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Abstract 

In this paper, we model the oil film bearings and 

estimate the fluid-induced instability for the design and 

the diagnosis of the rotating machinery system. The 

presented model is implemented in our original rotating 

machinery library by Modelica. An example of a 

Jeffcott rotor system supported by plain circular journal 

bearings is simulated. To check the behavior of the 

model, Campbell diagrams and stability maps are 

computed by using the Modelica_LinearSystems2 

library. 

Keywords: Rotor Dynamics, Oil Whirl, Oil Whip, 
Campbell Diagram, Stability Map  

1 Introduction 

Oil film bearings are widely used for the large rotating 

machinery systems such as turbines and generators. The 

oil film bearing has the following advantages compared 

to the rolling bearing. The oil film bearings provide the 

higher damping, which is required to pass through a 

critical speed and suppress vibration. Those also reduce 

noise, and have very long life under normal load 

condition because of the lack of contact between 

rotating parts. In harsh operating conditions such as high 

load and moderately high speed rotation, the oil film 

bearing has a superior performance. Some 

disadvantages of the oil film bearing are the higher 

friction, the higher susceptibility to particulate 

contamination and that it cannot run without a lube 

system.  

At high rotating speed, self-excited vibration due to the 

motion of the oil film may occur in the rotating 

machinery system supported by oil film bearings. This 

instable vibration, generally called oil whirl or whip 

causes damage to the machine. To design the high 

rotating speed machinery, it is necessary to understand 

this instable vibration mechanism and prevent it. To 

diagnose the rotating machinery system supported by oil 

film bearings, it is important to grasp the behavior with 

faults such as unbalance and shaft bending etc. 

In this paper, the oil lubricated plain journal bearing 

model is implemented in our original Rotating 
Machinery library (Ishibashi et al, 2017). We simulate 

the rotating machinery system supported by oil film 

bearings with static unbalance in a rotor. The 

components in this system are from our original rotating 

machinery library based on transfer matrix method. To 

check the behavior of the model, Campbell diagrams 

and stability maps are computed by using the 

Modelica_LinearSystems2 library. 

2 Hydrodynamic lubrication 

In this Section, we derive the Reynolds equation in order 

to determine the force that the oil film exerts on the shaft, 

that is, the pressure distribution of the oil film (Hori and 

Kato, 2008; Ishida and Yamamoto, 2012; Matsushita et 

al, 2017). Figure 1 schematically shows both walls of 

the shaft and the bearing are separated by an oil film.  

By treating the oil film as a continuum, the equation of 

motion of the oil film in three directions is derived from 

the Navier-Stokes equation. The majority of oil 

lubricated journal bearings operate in the slow viscous 

flow regime where the viscous forces are much greater 

than the inertia forces. In most of the industrial 

application, the bearing Reynolds number is usually 

below 1,500. Here, by simplifying various assumptions 

(rigid wall, incompressible Newtonian fluid, isothermal, 

isoviscous and isopycnic fluid, laminar flow, superior of 

differential coefficient in oil film thickness direction and 

ignoring inertial forces), equations of motion in the x, y 

and z directions are expressed as follows at any 

coordinate (x, y, z). 

𝜇
𝜕𝑢2

𝜕𝑦2
=

𝜕𝑝

𝜕𝑥
 (1) 

𝜇
𝜕𝑣2

𝜕𝑦2
= 0 (2) 

𝜇
𝜕𝑤2

𝜕𝑦2
=

𝜕𝑝

𝜕𝑧
 (3) 

Here, 𝜇 is the uniform fluid viscosity of the lubricating 

oil, u, v, w are the oil film flow velocity in the x, y, z 

direction, respectively. The pressure generated in the oil 

film varies depending on the in-plane coordinate x, z, but 

it is uniform in the y direction. By assuming that the oil 

film flow velocity on the wall surface is equal to the 

velocity of the wall surface motion, the boundary 

conditions are the velocities on the wall surfaces 

respectively. By integrating Equations 1, 2 and 3, the 

flow velocity is obtained as follows. 
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Figure 1. Lubrication surface model. x is the journal 

rotating direction, y is the oil film thickness direction, and 

z is the bearing width direction. The oil film thickness h 

does not change in the z direction, but narrows down 

gradually in the x direction. On the bearing surface y=0, the 

oil film moves at velocity U1 in x direction. On the journal 

surface y=h, it moves at velocity U2 in x direction. And it 

moves at velocity V in y direction. 

