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Abstract 
A new concept is presented on how to set up the 
equations of complex fluid networks. This concept 
avoids the creation of large non-linear equation 
systems and hence leads to a very robust modeling 
approach while still being competitive in levels of 
performance. The concept has been implemented in 
Modelica and tested for the rapid pre-design of aircraft 
environmental control systems. 
Keywords: fluid systems, thermal systems 

1 Motivation 
Modelica has established itself as a valuable tool for 
the modeling of thermal fluid systems. Typical 
applications are the modeling of power plants (Casella 
2005), building simulation (Wetter, 2016), or, as in our 
case, the pre-design of environmental control systems 
(ECS) for future aircraft (Schlabe, 2014; Sielemann, 
2011).  

To support these activities, several quasi-standards 
have been developed: a stream connector (Franke et al, 
2009B) has been included in the Modelica language 
standard and a corresponding standard library supports 
the modeling of fluids. (Franke et al, 2009A) 
Furthermore, the Modelica.Media library (Casella, 
2006) provides models for a multitude of different fluid 
media, so that the same fluid models can be applied to 
different media.  

Yet despite these advances, there still remain 
reoccurring problems that make the application for the 
end user challenging. Most of them involve the 
solvability of (larger) non-linear equation systems. 
Every so often, initialization or simulation of the fluid 
systems fails for reasons that are hard to detect for a 
non-specialist. From the end-user perspective, this is 
perceived as a lack of robustness significantly slowing 
down development time of new fluid architectures. 

Also here, several attempts such as homotopy 
(Casella 2011) have been undertaken to address this 
problem but so far with mixed or limited success. 

This paper presents a new approach to model fluid 
systems that avoids the creation of large non-linear 
equation systems in the first place. This leads to a very 
robust fluid library, and also high performing and 
scalable models.  

2 The inertial pressure 
In order to understand this approach, let us examine the 
root of the problem. What leads to the creation of large 
non-linear equation systems? 

Whereas a smaller non-linear equation system may 
occur within a component (such as a heat exchanger), 
larger non-linear systems are created by a network of 
such components. Especially critical are branches, by-
passes and loops. Whenever fluid flows join, a (quasi-) 
static analysis will require an equivalence of pressure 
for each involved junction. In order to fulfill this 
equivalence, the corresponding mass-flows become  
part of a non-linear equation system.  

 
Figure 1: Simple fluid network 

Figure 1 provides a simple example of a loop with two 
nested side-branches, leading to a non-linear equation 
system for the mass-flows. If modeled using 
conventional components and the stream connector, a 
system of 63 non-linear equations results that can be 
reduced to 8 iteration variables. More complex 
networks such as in (Zimmer, 2013) require more than 
40 iteration variables. It is then a priori unclear how 
many solutions there are and whether a generic non-
linear equation solver will find any of them (and which 
one), especially at (re-)initialization. 

In order to increase robustness, we shall hence not 
rely on a generic solver but rather provide differential 
equations that lead to the desired equivalence. 
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Fortunately, the laws of physics offer a very favorable 
way to formulate this. To this end, let us review the 
fundamental equations of motion. Newton’s second 
law can be formulated in terms of pressure gradient 
and density. This is the most basic part and form of the 
Euler equations for incompressible fluid flows, 
disregarding any external forces (such as gravity, 
friction, etc.): 

 
𝐷𝐷𝐮𝐮
𝐷𝐷𝐷𝐷

= −
1
𝜌𝜌

 ∇𝑝𝑝 

 
with 𝒖𝒖 being the velocity, 𝑝𝑝 the pressure and 𝜌𝜌 the 

density. Since we work in an Eulerian framework 
where particles move through a parcel, we shall expand 
the material derivative: 

 
𝜕𝜕𝐮𝐮
𝜕𝜕𝐷𝐷

+ 𝐮𝐮 ∙ ∇𝐮𝐮 =  −
1
𝜌𝜌

 ∇𝑝𝑝  

Since we concern ourselves here only with one-
dimensional flows, we can form a scalar PDE where 𝑣𝑣 
expresses the flow velocity 𝐮𝐮 in direction of 𝑠𝑠: 

 
𝜕𝜕𝑣𝑣
𝜕𝜕𝐷𝐷

+ 𝑣𝑣
𝜕𝜕𝑣𝑣
𝜕𝜕𝑠𝑠

=  −
1
𝜌𝜌

 
𝜕𝜕𝑝𝑝
𝜕𝜕𝑠𝑠

  

 
Using a spatial element (such as a pipe section) of 

the length Δ𝑠𝑠 and cross-section area A, this PDE is 
transformed into an ODE: 

 
𝑑𝑑𝑣𝑣
𝑑𝑑𝐷𝐷

+ 𝑣𝑣
Δ𝑣𝑣
Δ𝑠𝑠

=  −
1
𝜌𝜌

 
Δ𝑝𝑝
Δ𝑠𝑠

 

