
Hyundai Framework for Vehicle Dynamics Engineering

based on Modelica and FMI

Kwang Chan Ko1 Erik Durling2 Jong Chan Park1 Wonyul Kang3 Johan Andreasson2
1Commercial Vehicle CAE research lab., Hyundai Motor Group, Korea, {kcko,impactpark}@hyundai.com

2Modelon, Sweden, {erik.durling,johan.andreasson}@modelon.com
3Institute of Vehicle Engineering, Korea, wykang@ivh.co.kr

Abstract

This paper describes a framework for systems

engineering with primary application in the field of

vehicle dynamics, addressing the need to be able to

broadly deploy models to accelerate innovation and

design. The framework is based on open standards

Modelica, FMI and SSP.

Keywords: Vehicle Dynamics, Modelica, FMI, SSP

1 Introduction

This paper describes a framework for vehicle dynamics

engineering with focus on evaluation of ride and

handling. Especially the following key requirements are

addressed:

1. Scalability: The framework should be able to

handle both subsystems such as suspensions,

and complete vehicle configurations

2. Multi-fidelity: The framework should allow for

models of different fidelity to be combined and

executed together

3. Deployment: The framework should support

broad usage among engineers, including non-

simulation experts

4. Future-proof: The framework should be

designed with future scope extensions in mind;

control design, system integration and

applications to other vehicle types such as

passenger cars.

Similar requirements are found in several other

applications, e.g. (Andreasson, 2016), (Henningsson,

2014), (Sundström, 2016a), (Sundström, 2016b).

2 Framework approach

The approach was to define a framework to allow for

separation of different types of engineering work, and

engineers skills according to but not limited to the

following categories:

1. Model execution: Most engineers are using the

models to support engineering decisions. Their

need is to configure the vehicle/subsystem,

chose/edit data sets, execute analysis and post-

process the results. All with a high degree of

automatization. Their background in simulation is

typically limited and there is limited need to see

details in the models. They prefer to work in a

streamlined environment that they are familiar to.

If they run into problems with simulations, they

want to get help rather than solving it themselves.

2. Model authoring: A limited number of engineers

need to make new models and change existing

ones, they also execute very specialized analysis.

They have stronger background in simulation, and

typically have experience in using simulation

tools. They typically want to have great flexibility

and have less need for streamlined workflow.

These people are expected to help engineers

working with Model execution.

3. System integration: Engineers working with

system integration may need to edit how models

from different suppliers are connected, but rarely

need to see inside each model for details. They

need some more flexibility than those working

with Model execution, but less compared to those

working with Model authoring.

The implementation of the framework is carried out in a

sequence of steps with gradually expanded capabilities:

1. Execution of fixed configurations, Figure 1.

2. Execution of reconfigurable models, Figure 2.

3. System integration, Figure 3.

2.1 Execution of fixed configurations

Figure 1 illustrates a common framework to manage the

separation of engineering task assuming that model

execution does not involve system reconfiguration.

System reconfiguration typically means replacing a

suspension, change the number of suspensions, or any

other change that change the topology of the model.

In this case, the Model author must prepare all

combinations needed by the Model executor and

__

DOI
10.3384/ecp18148109

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

109

compile them to executable form. If a combination is

missing, the Model executor has to order it from the

Model author. The output from the Model author is a set

of FMUs (executable models according to the FMI

standard). These FMUs can then be used by both the

Model executor and the System integrator as seen in

Figure 1.

With the separation, the Model executor can work in

any environment that supports the FMI standard (FMI,

2018), such as MS Excel (FMIE, 2018),

MATLAB/Simulink (FMIT, 2018), or python, (pyFMI,

2018). Here, Excel sheets are used for configuration and

data management, and MATLAB for Execution and

post processing. This is consistent with the setup chosen

in e.g. (Sundström, 2016a).

Using the FMI standard, the System integrator can

manage models from any tool that supports the standard,

see (FMI, 2018) for a list of available tools.

Figure 1 Execution of fixed configurations.

2.2 Execution of reconfigurable models

When there is a need for the Model executor to also

reconfigure the model, add compile-on-demand

functionality can be added as illustrated in Figure 2.

Figure 2 Execution of reconfigurable models.

Here, the output from the Model author is the Modelica

library. In addition, the execution environment is
equipped with a Modelica compiler. This allow for the

execution environment to reconfigure Modelica model

from the HMC (Hyundai Motor Group) Library

according to the commands of the Model executor.

Configuration options can be set up in the HMC Library

so that the Model author can control what options are

available for the Model executor as illustrated in Figure

3.

Figure 3 Reconfiguration in Model authoring

environment (top) and in Model execution

environment (bottom).

2.3 System integration

To allow to combine the model from HMC Library with

3rd party models, the suggestion is to also do this using

FMI standard. Here an intermediate step is introduced to

bundle the FMUs together prior to executing the

simulation. The 3rd party models are maintained in a data

base.

Figure 4 Toolchain with ability to include 3rd party

FMUs.