𝑢 = {𝑈2 + (𝑈1 − 𝑈2)
ℎ − 𝑦

ℎ
} + {−

𝑦(ℎ − 𝑦)

2𝜇

𝜕𝑝

𝜕𝑥
} (4) 

𝑣 = 𝑉
𝑦

ℎ
 (5) 

𝑤 = −
𝑦(ℎ − 𝑦)

2𝜇

𝜕𝑝

𝜕𝑧
 (6) 

These flow velocity equations are substituted into the 

equation obtained by integrating the following 

continuous Equation 7 once for y. 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (7) 

A formula for converting the order of differentiation and 

integration is applied with respect to terms of x 

derivative and z derivative of the pressure p, 

∫
𝜕

𝜕𝑥
𝑓(𝑦, 𝑥)𝑑𝑦

ℎ(𝑥)

0

=
𝜕

𝜕𝑥
∫ 𝑓(𝑦, 𝑥)𝑑𝑦

ℎ(𝑥)

0

− 𝑓(ℎ(𝑥), 𝑥)
𝜕ℎ(𝑥)

𝜕𝑥
 (8) 

A three-dimensional dynamic Reynolds equation is 

obtained as follows. 
𝜕

𝜕𝑥
( ℎ3

𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑧
( ℎ3

𝜕𝑝

𝜕𝑧
) 

= 6𝜇(𝑈1 − 𝑈2)
𝜕ℎ

𝜕𝑥
+ 6𝜇ℎ

𝜕

𝜕𝑥
(𝑈1 + 𝑈2) +  12𝜇𝑉 

(9) 

 

3 Static property of oil film bearing 

Equation 9 is adapted to the plain circular journal 

bearing which have the radius R, the width L and the 

radial clearance C shown in Figure 2. The uniform fluid 

viscosity 𝜇, the constant journal circumferential velocity 

U and the constant bearing load W are assumed.  

 

Figure 2. Oil film force and pressure of the plain circular 

journal bearing. 

Substituting 𝑈1 = 0, 𝑈2 = 𝑈,  𝑉 = 𝑈
𝜕ℎ

𝜕𝑥
+

𝜕ℎ

𝜕𝑡
 into 

Equation 9 and applying the short bearing 

approximation  
𝜕𝑝

𝜕𝑥
≪

𝜕𝑝

𝜕𝑧
, Equation 9 can be calculated as 

follows. 

 ℎ3
𝜕2𝑝

𝜕𝑧2 = 6𝜇𝑈
𝜕ℎ

𝜕𝑥
+  12𝜇

𝜕ℎ

𝜕𝑡
 (10) 

As the actual C/R is very small value, the oil film 

thickness h is approximately expressed as follows. 

ℎ = 𝐶(1 + 𝜀cos𝜙) (11) 

𝜀 is the eccentricity ratio e/C, where e is the distance 

between the bearing and the journal center, 𝜙  is the 

journal center angle from the maximum clearance 

position for the direction of the journal rotation. Here,  

𝑥 = 𝑅𝜙 . Equation 10 is expressed by the following 

equation. 
𝑑2𝑝

𝑑𝑧2
= −

6𝜇

𝐶2

𝜀sin𝜙 

(1 + 𝜀cos𝜙)3
 (𝜔 − 2𝜙 ̇ ) +

12𝜇

𝐶2

𝜀̇cos𝜙

(1 + 𝜀cos𝜙)3
 (12) 

Integrated twice under the boundary condition p=0 at 

the bearing edge (z=0, L) with respect to z. 

𝑝 = (
3𝜇

𝐶2

𝜀sin𝜙

(1 + 𝜀cos𝜙)3
 (𝜔 − 2𝜙 ̇ ) −

6𝜇

𝐶2

𝜀̇cos𝜙

(1 + 𝜀cos𝜙)3
) 

× 𝑧(𝐿 − 𝑧) 
(13) 

The oil film force is calculated by multiplying the oil 

film pressure by −cos𝜙 and sin𝜙, applying Gumbel’s 

boundary condition and integrating in the bearing area 

𝜃 = 0~𝜋 , 𝑧 = 0~𝐿. 