 
Multiplying with  𝜌𝜌Δ𝑠𝑠  and substituting 𝑣𝑣 in the first 

term with  �̇�𝑚/𝜌𝜌A yields finally 
 

𝑑𝑑�̇�𝑚
𝑑𝑑𝐷𝐷

Δ𝑠𝑠
A���

Δ𝑟𝑟

+ 𝜌𝜌 𝑣𝑣Δ𝑣𝑣���
Δ𝑞𝑞

 = Δ𝑝𝑝 

 
In this way, the pressure difference Δ𝑝𝑝 is 

decomposing into Δ𝑟𝑟 and Δq. Δq is expressing the 
change in dynamic pressure for a given mass-flow, a 
well-established and frequently used quantity. The 
term expressed by Δr is all too often neglected. It 
expresses the inertial pressure to change the mass flow 
rate. 

Alternative derivations or explanations of this 
inertial component in the pressure gradient can be 
found in (Truckenbrodt, 1983) and in (Longwell, 1966) 
for line flows of fluids and particles. These build upon 
a stream of fluid or particles through a pipe. For 
illustration let us look at a straight pipe. 

 

 
Figure 2: mass flow through a pipe 

 

Figure 2 displays a section through a straight pipe. Its 
content corresponds to a mass 𝑀𝑀 and its acceleration 𝑎𝑎 
will require a force 𝑓𝑓 

 
𝑓𝑓 = Δ𝑟𝑟𝑟𝑟 = 𝑀𝑀𝑎𝑎 

 
Assuming that the flow through such a pipe fulfills 

the mass balance so that inflow equals outflow, we can 
express the acceleration in terms of volume flow: 

Δ𝑟𝑟𝑟𝑟 = 𝑉𝑉𝜌𝜌
1
𝑟𝑟
𝑑𝑑�̇�𝑉
𝑑𝑑𝐷𝐷

 
 
Dividing the volume by 𝑟𝑟 yields Δ𝑠𝑠 and multiplying 

the volume flow by the density yields the mass flow. 
 

Δ𝑟𝑟𝑟𝑟 = Δ𝑠𝑠
𝑑𝑑𝑚𝑚
𝑑𝑑𝐷𝐷

 
or 

Δ𝑟𝑟 =  
𝑑𝑑�̇�𝑚
𝑑𝑑𝐷𝐷

Δs
𝑟𝑟

  
 

Again, we retrieve the formula for Δ𝑟𝑟. Let us note 
that it is a simple and linear equation that is 
independent of the thermodynamic state of the fluid 
and whose parameters remain constant for pipes with 
non-changing geometry. This will become very useful. 

The reason Δ𝑟𝑟 is so often neglected is that it is often 
very small and does not influence the thermodynamic 
state significantly (see Section 5). However, although 
mostly negligible, it is still a very useful quantity to 
compute changes in the mass-flow from occurring 
pressure differences. Using it, we can describe a 
dynamic that leads to pressure balance even in complex 
fluid networks. To this end, we shall revisit the 
equations for fluid junctions. 

Prerequisite of this approach is that we work with 
fluid flows that uphold the mass flow balance �̇�𝑚𝑖𝑖𝑖𝑖 =
�̇�𝑚𝑜𝑜𝑜𝑜𝑜𝑜, meaning that the dynamics of compression are 
regarded as irrelevant for the fluid transport and the 
medium moves like being incompressible. However, 
the medium is allowed to change its thermodynamic 
state, even its density, when being subject to thermo-
dynamic manipulation such as in a compressor, 
turbine, heat-exchanger, etc. Hence, we call this 
approach quasi-incompressible because the assumption 
of incompressibility (actually, mass flow balance) only 
affects the transport dynamics. In case transport 
phenomena of compressible flows are relevant, other 
approaches such as (Sielemann, 2012) have to be used.  
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3 Pressure balance 
By using this decomposition of the pressure gradient, 
we can revisit the model for junctions of a fluid flow. 
Let the pressure �̂�𝑝 be composed of the inertial pressure 
𝑟𝑟 and the pressure 𝑝𝑝 for the case of static mass-flow: 

 
�̂�𝑝 = 𝑟𝑟 + 𝑝𝑝 

 
Pressure in general represents a sum of forces per 

area. These forces may result from macroscopic motion 
such as acceleration or from the microscope state of the 
medium to make place for its volume. Since we 
attribute the macroscopic acceleration of the mass flow 
already to 𝑟𝑟, 𝑝𝑝 is now interpreted as resulting  from the 
microscopic state that is bound to its specific volume 
and transported with the fluid. Hence 𝑝𝑝 can here be 
treated similar to a specific quantity and is 
consequently also subject to mixing. We can hence 
formulate a mixing law for 𝑝𝑝: 

 
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑓𝑓(𝑝𝑝𝑖𝑖𝑖𝑖,1,ℎ𝑖𝑖𝑖𝑖,1, �̇�𝑚𝑖𝑖𝑖𝑖,1, … ,𝑝𝑝𝑖𝑖𝑖𝑖,2,ℎ𝑖𝑖𝑖𝑖,2, �̇�𝑚𝑖𝑖𝑖𝑖,2, … ) 
 
To compute this specific mixing pressure of two 

fluid flows, we shall conduct the following thought 
experiment. We fill a chamber with an amount of each 
fluid that is proportional to its mass-flow. The chamber 
is sealed on both ends and the two fluids a separated by 
a virtual disc. As soon as we remove this disc, mixing 
of the two fluids takes place and a new pressure 

establishes. Figure 3 illustrates this thought experiment 
in its stages 1 to 4.  

