.

Using the same parameters from the transmission matrices
computed in fig. 4 and fig. 5, time domain simulations were
performed and are shown in fig. 11 and fig. 12 respectively.
The solver that was used is MATLAB R©’s ode23t with a re-
lative tolerance of 10−6. This solver was chosen as it works
well for stiff problems such as this, and has shown to solve
TLM models relatively quickly when compared to non-stiff
solvers such as ode45. The outlet flow and inlet pressure re-
sponse are shown for the 2 parameter sets. The flow response
is normalized through dividing by the step change in flow. In
both simulation cases, the flow response oscillations always
settled to 1, thus indicating that the model has proper flow
continuity. The inlet pressure response is normalized through
dividing by the step change in flow multiplied by the charac-
teristic impedance of the line. The model does appear to re-
spond in a stable manner when a step input is applied. This is
an important characteristic as these models are typically used
in simulations where high frequencies are present. These sim-
ulated responses look as expected, as they are similar to that
seen in [2,3]. Previously, the TLM has been used to model in-
ertance tubes within switched inertance converters [3], a type
of hydraulic circuit that efficiently converts pressure and flow
by switching a digital hydraulic valve at very high frequency.
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Figure 9: MATLAB R© Simulink R© implementation of the E
transfer function.

Figure 10: Simulation set-up.

The model presented here is believed to suit well for this area
of fluid power research.

7 Conclusions

While excellent models exist for modelling fluid dynamics
within transmission lines of uniform cross-section, further
development in modelling tapered transmission lines was re-
quired. This research looks at modelling the fluid dynamics
within tapered lines by using the TLM structure and weighted
transfer functions. The results of this TLM approximation
show significantly improved accuracy over previous tapered
transmission line models. This model can be used for a
variety of applications where line dynamics must be con-
sidered, such as switched inertance converters. A complete
Simulink R© library with the parameter set and the parameter
generation code in MATLAB R© are now available for down-
load [11]. Future work on this topic plans to look at per-
forming experiments to validate the proposed model, as well
as look at applying the TLM to flexible walled transmission
lines. Also, research is planned to investigate the effects of
shaped inertance tubes on the performance of switched iner-
tance converters. Transmission lines of arbitrarily changing
cross section can be modelled using this approach by suc-
cessively connecting multiple tapered transmission line seg-
ments together. Using shaped inertance tubes has theoret-
ically shown an increase in efficiency over using uniform
tubes [8], and by applying this model, higher accuracy and
speed in these simulations are expected.
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Figure 11: Simulated results for β = 0.001 and λ = 0.75.
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Figure 12: Simulated results for β = 0.1 and λ = 0.9.
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Nomenclature
Designation Denotation Unit

A(x) Cross-sectional area of trans-
mission line at point x

m2

b E transfer function scaling
factor

C1, C2 Characteristic pressures of the
TLM

Pa

c Local speed of sound m/s
D Dissipation Number [6]
E, F, G TLM weighted transfer func-

tions
f Optimization objective function
J0, J2 Bessel functions of the first kind
j Imaginary designation
k Number of weighting factors
l Length of transmission line m
mEi, mGi Weighting factors
N Frequency-dependent friction

term
ni Weighting factors
P Fourier transform of pressure
p Pressure Pa
Q Fourier transform of flow
q Flow m3/s
R Steady state resistance Pa·s/m3

r Pipe radius m
S Normalized Laplace operator

[6]
s Laplace operator
T Wave propagation time s
T ′ Modified wave propagation

time
s

t Time s
t11 , t12, t21, t22 Transmission matrix exact

terms
t∗11 , t

∗
12, t∗21, t∗22 Transmission matrix approxim-

ated terms
x Axial direction
Zc Characteristic impedance Pa·s/m3

β Dissipation number

Designation Denotation Unit

Γ Propagation operator [6]
ε Error
θ Taper angle rad
λ Taper ratio
ν Kinematic viscosity m2/s
ξ Convergence/Divergence para-

meter [6]
ρ Fluid density kg/m3

τ Wave propagation time modifier
Ω Number of frequency points on

which the optimization is per-
formed

ω Frequency rad/s
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