𝐹𝜀 = ∫ ∫(−𝑝cos𝜙)𝑅𝑑𝜙𝑑𝑧

𝜋

0

𝐿

0

=
𝜇𝑅𝐿3

𝐶2
(

𝜀2 (𝜔 − 2𝜙 ̇ )

(1 − 𝜀2)2
 +

𝜋𝜀̇(1 + 2𝜀2)

2(1 − 𝜀2)5/2
) 

(14) 

e

C

p

𝑈1 

𝑈2 

𝑥 

𝑦 

𝑧 

𝑉 

ℎ 
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𝐹𝜃 = ∫ ∫(𝑝sin𝜙)𝑅𝑑𝜙𝑑𝑧

𝜋

0

𝐿

0

=
𝜇𝑅𝐿3

𝐶2
(

𝜋𝜀 (𝜔 − 2𝜙 ̇ )

4(1 − 𝜀2)3/2
 +

2𝜀𝜀̇

(1 − 𝜀2)2
) 

(15) 

For the static equilibrium position 𝜀̇ = 𝜙 
̇ = 0, the oil 

film force is calculated as follows, 

𝐹𝜀0
=

𝜇𝑅𝐿3

𝐶2
(

𝜀0
2𝜔

(1 − 𝜀0
2)2

 ) (16) 

𝐹𝜙0
=

𝜇𝑅𝐿3

𝐶2
(

𝜋𝜀0𝜔

4(1 − 𝜀0
2)3/2

 ) (17) 

The eccentricity angle at the static equilibrium position 

is determined as follows. 

tan 𝜙0 =
𝐹𝜙0

𝐹𝜀0

=
π√1 − 𝜀0

2

4𝜀0
 (18) 

The oil film force x, y direction is written as follows 

𝐹𝑥 = −𝐹𝜀0
sin𝜙0  + 𝐹𝜙0

cos𝜙0 (19) 

𝐹𝑦 = 𝐹𝜀0
cos𝜙0 + 𝐹𝜙0

sin𝜙0 (20) 

At the static equilibrium position, the oil film force 

balances with static load W. Hence  𝜀0  is written as 

follows. 

𝑆 (
𝐿

2𝑅
)

2

=
(1 − 𝜀0

2)2

π𝜀0√π2 + (16 − π2)𝜀0
2

 (21) 

Here, S is Sommerfeld number written as follows. 

𝑆 =
2𝜇𝑁𝑅𝐿

𝑊
(

𝑅

𝐶
)

2

 (22) 

Here, N is the shaft rotating speed (rps, 1/s). When 

𝑆 (
𝐿

2𝑅
)

2
is given, the static equilibrium position 𝜀0, 𝜙0 

is uniquely determined. 

4 Dynamic property of oil film bearing 

Next we consider the dynamic property. The oil film 

force is highly nonlinear to solve. In order to discuss the 

linear stability of a shaft, the oil film force is linearized 

beforehand in the neighborhood of the static equilibrium 

position of the journal center. Further, in order to 

consider the journal motion in the rectangular 

coordinates system (x, y) shown in the same figure, let 

us transform the polar components 𝐹𝜀 and 𝐹𝜙 of the oil 

film force to the rectangular components 𝐹𝑥  and 𝐹𝑦 . 

Then the oil film forces 𝐹𝑥 and 𝐹𝑦 can be written in the 

following form. 

[
𝐹𝑥

𝐹𝑦
] = [

𝑘𝑥𝑥 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦
] [

𝑥
𝑦] + [

𝑐𝑥𝑥 𝑐𝑥𝑦

𝑐𝑦𝑥 𝑐𝑦𝑦
] [

𝑥̇
𝑦̇

] (23) 

The oil film force is expressed by the four spring 

coefficients and the four damping coefficients. Each 

coefficient is made dimensionless by converting as 

follows. 

 

 

Figure 3. The dimensionless coefficients of the plain 

circular journal bearing in case of the short bearing 

approximation. Spring coefficients (upper). Damping 

coefficients (lower). 

 

𝐾𝑖𝑗 =
𝐶

𝑊
𝑘𝑖𝑗 (24) 

𝐶𝑖𝑗 =
𝐶𝛺

𝑊
𝑐𝑖𝑗  (25) 

For example, the dimensionless coefficients of the 

plain circular journal bearing in case of the short bearing 

approximation and Gumbel’s boundary conditions are 

calculated as follows.  

𝐾𝑥𝑥 =
4[2𝜋2 + (16 − 𝜋2)𝜀0

2]

𝐾𝛼

 (26) 

𝐾𝑥𝑦 =
𝜋[𝜋2 − 2𝜋2𝜀0

2 − (16 − 𝜋2)𝜀0
4]

𝜀0(1 − 𝜀0
2)0.5𝐾𝛼

 (27) 

𝐾𝑦𝑥 = −
𝜋[𝜋2 + (32 + 𝜋2)𝜀0

2 + 2(16 − 𝜋2)𝜀0
4]

𝜀0(1 − 𝜀0
2)0.5𝐾𝛼

 (28) 

𝐾𝑦𝑦 =
4[𝜋2 + (32 + 𝜋2)𝜀0 + 2(16 − 𝜋2)𝜀0

4]