In general, this leads to a non-linear mixing law. In 
case, the specific gas constant for both sections of the 
chamber is equal, a linear law can be used: 

 

𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 =
∑�̇�𝑚𝑖𝑖𝑝𝑝𝑖𝑖
∑�̇�𝑚𝑖𝑖 + 𝜖𝜖

 

 
This linear law can also be used as approximation 

for the non-linear law when the exact pressure 
dynamics are not regarded as important during mass-
flow transients or the pressure differences are low. 
Although we prefer to use a linear law for the sake of 
simplicity, it does not harm the overall equation 
structure when a non-linear law is used. 

 To get from a single stage mixing to a continuous 
process, let us look at stage 5 in Figure 3 that 
completes the circular process. We recognize that the 
mixing chamber has now a pressure 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 that is 
different from both 𝑝𝑝1 and 𝑝𝑝2. This pressure difference 
occurs across the sealing virtual discs at both ends. If 
we now unhinge these discs, we shall attribute this 
pressure difference to the inertial pressure 𝑟𝑟. 

Hence the pressure balance at a junction can be 
formulated for any inflowing stream 𝑖𝑖 or outflowing 
stream 𝑗𝑗  in terms of �̂�𝑝: 

 
�̂�𝑝𝑖𝑖 =  �̂�𝑝𝑚𝑚𝑖𝑖𝑚𝑚  

or  
𝑝𝑝𝑖𝑖 + 𝑟𝑟𝑖𝑖 = 𝑝𝑝𝑗𝑗 + 𝑟𝑟𝑗𝑗 

Figure 3: Illustration of the thought experiment for the mixing of two fluids 
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4 Computing an unidirectional 
network 

The decomposition of �̂�𝑝 into 𝑝𝑝 and 𝑟𝑟 does not only 
affect the pressure balance at a junction but it 
restructures the overall equation system of the network 
into a very favorable form.  This is best explained by 
means of an example. Figure 4 represents a simple 
fluid network structure where a split (A) fluid stream 
of given total mass flow rate rejoins (B). On each 
branch there is a simple black box component that 
manipulates the thermodynamic state of the fluid by 
algebraic equations in an arbitrary way. For each 
section of each branch, the law for the inertial pressure 
applies: 

 
𝑑𝑑�̇�𝑚
𝑑𝑑𝐷𝐷

 
Δ𝑠𝑠
𝑟𝑟

= Δ𝑟𝑟  
 
 This law is applied to all thermofluid components 

and causes all mass-flows of the system to become 
potential state variables. This means that if the 
thermodynamic state of the inlet is defined, each 
component can compute the thermodynamic state of 
the outlet in a straight forward manner. All required 
variables represent knowns. This forward computation 
is symbolized by the black variables in Figure 4. All of 
them are computed simply from source to sink. 

Given these variables, we can now compute the 
inertial pressure 𝑟𝑟 and the mass-flow dynamics.  We 
start at the boundaries. For each source, 𝑟𝑟 is stipulated 
to be 0. At each sink, �̂�𝑝 equals the desired outlet 
pressure. The pressure balance law is applied for 
junction B whereas the split at junction A defines 
equality of its inertial pressures. The black box 
components contain the law for the inertial pressure.  

In total, we can setup the following equation system 
for the mass-flow dynamics: 

 

 
 

𝑑𝑑�̇�𝑚1

𝑑𝑑𝐷𝐷
 
Δ𝑠𝑠1
𝑟𝑟

= 𝑟𝑟1 − 𝑟𝑟𝐴𝐴 
 

𝑑𝑑�̇�𝑚2

𝑑𝑑𝐷𝐷
 
Δ𝑠𝑠2
𝑟𝑟

= 𝑟𝑟2 − 𝑟𝑟𝐴𝐴 
 

𝑝𝑝1 + 𝑟𝑟1 = 𝑝𝑝2 + 𝑟𝑟2 
 

𝑑𝑑�̇�𝑚1

𝑑𝑑𝐷𝐷
=  −

𝑑𝑑�̇�𝑚2

𝑑𝑑𝐷𝐷
  

 
The last equation thereby results from the index 

reduction of the system: it represents the time-
derivative of the mass-flow constraint �̇�𝑚1 +  �̇�𝑚2 =  �̇�𝑚0 
with �̇�𝑚0 being given. We can rewrite the equations 
above as linear equation system: 
 