3 Model creation

The HMC_Commercial_Vehicle library is seen in

Figure 5. It is based on the Vehicle Dynamics Library

(VDL, 2018) and makes use of the Interface – Template

structure introduced in (Andreasson, 2006) now broadly

used to build system libraries, see e.g. (Sielemann,

2017a), (Sielemann, 2017b).

__
110 Proceedings of the 2nd Japanese Modelica Conference

May 17-18, 2018, Tokyo, Japan
DOI

10.3384/ecp18148109

Figure 5 HMC_Commercial_Vehicle library.

In brief, the structure promotes separation of interfaces,

topology and configuration as illustrated in Figure 6.

Here, a partial model is defined containing all common

interface attributes such as connectors and parameters

(left) that in turn is inherited by all implementations. An

implementation is then separated into the topology

definition (middle) and the configuration (right). The

topology is called a template and is defined using

subsystem interfaces as placeholders, and the

connections between these. Based on the template,

variants can easily be defined by just stating the contents

of each placeholder and thus eliminating the need to

duplicate information for layout and connections.

Figure 6 Interface - template structure according to

(Andreasson, 2006).

3.1 Modelica library export of FMUs

To enable execution without recompilation, a structure

that supports automatic generation of a large number of

preconfigured variants was set up. In brief this is set up

based on a strict package structure and naming

convention with the corresponding representation on the

file system as illustrated in Figure 7.

Figure 7 Library and FMU file structure

3.2 Model parameterization

Parameterization is separated from the model definition

using DataAccess, see e.g. (Andreasson, 2016) for more

elaborate examples. DataAccess allow parameter to be

pulled and pushed by the model itself, and thus makes

models natively able to interact with data repositories

regardless of implementation and execution tool. In this

case it means that the FMUs that are exported from the

Modelica environment can read and write data to the

HMC data-base also when executed in MATLAB and

Excel.

The directory and filenames are string parameters

that can be changed after export, before initializing the

FMU.

3.3 Multi-FMU support

For some applications, for example when there are

subsystems from a 3rd party tool. The framework needs

to support multiple FMUs. From the Modelica-

perspective, the HMC_Commercial_Vehicle library is

prepared to support this by the introduction of causal

adaptors. The causal adaptors converts the Modelica

connectors to a directional signal flow that fits with

other causal model implementations. To make this

compatible with the interface-template structure, the

methodology presented in (Andreasson, 2016) was

reused with the addition that compound signal

connectors is defined to handle the common cases.

Figure 8 shows an example where the model is prepared

for an external 3rd party steering FMU.

Figure 8 Model prepared for external steering FMU.

4 Model deployment

Figure 9 illustrates the model execution of single FMUs,

without recompilation. The implementation is based on

FMI functionality in MATLAB, (FMIT, 2018) and

provides an API for high level operations as well as a

graphical user interface. The workflow is based on three

steps; configure, parameterize and simulate.

__

DOI
10.3384/ecp18148109

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

111

Figure 9 Model execution without recompilation.

4.1 MATLAB API

Figure 10 shows an example of how the API can be used

to set up and execute simulations of single FMUs.

Figure 10 Example of API usage.

When adding third party FMUs, an intermediate

aggregation step is included, that calls the kernel of FMI

Composer (FMIC, 2018). In brief this kernel combines

multiple FMUs into one FMU such that all subsequent

steps can remain intact. From the API user perspective,

this appears as two optional inputs in the function call,

Figure 11.

Figure 11 Configuring experiment with 3rd party

FMU.

4.2 GUI for pre-processing

GUI is built based on MATLAB-Simulink to give

engineers convenience of execution. First, pre-
processing is performed by inputting the model

parameters like Figure 12.

Figure 12 MATLAB GUI for FMUs parameterization

The GUI is employed not just to make connection

between model parameters and FMUs, but also to give

simulation condition. Figure 13 illustrates the GUI of

simulation mode definition. By technical assistance of

MATLAB FMI toolbox by Modelon, FMIT (2018),

directly MATLAB start simulation of FMUs after this

parameterization and simulation condition definition.

Figure 13 MATLAB GUI for definition of Ride and

Handling simulation condition

4.3 Results

Finally, the simulation results are reproduced by plots

and Key Performance Indexes that HMC has already

defined. Once again, post-processor was developed on

the MATLAB for the purpose of establishing consistent

work flow from pre to post process. Figure 14 illustrates

this automated post process results.

__
112 Proceedings of the 2nd Japanese Modelica Conference

May 17-18, 2018, Tokyo, Japan
DOI

10.3384/ecp18148109

Figure 14 Automatically generated Simulation Results

5 Summary and future work

From this collaborating project, HMC is able to set up

stable and consistent simulation tool for Ride and

Handling performance using FMI technology and it will

be utilized during our vehicle development process.

Also HMC plan to set up similar workflow in many

other research and development section like CFD, fuel

consumption.

On the other hand, there is now the possibility to have

a client-server approach to Modelica-based engineering

(Elmqvist, 2018), which allows such functionality as

FMU generation and execution of simulation and

optimization to be remotely from the user and without

the need for installation of software on the local machine.