(1 − 𝜀0
2)𝐾𝛼

 (29) 

𝐶𝑥𝑥 =
2𝜋(1 − 𝜀0

2)0.5[𝜋2 − 2(8 − 𝜋2)𝜀0
2]

𝜀0𝐾𝛼

 (30) 

____________________________________________________________________________________________________________

DOI 
10.3384/ecp18148115

Proceedings of the 2nd Japanese Modelica Conference 
May 17-18, 2018, Tokyo, Japan 

 
117



𝐶𝑥𝑦 = 𝐶𝑦𝑥 = −
8[𝜋2 − 2(8 − 𝜋2)𝜀0

2]

𝐾𝛼

 (31) 

𝐶𝑦𝑦 =
2𝜋[𝜋2 + 2(24 − 𝜋2)𝜀0

2 + 𝜋2𝜀0
4]

𝜀0(1 − 𝜀0
2)0.5𝐾𝛼

 (32) 

𝐾𝛼 = {𝜋2 + (16 − 𝜋2)𝜀0
2}1.5 (33) 

The dimensionless coefficients are expressed as the 

functions of the eccentricity  𝜀0 at the static equilibrium 

position. Therefore, as the static equilibrium position 

changes, the dimensionless coefficients change. In 

Figure 3, we plot the dimensionless coefficients against 

𝑆 (
𝐿

2𝑅
)

2
, which uniquely detemines the static 

equilibrium position 𝜀0, 𝜙0. 

The dimensionless coefficients of the other type of 

journal bearings are obtained by computing Reynolds 

equation with the specific boundary condition or 

referring to the database (Someya, 1989). 

5 Modelica Implementation 

The presented oil film force models must be supplied by 

constraints in the transverse direction x, y and rotating 

angle direction. Our original Rotating Machinery library 

is used to supply these constraints (Ishibashi et al, 2017). 

The basic flange of this library has 5 DOF (degree of 

freedom), consisting of 4 DOF (two dimensional 

deflections and slopes) for transverse vibration of the 

rotor system and 1 DOF (rotating angle) for torsional 

vibration, neglecting axial vibration. Features like 

unbalanced rotors, flexible beams (shaft), supports, 

springs and dampers are all represented. The library is 

used to create the total rotating machinery system. The 

above static and dynamic of the oil film force models 

are implemented respectively.  

The oil film force models are implemented with two 

connectors, each with 5 DOF. Since the above oil film 

force models has the only 3 DOF, the moments are set 

as zero. These connectors are the connections to the 

journal in the bearing (3 connectors rotor without 

unbalance) and the support. 

 

Figure 4. Modelica Icon of the oil film force. 

 

Figure 5. The rotating machinery system supported by 

the oil film bearing. 

In Figure 4 the icon of the oil film force model is shown. 

The static and dynamic models have the same icon. No 

inertias or constraints are included in the model. Using 

our original rotating machinery library, it is possible to 

create rotating machinery systems. A simple rotating 

machinery system supported by the plain circular 

journal bearing is easily generated. Here, we treat 

Jeffcott rotor system as a test case in Figure 5. In the 

models, the static and dynamic oil film force models 

(Figure 4) are defined as described in this paper, all 

other components are components of our rotating 

machinery library. 

6 Simulation Results 

6.1 Static property  

A static equilibrium position of a simple rotor 

machinery system supported by the oil film bearing (as 

shown in Figure 5) is estimated. Here, the oil film 

bearing is the plain circular journal bearing explained in 

the above section. By replacing the constant input with 

the ramp input and simulating the static model (in which 

rotors and shafts have only the loads of weights), the 

position of the Journal1 flange connected to the oil 

film force model i.e. the static equilibrium position is 

calculated. Also, the static equilibrium position is the 

same as the journal center. Figure 6 shows the trajectory 

of the journal center when the rotating speed increases. 

In the plain circular journal bearing, the static 

equilibrium position draws the trajectory close to 

semicircular arc shape. As the journal rotating speed 

increases infinitely, the journal center reaches the 

bearing center position. 

 
 

 

Figure 6. The static equilibrium position. 