�

−1  Δ𝑠𝑠1 𝑟𝑟⁄  
 −1  Δ𝑠𝑠2 𝑟𝑟⁄
1 −1   
  1 −1

� �

𝑟𝑟1
𝑟𝑟2

𝑑𝑑�̇�𝑚1 𝑑𝑑𝐷𝐷⁄
𝑑𝑑�̇�𝑚2 𝑑𝑑𝐷𝐷⁄

� =  �

0 − 𝑟𝑟𝑟𝑟
0 − 𝑟𝑟𝑟𝑟
𝑝𝑝2 − 𝑝𝑝1

0

� 

 
The resulting equation system is not only linear. The 

matrix elements are either integers or describe the pipe 
geometry and hence likely form invariants with respect 
to simulation time. This means that the equation 
system can be inverted upfront and only occurs as 
simple matrix-vector multiplication during simulation 
time. When implementing this in Modelica, a tool like 
Dymola (Brück, 2002) is smart enough to do exactly 
this. 

  We can generalize the lessons from the example in 
Figure 4 and derive general statements for the resulting 
structure of the equation system of any network of 
fluid systems. To this end, we have to postulate two 
underlying modeling assumptions that have to be 
fulfilled by the modeler: 

Figure 4: Computation of a simple directed fluid flow. The black terms represent a straight forward computation  
from source to sink. The red equations describe the mass-flow dynamics and form a linear system of equations. 
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• The directed fluid flow gives rise to a partial 
order of its fluid connectors along the flow. 
(This means that no circular flows must occur 
unless these are cut by a volume(-like) 
element) 

• There is no direct algebraic coupling between 
two flows within a component. (This means in 
practice that on the component level 
differential equations may be employed 
instead of pure algebraic equations) 

 
If these two assumptions are upheld by the modeler, 
then any fluid system will be represented by a structure 
incidence matrix (Cellier, 2006) of the following 
block-lower-triangular (BLT) form in Figure 5:  
 

 
Figure 5: Structure incidence matrix in BLT Form 
The blue part of this incidence matrix may represent a 
straight-forward computation of non-linear equations.  
There might be small non-linear equations systems 
stemming from the components but they do not grow 
in size when connecting these components. This means 
that if the solvability has been proven on the 
component level, it will remain solvable on the system 
level. 

The only large equation system is marked by the 
green part. This is however a linear equation system 
with constant coefficients that can be inverted upfront. 
The size of this system is thereby proportional to the 
number of different branches in the fluid network. It is, 
thanks to index-reduction, invariant to the length or 
complexity of each branch. 

Given this BLT form, it is now clear how high 
robustness for the end user is achieved. No large non-
linear equation system will be created by building a 
complex network out of its components. If the 
components are very robust then the total system will 
be as well.  

5 Validity of the approach 
Although the above structure is very favorable it also 
contains a little shortcut since we have used 𝑝𝑝 for the 
computation of the thermodynamic state and not �̂�𝑝. 
This means that the gradient in the thermodynamic 
state between junctions is not properly taken into 
account. It is clear that this is irrelevant for the mass-
flow static case (with all 𝑟𝑟 = 0) but what about the 
transient behavior? 

To estimate any error, we are interested in the 
fraction of Δ𝑟𝑟/𝑝𝑝. For an ideal gas flowing through a 
parcel of length Δ𝑠𝑠, we can do a simple analysis. 
Formulating the law for the inertial pressure in terms of 
velocity and not in terms of mass flow yields: 

 

Δ𝑠𝑠 𝜌𝜌
𝑑𝑑𝑣𝑣
𝑑𝑑𝐷𝐷

= Δ𝑟𝑟 
 
Using the speed of sound 𝑐𝑐2 = 𝜅𝜅 𝑝𝑝/𝜌𝜌,  we can 

express the quotient Δ𝑟𝑟/𝑝𝑝 by: 
 

Δ𝑟𝑟
𝑝𝑝

= 𝜅𝜅
𝑑𝑑 𝑣𝑣𝑐𝑐
𝑑𝑑𝐷𝐷

 
Δ𝑠𝑠
𝑐𝑐

 

 
For Δ𝑟𝑟/𝑝𝑝 to become significant, the acceleration 

must be expressed in Mach per second and/or the pipe 
length in sound-seconds. For instance, for the quotient 
to become roughly 10%, one must accelerate air in a 
(frictionless) pipe of 100 meters with 10 times the 
gravitational acceleration. For many typical 
applications, such values represent very high numbers 
and the error can be tolerated.  

For incompressible fluids the speed of sound is 
determined by 𝑐𝑐2 = Κ/ρ and the simple statement 
from above does not hold. Strong (mass-flow) 
accelerations can indeed lead here to a shift of 
evaporation regions or even cavitation. Nevertheless, in 
many cases, this can be neglected as well. In some 
cases such as a water hammer, strong acceleration does 
occur but the thermodynamic state is rather insensitive 
to pressure and hence the approach remains applicable 
(although with care). 

 In cases where transient effects become relevant 
there is a multitude of potential work-arounds that shall 
be omitted here in order to be concise. For our 
application field, this is however irrelevant.  