Such workflows as described here can therefore be

carried out from a web browser using the same models

as previously described, Figure 12.

References

J. Andreasson, M. Gäfvert: The Vehicle Dynamics Library –

Overview and Applications, In proceedings of the 5th

International Modelica Conference, Wien, September 2006.

https://modelica.org/events/modelica2006/Proceedings/ses

sions/Session1b3.pdf

J. Andreasson, N. Machida, M. Tsushima, J. Griffin, P.

Sundström: Deployment of high-fidelity vehicle models for

accurate real-time simulation, In proceedings of 1st

Japanese Modelica Conference, May 23-24, Tokyo, Japan,

2016.

http://www.ep.liu.se/ecp/article.asp?issue=124&article=0

H. Elmqvist, M. Malmheden, J. Andreasson. A Web

Architecture for Modeling and Simulation, In proceedings

of 2nd Japanese Modelica Conference, May 17-18, Tokyo,

Japan, 2018.

FMI, Functional Mockup Interface, 2018

http://www.fmi-standard.org

FMIC, FMI Composer, 2018.

http://www.modelon.com/products/modelon-deployment-

suite/fmi-composer

FMIE, FMI Add-in for Microsoft Excel, 2018.

http://www.modelon.com/products/modelon-deployment-

suite/fmi-add-in-for-excel

FMIT, FMI Toolbox for MATLAB/Simulink, 2018.

http://www.modelon.com/products/modelon-deployment-

suite/fmi-toolbox-for-MATLABsimulink

M. Henningsson, J. Åkesson, H. Tummescheit: An FMI-

Based Tool for Robust Design of Dynamical Systems, In

proceedings of 10th International Modelica Conference,

March, Lund, Sweden, 2014.

https://www.modelica.org/events/modelica2014/proceedin

gs/html/submissions/ECP1409635_HenningssonAkessonT

ummescheit.pdf

pyFMI, FMI support for python, 2018.

https://pypi.python.org/pypi/PyFMI

M. Sielemann, A. Pitchaikani, N. Selvan, M. Sammak: The

Jet Propulsion Library: Modeling and simulation of aircraft

engines, 2017. In proceedings of 12th International

Modelica Conference, May, Prague, 2017.

M. Sielemann, J. Andreasson: Towards Model-Based Design

of Aircraft Systems, 2017. NAFEMS World Congress

2017.

P. Sundström and J. Andreasson: Model-based design and

control of long heavy vehicle combinations, In proceedings

of 2016 IEEE Intelligent Vehicles Symposium, June 19-22,

Gothenburg, Sweden, 2016.

P. Sundström, M. Henningsson, X. Carrera Akutain, Y.

Hirano, A. Ocariz, H. Iida, N. Aikawa, and J. Andreasson:

Virtual Vehicle Kinematics and Compliance Test Rig, In

proceedings of 1st Japanese Modelica Conference, May

23-24, Tokyo, Japan, 2016.

http://www.ep.liu.se/ecp/article.asp?issue=124&article=00

4

VDL, Vehicle Dynamics Library, 2018

http://www.modelon.com/products/modelon-library-

suite/vehicle-dynamics-library

__

DOI
10.3384/ecp18148109

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

113

https://modelica.org/events/modelica2006/Proceedings/sessions/Session1b3.pdf
https://modelica.org/events/modelica2006/Proceedings/sessions/Session1b3.pdf
http://www.ep.liu.se/ecp/article.asp?issue=124&article=0
http://www.fmi-standard.org/
http://www.modelon.com/products/modelon-deployment-suite/fmi-composer
http://www.modelon.com/products/modelon-deployment-suite/fmi-composer
http://www.modelon.com/products/modelon-deployment-suite/fmi-add-in-for-excel
http://www.modelon.com/products/modelon-deployment-suite/fmi-add-in-for-excel
http://www.modelon.com/products/modelon-deployment-suite/fmi-toolbox-for-MATLABsimulink
http://www.modelon.com/products/modelon-deployment-suite/fmi-toolbox-for-MATLABsimulink
https://www.modelica.org/events/modelica2014/proceedings/html/submissions/ECP1409635_HenningssonAkessonTummescheit.pdf
https://www.modelica.org/events/modelica2014/proceedings/html/submissions/ECP1409635_HenningssonAkessonTummescheit.pdf
https://www.modelica.org/events/modelica2014/proceedings/html/submissions/ECP1409635_HenningssonAkessonTummescheit.pdf
https://pypi.python.org/pypi/PyFMI
http://www.ep.liu.se/ecp/article.asp?issue=124&article=004
http://www.ep.liu.se/ecp/article.asp?issue=124&article=004
http://www.modelon.com/products/modelon-library-suite/vehicle-dynamics-library
http://www.modelon.com/products/modelon-library-suite/vehicle-dynamics-library

Figure 12 Client-server based truck simulation using web architecture for modeling and simulation. (Note that web

link is not available without special access.)

__
114 Proceedings of the 2nd Japanese Modelica Conference

May 17-18, 2018, Tokyo, Japan
DOI

10.3384/ecp18148109