Low speed

High speed
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6.2 Dynamic property 

At the constant rotating speed, the static equilibrium 

position and the linearized dynamic oil film forces are 

uniquely determined. Using the model in Figure 5, the 

dynamic property of the journal center around the static 

equilibrium position is computed. The model has just a 

static unbalance in Rotor1. This system has the critical 

  

 

 

 

Figure 7. The simulation results of the journal center 

vibration at the constant rotating speed in x direction. This 

system is the light shaft system. 

speed (the natural frequency of lateral vibration) around 

42 Hz (see Figure 8).  Figure 7 shows the transient 

simulation results of the journal center position in x 

direction at the different constant rotating speed. At 

80rps, the vibration gradually diverges. This implies the 

instable vibration. To analyze these simulation results 

and the dependency of the rotating speed, these 

simulation results are processed by FFT (Fast Fourier 

Transformation). The waterfall plot is created as shown 

in Figure 8 (a). In the light shaft system such as Figure 

8 (a), the vibration of the half rotating speed increases 

as the rotating speed increases. When the rotating speed 

reaches twice the critical speed, a large whirl occurs. 

Because the whirling speed of the half-speed whirl 

coincides with the natural frequency of the system. 

Beyond this point, a large whirling still continues. 

To check the oil film bearing response, we simulate the 

model by increasing the constant bearing load W. Figure 

8 (b) shows the result. Below the critical speed, the half-

speed whirl is not observed. The static unbalance 

vibration synchronized with the rotating speed is 

observed. Beyond the critical speed, the large vibration 

of the natural frequency is still observed. 

 

 

 

Figure 8. Waterfall plots of the simulation results.  

(a) Light shaft. (b) Heavy shaft. 
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6.3 Eigenfrequency and Stability Analysis 

Using the Modelica_LinearSystems2 library (Bauer et 
al, 2009; Otter, 2006) and creating the functions, it is 

possible to create Campbell diagrams (also known as 

whirl speed maps) and stability maps, which show 

variations of eigenfrequencies and damping ratios of 

rotors with respect to the rotating speed. The models are 

linearized into the state space and represented in ABCD 

matrices by the Modelica_LinearSystems2 library. 

Computing eigenvalues of the matrix A and 

transforming into eigenfrequencies and damping ratios 

at the constant rotating speed, Campbell diagrams and 

stability maps are obtained. In rotating machinery 

systems, the eigenfrequencies often depend on the 

rotating speeds due to the induced gyroscopic effects or 

variable hydrodynamic conditions in fluid bearings. The 

intersection between the synchronous excitation line 

and the eigenfrequencies in Campbell diagrams are 

referred as critical speeds. In fluid bearing, damping 

ratios turn negative from positive as the rotating speed 

increases in stability maps. This speed is known as the 

instability threshold. Self-excited instability occurs at 

the speeds above the instability threshold. It is very 

 

 

Figure 9. Campbell diagrams. (a) Light shaft. (b) Heavy 

shaft. 

important for design and diagnose the rotating 

machinery systems to compute analytically and measure 

experimentally critical speeds and instability thresholds. 

Here, we analyze the model corresponding to Figure 8. 

Figure 9 shows the Campbell diagrams. The Campbell 

diagrams show both forward and backward vibration 

modes.  The Campbell diagrams of both of the light and 

heavy shaft show the totally same behavior. The critical 

frequency is around 42 Hz, at which frequency the 

lateral vibration occurs. The eigenfrequency curves 

starting from around 500Hz split due to the gyroscopic 

effects. Since the model only have a static unbalance, 

the vibration amplitude is too small to observe. The half-

speed whirl is observed due to the oil film. 

 Figure 10 shows the stability map. There is differences 

in the damping ratio curves between the light shaft and 

the heavy shaft. In the light shaft system, the damping 

ratio turns negative below the critical speed. From this 

speed the instable self-excited vibration called oil whirl 

occurs. The damping ratio reaches minimum at twice the 

critical speed. Over twice the critical speed, it increases. 

The oil whirl develops to the large whirl called oil whip 

at twice the critical speed and shrinks over twice the 

critical speed. 

 

 

Figure 10. Stability maps. (a) Light shaft. (b) Heavy 

shaft. The inset shows the enlarged view. 

(a)
(a)

(b)
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In the heavy shaft system, the damping ratio turns 

negative just below twice the critical speed. In the light 

shaft system, the damping ratios are smaller than in the 

heavy shaft. This means the light shaft system is more 

instable. These behaviors are well consistent with 

Figure 8. 

7 Conclusion 

In this paper, models are presented to describe the oil 

film force. Using our original rotating machinery library, 

it is possible to model a rotating machinery system 

supported by an oil film bearing. An example of Jeffcott 

rotor system supported by plain circular journal bearings 

is simulated and analyzed.  The presented models make 
it possible to estimate Campbell diagrams and stability 

maps of the rotating machinery system by using the 

Modelica_LinearSystems2 as well as transient 

simulation results. The presented models show the 

abilities to design and diagnose rotating machinery 

systems.   
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