It also shall be noted that many existing fluid 
libraries choose to ignore the inertial pressure 
completely. This is just doing a (well-accepted) error in 
the different direction. Important is just that the 
modeler understands the underlying assumptions. 
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6 Implementation in Modelica 
The design of a suitable connector is here the most 
fundamental decision. The inertial pressure r and the 
mass-flow m_flow hereby constitute a classic pair of 
potential and flow variable. All the remaining 
variables, such as mass-flow static pressure p, specific 
enthalpy h, etc., are then regarded as specific quantities 
and transmitted via input and output connectors: 

 
connector Inlet  
 replaceable package Medium = Modelica. 
     Media.Interfaces.PartialMedium; 
 Modelica.SIunits.Pressure r; 
 flow Medium.MassFlowRate m_flow; 
 input Medium.AbsolutePressure p; 
 input Medium.SpecificEnthalpy h; 
 input Medium.MassFraction Xi[Medium.nXi]; 
end Inlet; 
 

respectively: 
 

connector Outlet  
 replaceable package Medium = Modelica. 
     Media.Interfaces.PartialMedium; 
 Modelica.SIunits.Pressure r; 
 flow Medium.MassFlowRate m_flow; 
 output Medium.AbsolutePressure p; 
 output Medium.SpecificEnthalpy h; 
 output Medium.MassFraction Xi[Medium.nXi]; 
end Outlet; 
 

An alternative design is to use the thermodynamic 
state record of the Modelica.Media Library directly in 
the connector instead of the variables (𝑝𝑝, ℎ, … ). This 
can lead to a better performing solution but maybe 
slightly more bulky equations.  

Also one can artificially enrich the connector by 
additional signals in order to ensure that there are no 
open ends or unwanted loops. For instance, an integer 
input/output signal in reverse flow direction counting 
upwards from sink to source, would lead to errors in 
case of open endings or unwanted loops. So far, such 
mechanism have however shown to be unnecessary.  

Using this connector, we implemented the 
proprietary HEXHEX library for aircraft 
environmental control and cooling systems in an early 
design phase. It contains components for pumps, fans, 
compressors, turbines, heat-exchangers, etc. Boundary 
models enable to set the environmental conditions. A 
global world model enables to set common default 
values. Although similar in its look to the DENECS 
library (Sielemann, 2011) it represents a complete new 
implementation. 

When implementing the components, robustness 
must be thoroughly tested. The components must not 
become singular at zero-mass flow and should continue 
to exhibit a plausible behavior even when being used 
outside their range of validity.  

Different from the standard fluid library, junctions now 
demand for an extra model. There are classic T- 
Junctions, X-Junctions and 1-to-N Junctions. Although 
this could be regarded as additional burden, there were 
no complaints from the user base. The basic law: 

 
𝑑𝑑�̇�𝑚
𝑑𝑑𝐷𝐷

 
Δ𝑠𝑠
𝑟𝑟

= Δ𝑟𝑟  

 
for the inertial pressure of Section 2 is now present 

in every single component (that is not a boundary). 
Hence any classic two-port component extends this law 
from a partial base class, where this law has been 
implemented: 

 
partial model TwoPort 
  Inlet portA; 
  Outlet portB; 
  parameter SIunits.Area A = world.A 
  parameter SIunits.Length L = world.L 
  SIunits.MassFlowRate m_flow( start=0); 
  SIunits.Pressure dr; 
 
equation  
  0 = portA.m_flow + portB.m_flow; 
  m_flow = portA.m_flow; 
  portA.r – portB.r = dr; 
  dr = der(m_flow)*L/A; 
end TwoPort; 

 
The pressure balance of Section 3 is then 

implemented for instance in a junction model where 
two inflows portA, portB meet and result in an 
outflow portC: 

 
model Junction 
  Inlet portA; 
  Inlet portB; 
  Outlet portC; 
equation 
  m_flowA = portA.m_flow; 
  m_flowB = portB.m_flow; 
  m_flowC = portC.m_flow; 
  m_flowA + m_flowB + m_flowC =0; 
 
  portC.Xi = (portA.Xi*(m_flowA + eps) 
              + portB.Xi*(m_flowB + eps)) 
              /(m_flowA+m_flowB+2*eps); 
  portC.h = (portA.h*(m_flowA + eps) 
             + portB.h*(m_flowB + eps)) 
             /(m_flowA+m_flowB+2*eps); 
  portC.p = (portA.p*(m_flowA + eps)  
             + portB.p*(m_flowB + eps))  
             /(m_flowA + m_flowB + 2*eps); 
 
  portC.p + portC.r = portA.p + portA.r; 
  portC.p + portC.r = portB.p + portB.r; 
 
end Junction; 
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In this junction model, the simple linear approximation 
for the resulting mixing pressure is applied. Also a 
small regularization is applied to cover the case of zero 
mass flow rate. This is especially helpful for 
initialization when the system is ramping up from zero 
mass flow. 

Aside from a few basic classes such as the TwoPort 
component from above, the library avoids the overuse 
of inheritance since multiple inheritance levels have 
shown to be detrimental to the readability of the code 
(Pollok, 2016). 

Because also the stream connector is avoided, the 
thermodynamic equations of components like heat 
exchangers, turbines, fans, etc. can be written in a 
straight forward way. This is greatly enhancing the 
readability of each component code. In this way, the 
code becomes easy to understand even by the non-
expert.  Also the development time of individual 
components has been reduced by an approximate of 
50%. 

The library has undergone a significant testing effort 
by external users for the rapid pre-design of a large 
variety of aircraft environmental control systems. We 
estimate that the development time of such 
architectures has been reduced roughly by at least 80%. 
One particular architecture is presented in the next 
section in order to show the application of the 
HEXHEX library.  

 

7 Exemplary Use Case 
To demonstrate the feasibility of HEXHEX, a complex 
electric architecture for an aircraft environmental 
control system has been modeled.  

Figure 6 shows the diagram layer of the modelled 
electric driven vapour cycle pack (eVCP) architecture. 
The architecture is derived from a patent publication 
(Golle, 2016). Unlike the original architecture, the 
vapour cycle was simplified. The original vapour cycle 
has an additional evaporator connected to recirculated 
air from the cabin. Unlike conventional bleed air 
driven air cycle packs (Bender, 2017) unconditioned 
outside air instead of bleed air from the engine enters 
the eVCP. The cold and low pressure air is compressed 
in a first stage before it passes the primary heat 
exchanger (PHX). A second compressor further raises 
the pressure and temperature before entering the 
reheater. The main heat exchanger, mounted in the ram 
air channel, is passed before the evaporator cools the 
air. In case the saturation temperature is exceeded, a 
water separator extracts the condensate and leads it to 
the water injector located in the the ram air channel 
upstream the vapour cycle condenser. Before the 
conditioned fresh air is expanded in the turbine, it is 
reheated in the reheater. The discharged fresh air meets 
the recirculated cabin air in the mixing unit 
downstream the pack. The ram air channel functions as 
heat sink and is feed with air from the outside. During 
ground operations, the air flow is provided by a fan 

Figure 6: Modelica diagram of electric driven vapour cycle pack architecture using the HEXHEX library. 
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located near the ram air outlet. Contrary to a bleed air 
driven pack which is autonomously driven, all 
turbomachines within the eVCP are electrically 
powered.  

The here presented modelling concept allows to 
build up such a system model as shown in Figure 6 
within one day including first working simulations and 
a control concept for its many bypasses. Beside 
reasonable values for operational settings, i.e. 
compression/expansion ratios, flow resistances, and 
boundary conditions, no further settings concerning 
initialization have to be defined.  Variants of such an 
architecture can then be generated much faster. 

Looking at the statistics of the translated model, the 
advantage of the proposed concept becomes apparent: 
There is no large non-linear equation system at all. 
From the components there remain only 19 smaller 
non-linear equation systems with a single iteration 
variable. 

In total the system contains 40 continuous time 
states. 9 of them represent mass-flows according to the 
proposed dynamics. 11 states originate from in-built 
controllers and the remaining states belong to the 
components. Most of them originate from quite 
detailed models of the evaporator and condenser within 
the vapour cycle. 

The addition of the 9 state variables for the mass-
flow by this concept do not cause any oscillation in the 
system. The impact on simulation performance has 
shown not to be detrimental. 

The architecture of Figure 6 shows a number of 
junction valves that can open or close various different 
bypasses. Figure 7 displays the opening of a generic 
bypass valve with the resulting mass-flow dynamics 
and the corresponding inertial pressure. As outlined 
before, the inertial pressure is zero as long as the mass-
flow rates remain constant. The opening of the valve 
then causes a pressure change and consequently the 
inertial pressure becomes non-zero. The affected mass 
flow rates then change until the new equilibrium point 
is reached. Evidently, a well-natured transient behavior 
can be observed that can be well-handled by numerical 
ODE solvers, especially by those suited for stiff-
systems. 

Although the valve is fully opened within a single 
second, the maximum peak for the absolute value of 
the inertial pressure remains around 100 Pascal. Being 
around one per mille of the fluid’s static pressure, its 
effect on the thermodynamic state is negligible, which 
goes well in line with the analysis of Section 5. 

If desired, the mass flow rate can also be stipulated 
by the addition of corresponding boundary conditions 
to the system. However, when doing so, these 
boundary conditions of mass flow rates must be 
differentiable with respect to time. Otherwise, the 
inertial pressure cannot be properly determined. Also 
one must take care that such boundary conditions do 
not conflict each other and cause the system to be 
overdetermined.  

Figure 7: Mass flow dynamics for an opening valve 
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8 Final Remarks 
8.1 Positioning of the approach 
How does the approach of HEXHEX compare to the 
most common other approaches?  Within the Modelica 
community, we find two main approaches. 

The first approach is a purely algebraic quasi-static 
modeling of fluid systems. This approach may avoid 
any states but yields large non-linear equation systems. 
Most volume free components in the Modelica 
Standard Fluid library (Franke, 2009A) are modeled in 
this style. 

The second approach is a realization of the finite 
volume method (or similar) where any flow represents 
the flow between two volume models. This avoids any 
larger non-linear equation system but at the price of 
creating many state-variables because of its many 
volumes. A classic example is (El Hefni, 2014). 

HEXHEX is right in the middle, looking for the 
sweet spot. It avoids completely any large non-linear 
equation system and hence robustness on the 
component level leads to robustness on the total system 
level. Yet, it creates only a small set of states. The set 
is much smaller than for a finite volume approach, 
since only the mass-flows are used as state variables 
and not the full thermodynamic state of a volume. 
Furthermore, the mass-flow can be shared for all 
serially connected flows. This enables index-reduction 
to further reduce the set of state variables.  

A justified point of critique is that with the inertial 
pressure also fast dynamics enter the system asking for 
stiff-system solvers and that the mass-flow states for 
many modelers rather represent so-called artificial 
states (Zimmer, 2013). The answer to this critique is 
given in (Zimmer, 2013) and (Zimmer, 2014) that 
propose better ways how numerical ODE solvers shall 
deal with artificial states. Unfortunately, no Modelica 
tool currently supports such an approach. We hope that 
libraries like HEXHEX will further raise the value and 
importance of such a solution since after all a general 
support would also benefit the works of many others 
such as (Jorissen, 2018). Yet even without this support, 
the usability and performance of HEXHEX is not 
really impaired. 

8.2 Initialization  
A robust method for initialization is also important for 
the end-user. Ideally only the boundary conditions are 
defined and the components of the system do not 
require additional information for initialization. With 
HEXHEX such an approach is absolutely feasible. For 
many cases, an initialization at rest with all mass-flows 
being zero is a good starting condition. The system will 
then ramp-up according to the boundary condition. It is 
actually the same as plugging in (or switching on) the 
actual device. 

In some cases, this ramping up may lead to a different 
state than expected. This typically indicates flaws in 
the actual system model. In any case, there will be a 
trajectory leading up to the issue, which allows for 
better diagnostics than just a failed initialization with a 
non-linear solver. 

8.3 Adaption to Bidirectional Fluid flows 
For our application field, a unidirectional solution is 
sufficient. Yet, can the approach be extended for bi-
directional models? In principal yes, either one has to 
duplicate the equations for both flow directions or one 
takes use of the stream connector (Franke et al, 
2009B). Both approaches will (in a different way) 
pollute the modeling equations to some degree but 
represent workable solutions. 

In contrast to the standard fluid library, the built- in 
regularization scheme of the stream connector is not 
needed any longer since the mass-flow is a state 
variable.  

A disadvantage of a generic bidirectional approach 
is that more loops will occur and hence more volume 
elements (or other means) will be needed to cut these 
loops. This is simply because there are statistically 
more loops in an undirected graph than in a directed 
graph of the same density. Hence while workable, the 
approach is losing some of its appeal for bidirectional 
flows. 

8.4 Overall conclusion and future work 
The dynamics of non-static fluid flows can very well 
be expressed using DAEs in Modelica, even for 
complex networks. If we regard the fluid streams as 
quasi-incompressible, then index-reduction enables to 
extract a small set of state variables for the total 
system. 

Exploiting this fact enables a very robust modeling 
of complex fluid systems that frees the end-user from 
having to care about large non-linear equation systems 
and initialization.  

The outlined approached has been implemented and 
thoroughly tested by a number of complex 
environmental control system architectures for aircraft 
and artificial testing examples. Development time of 
these architecture models could be drastically reduced 
compared to prior implementations. 

Yet, this approach has not reached full maturity yet 
und the corresponding library is still subject to heavy 
development.  Future work will hence more thoroughly 
compare this approach to others in terms of validity 
and performance. Furthermore, the release of an open 
interface standard shall be considered as soon as the 
development.  
  

____________________________________________________________________________________________________________

DOI 
10.3384/ecp1814839

Proceedings of the 2nd Japanese Modelica Conference 
May 17-18, 2018, Tokyo, Japan 

 
47



9 Acknowledgements 
We would like to thank Airbus for providing incentive 
by their challenging problems and steady support by 
intensive testing. Last but not least we would like to 
thank Bibi Blocksberg as source of vital inspiration. 

References 
Daniel Bender, (2017) Integration of exergy analysis into 

model-based design and evaluation of aircraft 
environmental control systems, Energy, 137, p. 739-751, 
2017 

Dag Brück, Hilding Elmqvist, Hans Olsson, Dymola for 
Multi-engineering Modeling and Simulation. In: Proc. of 
the 2nd International Modelica Conference, 
Oberpfaffenhofen, Germany 

Francesco Casella and Alberto Leva (2005), Object-Oriented 
Modelling & Simulation of Power Plants with Modelica, 
Proceedings of the 44th IEEE Conference on Decision and 
Control, andthe European Control Conference, Seville, 
Spain 

Francesco Casella, Martin Otter, Katrin Proelss, Christoph 
Richter, Hubertus Tummescheit, (2006) The Modelica 
Fluid and Media library for modeling of incompressible 
and compressible thermo-fluid pipe networks, Proc. 5th 
International Modelica Conference, Vienna, Austria, 
Vol.2, pp.559-568.  

Francesco Casella and Sielemann, Michael und Savoldelli, 
Luca (2011) Steady-state initialization of object-oriented 
thermo-fluid models for homotopy methods. In: 
Proceedings of 8th International Modelica Conference. 8th 
International Modelica Conference, 20.-22. Mrz 2011, 
Dresden. 

Francois E. Cellier, Ernesto Kofman (2006). Continuous 
System Simulation, Springer Verlag, New Yorg, 643p. 

Baligh El Hefni and Daniel Bouskela (2014), Dynamic 
modelling of a Condenser with the Thermo SysPro 
Library, In: Proceedings of the 10th International 
ModelicaConference, March 10-12, 2014, Lund, Sweden 

Rüdiger Franke et. al. (2009A) Standardization of Thermo-
Fluid  Modeling in Modelica.Fluid. Proceedings 7th 
Modelica Conference, Como, Italy, Sep. 20-22, 2009 

Rüdiger Franke et. al. (2009B) Stream Connectors – An 
Extension of Modelica for Device-Oriented Modeling of 
Convective Transport Phenomena. Proceedings 7th 
Modelica Conference, Como, Italy, Sep. 20-22, 2009 

Steffen Golle et. Al., (2016), Betriebsphasenabhängig 
steuerbare Flugzeugklimaanlage und Verfahren zum 
Betreiben einer derartigen Flugzeugklimaanlage, Patent, 
DE102015207447A1, 27.10.2016 

F. Jorissen, M. Wetter & L. Helsen (2018). Simplifications 
for hydronic system models in Modelica. In: Journal of 
Building Performance Simulation 12.01.2018 

Longwell, P.A. (1966). Mechanics of Fluid Flow.  McGraw-
Hill. 

 
 
 

Alexander Pollok, and  Andreas Klöckner (2016) The use of 
Ockham's Razor in object-oriented modeling. In: 
Proceedings of the 7th International Workshop on 
Equation-Based Object-Oriented Modeling Languages and 
Tools, Milano, Italy. DOI: 10.1145/2904081.2904086  

Daniel Schlabe and Lienig, Jens (2014) Model-Based 
Thermal Management Functions for Aircraft Systems. In: 
SAE 2014 Aerospace Systems and Technology 
Conference. SAE 2014 Aerospace Systems and 
Technology Conference, 23.-25. Sept 2014, Cincinnati, 
Ohio, USA. ISSN 01487191 

Michael Sielemann, T. Giese, B.  Oehler, M. Gräble (2011) 
Optimization of an Unconventional Environmental Control 
System Architecture. In: SAE International Journal of 
Aerospace, 4 (2), Seiten 1263-1275. SAE 2011 AeroTech 
Congress and Exhibition, 18.-21. Oct. 2011, Toulouse, 
France.  

Michael Sielemann (2012) High-Speed Compressible Flow 
and Gas Dynamics, In: Proceedings of the 9th 
International Modelica Conference, 3.-5. Sept. 2012, 
Munich, Germany 

Erich Truckenbrodt, Lehrbuch der angewandten 
Fluidmechanik (Kapitel zu instantionäre Fadenströmung 
dichtbeständiger Fluide) Springer Verlag, 1983 

Michael Wetter, Marco Bonvini and Thierry S. Nouidui 
(2016) Equation-based languages - A new paradigm for 
building energy modeling, simulation and optimization. 
Energy and Buildings, 117(1), p. 290-300, 2016 

Dirk Zimmer, (2014), Handling infinitely fast processes in 
continuous system modeling, Proceedings of the 6th 
International Workshop on Equation-Based Object-
Oriented Modeling Languages and Tools, Berlin, Germany 

Dirk Zimmer, (2013), Using Artificial States in Modeling 
Dynamic Systems: Turning Malpractice into Good 
Practice Proceedings of the 5th International Workshop on 
Equation-Based Object-Oriented Languages and Tools 
(EOOLT) , Nottingham, United Kingdom 

 
  

____________________________________________________________________________________________________________
48 Proceedings of the 2nd Japanese Modelica Conference 

May 17-18, 2018, Tokyo, Japan 
DOI 

10.3384/ecp1814839 


	Robust Modeling of Directed Thermofluid Flows  in Complex Networks
	1 Motivation
	2 The inertial pressure
	3 Pressure balance
	4 Computing an unidirectional network
	5  Validity of the approach
	6  Implementation in Modelica
	7 Exemplary Use Case
	8 Final Remarks
	8.1 Positioning of the approach
	8.2 Initialization
	8.3 Adaption to Bidirectional Fluid flows
	8.4 Overall conclusion and future work

	9 Acknowledgements



